1
|
Carvalho DCM, Dunn T, Campos RK, Tierney JA, Onyoni F, Cavalcante-Silva LHA, Pena LJ, Rodrigues-Mascarenhas S, Wu P, Weaver SC. Antiviral and immunomodulatory effects of ouabain against congenital Zika syndrome model. Mol Ther 2025; 33:465-470. [PMID: 39674887 PMCID: PMC11852665 DOI: 10.1016/j.ymthe.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Zika virus (ZIKV) is an arbovirus associated with neurological disorders accompanying congenital infections. With no vaccine or antiviral approved, there is an urgent need for the development of effective antiviral agents against ZIKV infection. We evaluated the anti-ZIKV and immunomodulatory activity of ouabain, a Na+/K+-ATPase inhibitor known to have immunomodulatory and antiviral activities, using human neural stem and progenitor cells (hNS/PCs) and a murine model of congenital Zika syndrome (CZS). Our data demonstrated that ouabain reduces ZIKV infection in hNS/PCs, mouse placenta, yolk sac, and the fetal head. Ouabain mitigated neurogenesis impairment triggered by ZIKV in hNS/PCs and prevented ZIKV-mediated reduction of fetus and head sizes. In addition, ouabain decreased tumor necrosis factor and interleukin-1β levels in the placenta, highlighting its immunomodulatory activity in the murine model. Our findings indicate that ouabain possesses anti-ZIKV and immunomodulatory activities, suggesting that it should be investigated further as a promising treatment for CZS.
Collapse
Affiliation(s)
- Deyse Cristina Madruga Carvalho
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil; Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Pernambuco, Brazil; Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Tiffany Dunn
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jessica A Tierney
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Florence Onyoni
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Luiz Henrique Agra Cavalcante-Silva
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil; Medical Sciences and Nursing Complex, Federal University of Alagoas, Arapiraca, 57309-005, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Pernambuco, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba (UFPB), João Pessoa 58051-900, Paraiba, Brazil
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
| |
Collapse
|
2
|
Castro de Jesus L, Gonçalves-de-Albuquerque CF, Burth P. Onset of bipolar disorder by COVID-19: The roles of endogenous ouabain and the Na,K-ATPase. J Psychiatr Res 2024; 179:60-68. [PMID: 39260109 DOI: 10.1016/j.jpsychires.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Bipolar Disorder (BD) is a psychiatric disorder marked by mood swings between manic and depressive episodes. The reduction in the Na,K-ATPase (NKA) enzyme activity and the inability of individuals with BD to produce endogenous ouabain (EO) at sufficient levels to stimulate this enzyme during stressful events are factors proposed for BD etiology. According to these hypotheses, reduction in NKA activity would result in altered neuronal resting potential, leading to BD symptoms. Recently, damage to the adrenals (EO synthesis site) in coronavirus disease (COVID-19) patients has been reported, however studies pointing to the pathophysiological mechanisms shared by these two diseases are scarce. Through a literature review, this study aims to correlate COVID-19 and BD, focusing on the role of NKA and EO to identify possible mechanisms for the worsening of BD due to COVID-19. The search in the PubMed database for the descriptors ("bipolar disorder" AND "Na,K-ATPase"), ("bipolar disorder" AND "endogenous ouabain"), ("covid-19" AND "bipolar disorder") and ("covid-19" AND "adrenal gland") resulted in 390 articles. The studies identified the adrenals as a vulnerable organ to SARS-CoV-2 infection. Cases of adrenal damage in patients with COVID-19 showing lower levels of adrenal hormones were reported. Cases of COVID-19 patients with symptoms of mania were reported worldwide. Given these results, we propose that adrenal cortical cell damage could lead to EO deficiency following neuronal NKA activity impairment, with small reductions in activity leading to mania and greater reductions leading to depression.
Collapse
Affiliation(s)
- Louise Castro de Jesus
- Laboratory of Enzymology and Cell Signaling, Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil; Laboratory Immunopharmacology, Department of Physiological Sciences, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20211-010, Brazil.
| | - Patrícia Burth
- Laboratory of Enzymology and Cell Signaling, Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
3
|
Lee J, Huh S, Park K, Kang N, Yu HS, Park HG, Kim YS, Kang UG, Won S, Kim SH. Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia. Psychopharmacology (Berl) 2024; 241:817-832. [PMID: 38081977 DOI: 10.1007/s00213-023-06511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
5
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Abstract
Although historically research has focused on transcription as the central governor of protein expression, protein translation is now increasingly being recognized as a major factor for determining protein levels within cells. The central nervous system relies on efficient updating of the protein landscape. Thus, coordinated regulation of mRNA localization, initiation, or termination of translation is essential for proper brain function. In particular, dendritic protein synthesis plays a key role in synaptic plasticity underlying learning and memory as well as cognitive processes. Increasing evidence suggests that impaired mRNA translation is a common feature found in numerous psychiatric disorders. In this review, we describe how malfunction of translation contributes to development of psychiatric diseases, including schizophrenia, major depression, bipolar disorder, and addiction.
Collapse
Affiliation(s)
- Sophie Laguesse
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,GIGA-Neurosciences, GIGA-Stem Cells, University of Liège, Liège, Belgium
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, de Sá Couto-Pereira N, Zeidán-Chuliá F, de Oliveira BHN, Bertolini D, Breunig RL, Ferreira AK, Kolling J, Siebert C, Wyse AT, Souza TME, Dalmaz C. Neonatal handling impairs intradimensional shift and alters plasticity markers in the medial prefrontal cortex of adult rats. Physiol Behav 2018; 197:29-36. [PMID: 30266584 DOI: 10.1016/j.physbeh.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Stress response can be modulated by neonatal/childhood events. Neonatal handling (NH) is an animal model in which the animals are subjected to brief separations from the dam during the first days of life, and it leads to lower emotionality and behavioral changes in adulthood. The aim of this study was to observe if early events, such as (NH), may program associative learning and behavioral flexibility in adult male rats and if these changes could be related to altered neurochemistry in the medial prefrontal cortex (mPFC). We evaluated proteins related to synaptic plasticity (brain-derived neurotrophic factor [BDNF] and synaptophysin [SYP]) as well as Na+/K+-ATPase activity. Additionally, we evaluated proteins related to the dopaminergic system (tyrosine hydroxylase [TH] and phosphorylated TH [pTH]), since this system appears to be affected in some neonatal interventions. Neonatally handled animals exhibited impairment in simple discrimination and intradimensional shift but not in reversal or compound discrimination; in addition, no alteration in switching from an egocentric spatial to a cued strategy was observed. These effects were accompanied by a decrease in SYP levels and Na+/K+-ATPase activity, suggesting reduced synaptic function. These results indicate that NH increases attention to irrelevant stimuli and/or impairs associative learning, and this is accompanied by neurochemical alterations in the (mPFC).
Collapse
Affiliation(s)
- Camilla Lazzaretti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro Universitário Cenecista de Osório (UNICNEC), Osório, RS, Brazil.
| | | | - Pablo Pandolfo
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ben-Hur Neves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diego Bertolini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raquel Luísa Breunig
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andréa Kurek Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Teresinha Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tadeu Mello E Souza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A. Na⁺, K⁺-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 2018; 19:E2314. [PMID: 30087257 PMCID: PMC6121236 DOI: 10.3390/ijms19082314] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.
Collapse
Affiliation(s)
- David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Asher Ilani
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Haim Rosen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Shiv Vardan Singh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Kim SH, Park S, Yu HS, Ko KH, Park HG, Kim YS. The antipsychotic agent clozapine induces autophagy via the AMPK-ULK1-Beclin1 signaling pathway in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:96-104. [PMID: 29079139 DOI: 10.1016/j.pnpbp.2017.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Clozapine, a representative atypical antipsychotic, has superior efficacy compared to other antipsychotic agents and is used for the treatment of severe psychotic disorders. Therefore, studies on its mechanisms of action are important for understanding the mechanisms of therapeutic approaches to psychosis. Adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase that plays a major role in maintaining metabolic homeostasis. Unc-51-like kinase 1 (ULK1) and Beclin1 are downstream substrates of AMPK and activate the autophagic process. In this study, we examined the effects of clozapine on the AMPK-ULK1-Beclin1 signaling pathway and autophagy in the frontal cortex of the rat. Clozapine (10mg/kg) administration increased the immunoreactivity of p-Thr172-AMPKα in the rat frontal cortex at 1, 2, and 4h after injection, as we previously reported. The immunoreactivity of p-Ser317-ULK1 and p-Ser93-Beclin1 was also increased at 2 and 4h after clozapine injection. At the same time, the immunoreactivity of LC3-II and the Atg5-Atg12 conjugate, which indicate activation of autophagy, was increased. Transmission electron microscopy clearly showed an increase in autophagosome number in the rat frontal cortex at 2h after clozapine injection. To investigate the role of AMPK in clozapine-induced autophagy, the effects of intracerebroventricular injection of compound C, an AMPK inhibitor, were examined. Administration of compound C attenuated the clozapine-induced increase in ULK1 and Beclin1 phosphorylation, as well the protein levels of LC3-II and the Atg5-Atg12 conjugate in the frontal cortex. In summary, the results showed that clozapine activates autophagy through the AMPK-ULK1-Beclin1 signaling pathway in the frontal cortex of the rat.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soyoung Park
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Hee Ko
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, Kim E, Kang H, Han K. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling. Front Mol Neurosci 2017; 10:201. [PMID: 28701918 PMCID: PMC5487420 DOI: 10.3389/fnmol.2017.00201] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Sun Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)Daejeon, South Korea
| | - Hyojin Kang
- HPC-enabled Convergence Technology Research Division, Korea Institute of Science and Technology InformationDaejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| |
Collapse
|
11
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
12
|
Yuan F, Leng B, Wang B. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt? FRONTIERS IN PLANT SCIENCE 2016; 7:977. [PMID: 27446195 PMCID: PMC4927796 DOI: 10.3389/fpls.2016.00977] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed.
Collapse
Affiliation(s)
| | | | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal UniversityJi’nan, China
| |
Collapse
|
13
|
Zhang F, Shao J, Tian J, Zhong Y, Ye L, Meng X, Liu Q, Wang H. Antidepressant-like Effects of LPM580153, A Novel Potent Triple Reuptake Inhibitor. Sci Rep 2016; 6:24233. [PMID: 27052887 PMCID: PMC4823741 DOI: 10.1038/srep24233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to characterize a novel compound, 4-[2-(dimethylamino)-1-(1-hydroxycyclohexyl) ethyl] phenyl 3-nitrophenyl ether, designated LPM580153. We used several well-validated animal models of depression to assess the antidepressant-like activity of LPM580153, followed by a neurotransmitter uptake assay and a corticosterone-induced cell injury model to explore its mechanism of action. In mice, LPM580153 reduced immobility time in the tail suspension test, and in rats subjected to chronic unpredictable mild stress it reversed reductions in body weight gain and ameliorated anhedonia. The neurotransmitter uptake assay results demonstrated that LPM580153 inhibited the uptake of serotonin, norepinephrine and dopamine. Furthermore, LPM580153 protected the SH-SY5Y cells against the cytotoxic activity of corticosterone, an action that might be related to the role of LPM580153 in increasing the protein levels of BDNF, p-ERK1/2, p-AKT, p-CREB and p-mTOR. Together, these findings indicate that LPM580153 is a novel triple reuptake inhibitor with robust antidepressant-like effects.
Collapse
Affiliation(s)
- Fangxi Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Jing Shao
- The third hospital of Jinan, Jinan, 250132, PR China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yan Zhong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
- Institute of Toxicology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Xiangjing Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Qiaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
14
|
Xiao H, Huang Q, Wang JQ, Deng QQ, Gu WP. Effect of ephrin-B2 on the expressions of angiopoietin-1 and -2 after focal cerebral ischemia/reperfusion. Neural Regen Res 2016; 11:1784-1789. [PMID: 28123421 PMCID: PMC5204233 DOI: 10.4103/1673-5374.194723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ephrin-B2 has been shown to participate in angiogenesis, but the underlying mechanisms involved remain unclear. In this study, a rat model of focal cerebral ischemia was prepared by focal middle cerebral artery occlusion, followed by 24-hour reperfusion. Then, ephrin-B2 protein was administered intracerebroventricularly for 3 consecutive days via a micro-osmotic pump. Western blot assay and quantitative real-time reverse transcription PCR demonstrated the expression levels of angiopoietin-1 (Ang-1) mRNA and protein in the penumbra cortex of the ephrin-B2 treated group were decreased at day 4 after reperfusion, and increased at day 28, while the expression levels of angiopoietin-2 (Ang-2) were highly up-regulated at all time points tested. Double immunofluorescent staining indicated that Ang-1 and Ang-2 were both expressed in vascular endothelial cells positive for CD31. These findings indicate that ephrin-B2 influences the expressions of Ang-1 and Ang-2 during angiogenesis following transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Neurology, Changsha Municipal Central Hospital, Changsha, Hunan Province, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jia-Qi Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qing-Qing Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Biever A, Valjent E, Puighermanal E. Ribosomal Protein S6 Phosphorylation in the Nervous System: From Regulation to Function. Front Mol Neurosci 2015; 8:75. [PMID: 26733799 PMCID: PMC4679984 DOI: 10.3389/fnmol.2015.00075] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023] Open
Abstract
Since the discovery of the phosphorylation of the 40S ribosomal protein S6 (rpS6) about four decades ago, much effort has been made to uncover the molecular mechanisms underlying the regulation of this post-translational modification. In the field of neuroscience, rpS6 phosphorylation is commonly used as a readout of the mammalian target of rapamycin complex 1 signaling activation or as a marker for neuronal activity. Nevertheless, its biological role in neurons still remains puzzling. Here we review the pharmacological and physiological stimuli regulating this modification in the nervous system as well as the pathways that transduce these signals into rpS6 phosphorylation. Altered rpS6 phosphorylation observed in various genetic and pathophysiological mouse models is also discussed. Finally, we examine the current state of knowledge on the physiological role of this post-translational modification and highlight the questions that remain to be addressed.
Collapse
Affiliation(s)
- Anne Biever
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale, U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Emmanuel Valjent
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale, U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Emma Puighermanal
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale, U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| |
Collapse
|
16
|
Ma H, Groth RD, Cohen SM, Emery JF, Li B, Hoedt E, Zhang G, Neubert TA, Tsien RW. γCaMKII shuttles Ca²⁺/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 2015; 159:281-94. [PMID: 25303525 DOI: 10.1016/j.cell.2014.09.019] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/02/2014] [Accepted: 09/09/2014] [Indexed: 12/23/2022]
Abstract
Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by βCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both βCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, βCaMKII, and CaN in multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Rachel D Groth
- Centers for Therapeutic Innovation, Pfizer, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Samuel M Cohen
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - John F Emery
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Esthelle Hoedt
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guoan Zhang
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
17
|
Tsuzawa K, Yazawa I, Shakuo T, Ikeda K, Kawakami K, Onimaru H. Effects of ouabain on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats and in decerebrate and arterially perfused in situ preparation from juvenile rats. Neuroscience 2014; 286:404-11. [PMID: 25512246 DOI: 10.1016/j.neuroscience.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
The significance of Na/K-ATPase on respiratory rhythm generation is not well understood. We investigated the effects of the Na/K-ATPase blocker, ouabain, on respiratory rhythm. Experiments were performed with brainstem-spinal cord preparation from 0 to 3-day-old Wistar rats and with decerebrate and arterially perfused in situ preparation from juvenile rats (postnatal day 11-13). Newborn rat preparations were superfused at a rate of 3.0 ml/min with artificial cerebrospinal fluid, equilibrated with 95% O2 and 5% CO2, pH 7.4, at 26-27 °C. Inspiratory activity was monitored from the fourth cervical ventral root (C4). Application of ouabain (15-20 min) resulted in a dose-dependent increase in the burst rate of C4 inspiratory activity. After washout, the burst rate further increased to reach quasi-maximum values under each condition (e.g. 183% of control in 1 μM, 253% in 10 μM, and 303% in 20 μM at 30 min washout). Inspiratory or pre-inspiratory neurons in the rostral ventrolateral medulla were depolarized. We obtained similar results (i.e. increased phrenic burst rate) in an in situ perfused preparation of juvenile rats. Genes encoding the Na/K-ATPase α subunit were expressed in the region of the parafacial respiratory group (pFRG) in neonatal rats, suggesting that cells (neurons and/or glias) in the pFRG were one of the targets of ouabain. We concluded that Na/K-ATPase activity could be an important factor in respiratory rhythm modulation.
Collapse
Affiliation(s)
- K Tsuzawa
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - I Yazawa
- Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - T Shakuo
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - K Ikeda
- Division of Biology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - K Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - H Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| |
Collapse
|
18
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One 2014; 9:e87323. [PMID: 24475272 PMCID: PMC3903642 DOI: 10.1371/journal.pone.0087323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/20/2013] [Indexed: 12/29/2022] Open
Abstract
In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r2 = 0.98) between the expression of Na+/K+-ATPase α3 subunit and anti-proliferative activity suggested the critical role of the α3 subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.
Collapse
|