1
|
Hinchliffe E, Heazell A. Profiling neuroactive steroids in pregnancy. A non-derivatised liquid chromatography tandem mass spectrometry method for the quantitation of allopregnanolone and four related isomers in maternal serum. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124541. [PMID: 40054418 DOI: 10.1016/j.jchromb.2025.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 04/07/2025]
Abstract
Neuroactive steroids are metabolites of progesterone, synthesised during pregnancy by the placenta. Here, we describe development of a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for quantitation of allopregnanolone, pregnanolone, isopregnanolone, epipregnanolone and allopregnan-20α-ol-3-one in maternal serum. Following addition of deuterated internal standards, 200 μL of serum was subjected to solid phase extraction. Chromatography was performed using a pentafluorophenyl column, and LC-MS/MS on a Sciex 6500+. Sample injection volume was 20 μL, and injection-to-injection time 10.0 min. The assay was validated according to published guidelines; assay linearity and lower limit of quantification were suitable for analysis of each steroid in maternal serum, for all analytes mean recoveries were 100 % ± 15 %, intra- and inter-assay imprecision <15 %, and matrix effects negligible, and specificity experiments confirmed nil interference from a wide range of endogenous metabolites of progesterone. The method was applied to human serum samples obtained from a large cohort of third trimester pregnancies which were subsequently characterised by normal fetal and maternal outcomes, and relationships between maternal neuroactive steroid concentrations and fetal gestational age assessed. Positive correlations between maternal serum concentration and fetal gestational age were observed for isopregnanolone, allopregnanolone and allopregnan-20α-ol-3-one. The LC-MS/MS method offers significant advantages over previously published approaches for quantitation of neuroactive steroids in human maternal serum, notably obviating the need for derivatisation, whilst achieving exceptional specificity. Characterisation of normal maternal neuroactive steroid concentrations will aid future research as dysregulated placental progesterone metabolism is observed in pregnancies with poor outcomes.
Collapse
Affiliation(s)
- Edward Hinchliffe
- Dept Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Alexander Heazell
- Maternal and Fetal Health Research Centre, School of Biomedicine, University of Manchester, Manchester, UK; Department of Obstetrics, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2025; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
3
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
4
|
Liu Q, Lin Y, Zhang W. Psychological stress dysfunction in women with premenstrual syndrome. Heliyon 2024; 10:e40233. [PMID: 39748962 PMCID: PMC11693916 DOI: 10.1016/j.heliyon.2024.e40233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025] Open
Abstract
Premenstrual syndrome (PMS) encompasses a range of emotional, physiological, and behavioral symptoms that occur during the luteal phase of the menstrual cycle (MC) and resolve with the onset of menstruation. These symptoms, which can include fatigue, physical pain, anxiety, irritability, and depression, significantly affect women's daily lives and overall well-being. In severe cases, PMS can progress to premenstrual dysphoric disorder (PMDD), profoundly impairing quality of life. Despite its prevalence, the neural mechanisms underlying PMS-particularly those related to stress-are not fully understood.This review aims to explore the complex interactions between PMS and stress, with a focus on the hormonal pathways involved. We propose that abnormal stress coping styles and stress reactivity patterns, collectively referred to as stress dysfunction, are crucial factors influencing women's vulnerability to PMS. We examine the relationship between PMS and stress from four perspectives: (1) PMS shares neuroendocrine metabolic circuits based on hormonal fluctuations with stress reactivity systems; (2) there is comorbidity between PMS and stress-related disorders; (3) PMS itself may act as a stressor, potentially creating a negative feedback loop that exacerbates symptoms; and (4) biofeedback training used for stress disorders may be effective in treating PMS. By providing a detailed analysis of stress-related hormonal changes and their effects on PMS, this review offers new insights into the physiological processes underlying PMS. Understanding these interactions may inform the development of targeted interventions and improve the quality of life for women affected by PMS.
Collapse
Affiliation(s)
- Qing Liu
- College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yuhang Lin
- College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Wenjuan Zhang
- Mental Health Education Center, Xidian University, Xi'an, China
| |
Collapse
|
5
|
Blaser BL, Weymar M, Wendt J. Premenstrual syndrome is associated with differences in heart rate variability and attentional control throughout the menstrual cycle: A pilot study. Int J Psychophysiol 2024; 204:112374. [PMID: 38823422 DOI: 10.1016/j.ijpsycho.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Most persons with an active menstrual cycle suffer from a range of aversive symptoms (e.g. reduced ability to concentrate) in the days before their menstruation - the premenstrual syndrome (PMS). Biological and cognitive mechanisms of PMS are poorly understood. It has been shown that vagally mediated heart rate variability (vmHRV), a physiological marker of self-regulation, decreases during the PMS-affected cycle phase (luteal phase) only in individuals with high PMS symptomology. This study investigates the specific associations between vmHRV, PMS symptomology and cognitive self-regulation (attentional control). METHODS In this between-subject study, participants completed an vmHRV baseline measurement through electrocardiography, a reaction time paradigm to measure attentional control (modified attention network test revised, ANT-R) and filled out a questionnaire regarding impact of PMS as well as current menstrual phase. RESULTS Mixed Model analysis showed interactions effects in the hypothesized direction. VmHRV was decreased during the luteal phase only in individuals with higher PMS. Analogously, performance in the Executive Functioning of the ANT-R task was reduced in the luteal compared to the follicular phase only in individuals with increased PMS symptoms. No effects were found in the Orienting Network Score. DISCUSSION The results point in the direction of associations between vmHRV, PMS and self-regulation. This could hint at common underlying mechanisms. Further research, however, must be conducted to examine causal pathways to confirm these associations.
Collapse
Affiliation(s)
- Berenike L Blaser
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Chen J, Zhou Y, Lai M, Zhang Y, Hu Y, Zhuang D, Zhou W, Zhang Y. Antidepressant effects of activation of infralimbic cortex via upregulation of BDNF and β-catenin in an estradiol withdrawal model. Psychopharmacology (Berl) 2024; 241:1923-1935. [PMID: 38743109 PMCID: PMC11339133 DOI: 10.1007/s00213-024-06610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
RATIONALE Clinical and preclinical studies have demonstrated that estradiol withdrawal after delivery is one of important factors involved in the pathogenesis of postpartum depression (PPD). The infralimbic cortex (IL) is related to anxiety and mood disorders. Whether IL neurons mediate PPD is still unclear. OBJECTIVES This study was to observe the antidepressant effect and expression of BDNF and β-catenin in IL by allopregnanolone (ALLO) treatment or the selective activation or inhibition of IL neurons using a chemogenetic approach in a pseudopregnancy model of PPD. METHODS Administration of estradiol combined with progesterone and the abrupt withdrawal of estradiol simulated the pregnancy and early postpartum periods to induce depression in ovariectomized rats. The relative expression levels of β-catenin and BDNF were observed by western blotting. RESULTS Immobility time was significantly increased in the forced swim test and open-arm movement was reduced in the elevated plus maze test in the estradiol-withdrawn rats. After ALLO treatment, the immobility time were lower and open-arm traveling times higher than those of the estradiol-withdrawn rats. Meanwhile, the expression level of BDNF or β-catenin in the IL was reduced significantly in estradiol-withdrawn rats, which was prevented by treatment with ALLO. The hM3Dq chemogenetic activation of pyramidal neurons in the IL reversed the immobility and open-arm travel time trends in the estradiol-withdrawal rat model, but chemogenetic inhibition of IL neurons failed to affect this. Upregulated BDNF and β-catenin expression and increased c-Fos in the basolateral amygdala were found following IL neuron excitation in model rats. CONCLUSIONS Our results demonstrated that pseudopregnancy and estradiol withdrawal produced depressive-like behavior and anxiety. ALLO treatment or specific excitement of IL pyramidal neurons relieved abnormal behaviors and upregulated BDNF and β-catenin expression in the IL in the PPD model, suggesting that hypofunction of IL neurons may be involved in the pathogenesis of PPD.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Yiying Zhou
- Zhejiang Provincial Key Lab of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, P. R. China
| | - Miaojun Lai
- Zhejiang Provincial Key Lab of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, P. R. China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, P. R. China
| | - Yanping Zhang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Yifang Hu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Dingding Zhuang
- Zhejiang Provincial Key Lab of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, P. R. China
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, P. R. China.
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, P. R. China.
| | - Yisheng Zhang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China.
| |
Collapse
|
7
|
Cavallieri F, Lucchi C, Grisanti S, Monfrini E, Fioravanti V, Toschi G, Di Rauso G, Rossi J, Di Fonzo A, Biagini G, Valzania F. Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson's Disease: A Possible Factor Influencing Clinical Phenotype? Biomolecules 2024; 14:1022. [PMID: 39199409 PMCID: PMC11352262 DOI: 10.3390/biom14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Neurosteroids are pleiotropic molecules involved in various neurodegenerative diseases with neuroinflammation. We assessed neurosteroids' serum levels in a cohort of Parkinson's Disease (PD) patients with heterozygous glucocerebrosidase (GBA) mutations (GBA-PD) compared with matched cohorts of consecutive non-mutated PD (NM-PD) patients and healthy subjects with (GBA-HC) and without (NM-HC) GBA mutations. A consecutive cohort of GBA-PD was paired for age, sex, disease duration, Hoehn and Yahr stage, and comorbidities with a cohort of consecutive NM-PD. Two cohorts of GBA-HC and HC were also considered. Clinical assessment included the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Montreal Cognitive Assessment (MoCA). Serum samples were processed and analyzed by liquid chromatography coupled with the triple quadrupole mass spectrometry. Twenty-two GBA-PD (males: 11, age: 63.68), 22 NM-PD (males: 11, age: 63.05), 14 GBA-HC (males: 8; age: 49.36), and 15 HC (males: 4; age: 60.60) were studied. Compared to NM-PD, GBA-PD showed more hallucinations and psychosis (p < 0.05, Fisher's exact test) and higher MDS-UPDRS part-II (p < 0.05). Most of the serum neurosteroids were reduced in both GBA-PD and NM-PD compared to the respective control cohorts, except for 5α-dihydroprogesterone. Allopregnanolone was the only neurosteroid significantly lower (p < 0.01, Dunn's test) in NM-PD compared to GBA-PD patients. Only in GBA-PD, allopregnanolone, and pregnanolone levels correlated (Spearman) with a more severe MDS-UPDRS part-III. Allopregnanolone levels also negatively correlated with MoCA scores, and pregnanolone levels correlated with more pronounced bradykinesia. This pilot study provides the first observation of changes in neurosteroid peripheral levels in GBA-PD. The involvement of the observed changes in the development of neuropsychological and motor symptoms of GBA-PD deserves further attention.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Toschi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Jessica Rossi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| |
Collapse
|
8
|
O'Malley PA. ZURZUVAE-The First Oral Treatment Approved for Postpartum Depression. CLIN NURSE SPEC 2024; 38:15-17. [PMID: 38079140 DOI: 10.1097/nur.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Patricia Anne O'Malley
- Author Affiliation: Nurse Scientist, Center of Nursing Excellence, Premier Health-Miami Valley Hospital is in Dayton, Ohio
| |
Collapse
|
9
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
10
|
Marecki R, Kałuska J, Kolanek A, Hakało D, Waszkiewicz N. Zuranolone - synthetic neurosteroid in treatment of mental disorders: narrative review. Front Psychiatry 2023; 14:1298359. [PMID: 38116383 PMCID: PMC10729607 DOI: 10.3389/fpsyt.2023.1298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
With each passing year, the number of people suffering from mental disorders grows at a disturbing speed. Neuroactive steroids are a new promising group of drugs with the potential for use in many diseases like postpartum depression, postnatal psychosis, major depression, insomnia, bipolar disorder, and Parkinson's tremor, due to their ability to modulate the activity of GABAA receptor. Neurosteroids are progesterone metabolites that are synthesized from cholesterol or steroid hormones in various brain regions. They regulate neuronal development, regeneration, and neurotransmission. They are implicated in mood disorders, anxiety disorders, schizophrenia, PTSD, and impulsive aggression. Neurosteroids have been studied for their potential to prevent or treat neurodegenerative diseases such as Alzheimer's disease and HIV-associated dementia. They can promote neurogenesis, neuronal survival, myelination, and memory function. They can also affect the growth and sensitivity of hormone-dependent brain tumors such as gliomas. Zuranolone, a newly registered neurosteroid drug has shown huge flexibility in both clinical and ambulatory treatment thanks to its pharmacokinetic traits, especially the possibility for oral administration, unlike its predecessor Brexanolone. Zuranolone is a synthetic positive allosteric modulator of the GABAA receptor that can be taken orally. The review aims to summarize the current knowledge on zuranolone as a novel neurosteroid drug for various mental disorders, especially for postpartum mental disorders for which this drug was meant originally. It covers studies indexed in the PubMed, Scopus, and Web of Science databases published since 2017. Keywords used in the search, as well as inclusion and exclusion criteria, are given in the aims and methodology section. The review explains the evidence for the role of neurosteroids, especially allopregnanolone, in the pathophysiology and treatment of postpartum depression. It discusses the mechanisms of neurosteroid action, the changes in neurosteroid levels during pregnancy and postpartum, and the clinical trials of brexanolone and zuranolone, two synthetic analogs of allopregnanolone, for postpartum depression. It provides an overview of the biosynthesis and metabolism of neurosteroids in the central and peripheral nervous system. Furthermore, it explains the different sources and pathways of neurosteroid production and the factors that influence their synthesis and regulation, such as stress, hormones, drugs, and genetic variations. The review also explores the potential relevance of neurosteroids for other psychiatric disorders, such as major depression, bipolar disorder, post-traumatic stress disorder (PTSD), schizophrenia, and premenstrual dysphoric disorder. Finally, it highlights the associations between neurosteroid levels and symptom severity and the effects of neurosteroid modulation on mood, cognition, and neuroplasticity.
Collapse
|
11
|
Gorman-Sandler E, Robertson B, Crawford J, Wood G, Ramesh A, Arishe OO, Webb RC, Hollis F. Gestational stress decreases postpartum mitochondrial respiration in the prefrontal cortex of female rats. Neurobiol Stress 2023; 26:100563. [PMID: 37654512 PMCID: PMC10466928 DOI: 10.1016/j.ynstr.2023.100563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/03/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jesseca Crawford
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Archana Ramesh
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Olufunke O. Arishe
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| |
Collapse
|
12
|
Bhatti NA, Jobilal A, Asif K, Jaramillo Villegas M, Pandey P, Tahir AN, Balla N, Arellano Camargo MP, Ahmad S, Kataria J, Abdin ZU, Ayyan M. Exploring Novel Therapeutic Approaches for Depressive Disorders: The Role of Allopregnanolone Agonists. Cureus 2023; 15:e44038. [PMID: 37746458 PMCID: PMC10517642 DOI: 10.7759/cureus.44038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Depressive disorders are caused due to the impaired functioning of important brain networks. Recent studies have also shown that it is caused by a significant reduction in the levels of allopregnanolone, which is a progesterone metabolite. Newer treatment modalities are now focusing on the usage of neuroactive steroids, such as allopregnanolone, in various depressive disorders. Our aim was to provide a comprehensive literature review on the clinical aspects of the allopregnanolone agonists brexanolone and zuranolone with reference to the physiological role of allopregnanolone. Brexanolone was approved by the FDA in 2019 for the treatment of postpartum depression and has greatly influenced further research into potential drugs such as zuranolone, which is currently undergoing phase 3 of clinical trials. Although these drugs exhibit improvement in symptoms of depressive disorders along with notable side effects, further research is required for their future clinical use.
Collapse
Affiliation(s)
| | - Anna Jobilal
- Internal Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Kainat Asif
- Internal Medicine, Dr. Ruth K. M. Pfau Civil Hospital, Karachi, PAK
| | | | - Priyanka Pandey
- Anatomical Sciences, Hind Institute of Medical Sciences, Sitapur, IND
| | | | - Neeharika Balla
- Internal Medicine, Maharajah's Institute of Medical Sciences, Vizianagaram, IND
| | | | - Sana Ahmad
- Psychiatry, TIME Organization Inc, Baltimore, USA
| | | | - Zain U Abdin
- Family Medicine, IMG Helping Hands, Chicago, USA
| | | |
Collapse
|
13
|
Peric T, Ellero L, Comin A, Pividori I, Prandi A. Validation of an ELISA kit to measure allopregnanolone in human and equine hair. J Vet Diagn Invest 2023; 35:354-358. [PMID: 37114774 PMCID: PMC10331396 DOI: 10.1177/10406387231171045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
In humans, allopregnanolone plays important roles in a number of different neurodegenerative disorders, and it has been proposed for use in some therapies. Horses are commonly used as animal models for human neurodegenerative diseases, mental and behavioral disorders, and neuropsychiatric disorders, and there is interest in using hair as a biological sample to study hormones in these conditions. We validated the use of a commercial ELISA kit (DetectX allopregnanolone kit; Arbor Assays), which was designed for serum, plasma, feces, urine, and tissue samples, to assess allopregnanolone in hair samples from 30 humans and 63 horses. The ELISA kit had good precision (intra- and inter-assay CVs: 6.4% and 11.0% for equine hair; 7.3% and 11.0% for human hair, respectively), sensitivity (50.4 pg/mL for both equine and human hair), and accuracy (parallelism and recovery tests) in determining allopregnanolone concentrations in hair from both species. The allopregnanolone concentrations in human hair were 7.3-79.1 pg/mg; the concentrations were 286 ± 141 pg/mg (x̄ ± SD) in mares on the day of parturition and 16.9 ± 5.5 pg/mg in nonpregnant mares. The DetectX ELISA kit offered a simple and accessible analysis of allopregnanolone in human and equine hair samples.
Collapse
Affiliation(s)
- Tanja Peric
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Letizia Ellero
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Antonella Comin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Isabella Pividori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Alberto Prandi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
14
|
Sherer ML, Malik A, Osborne LM, Rowther AA, Zaidi A, Atif N, Rahman A, Kahloon LE, Salman M, Yenokyan G, Surkan PJ. Biological Mechanisms in Pregnant Women With Anxiety (Happy Mother-Healthy Baby Supplement Study): Protocol for a Longitudinal Mixed Methods Observational Study. JMIR Res Protoc 2023; 12:e43193. [PMID: 37040167 PMCID: PMC10132042 DOI: 10.2196/43193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Anxiety and depression are common in the perinatal period and negatively affect the health of the mother and baby. Our group has developed "Happy Mother-Healthy Baby" (HMHB), a cognitive behavioral therapy-based psychosocial intervention to address risk factors specific to anxiety during pregnancy in low- and middle-income countries (LMICs). OBJECTIVE The purpose of this study is to examine biological mechanisms that may be linked to perinatal anxiety in conjunction with a randomized controlled trial of HMHB in Pakistan. METHODS We are recruiting 120 pregnant women from the Holy Family Hospital, a public facility in Rawalpindi, Pakistan. Participants are assessed for at least mild anxiety symptoms using the Hospital Anxiety and Depression Scale (ie, a score ≥8 on the anxiety scale is necessary for inclusion in the anxiety groups and <8 for inclusion in the healthy control group). Women who meet the criteria for an anxiety group are randomized into either the HMHB intervention group or an enhanced usual care (EUC) control group. Participants receive HMHB or EUC throughout pregnancy and undergo blood draws at 4 time points (baseline, second trimester, third trimester, and 6 weeks post partum). We will assess peripheral cytokine concentrations using a multiplex assay and hormone concentrations using gas chromatography and mass spectrometry. The statistical analysis will use generalized linear models and mixed effects models to assess the relationships across time among anxiety, immune dysregulation, and hormone levels, and to assess whether these biological factors mediate the relationship between anxiety and birth and child development outcomes. RESULTS Recruitment started on October 20, 2020, and data collection was completed on August 31, 2022. The start date for recruitment for this biological supplement study was delayed by approximately half a year due to the COVID-19 pandemic. The trial was registered at ClinicalTrials.gov (NCT03880032) on September 22, 2020. The last blood samples were shipped to the United States on September 24, 2022, where they will be processed for analysis. CONCLUSIONS This study is an important addition to the HMHB randomized controlled trial of an intervention for antenatal anxiety. The intervention itself makes use of nonspecialist providers and, if effective, will represent an important new tool for the treatment of antenatal anxiety in LMICs. Our biological substudy is one of the first attempts to link biological mechanisms to antenatal anxiety in an LMIC in the context of a psychosocial intervention, and our findings have the potential to significantly advance our knowledge of the biological pathways of perinatal mental illness and treatment efficacy. TRIAL REGISTRATION ClinicalTrials.gov NCT03880032; https://clinicaltrials.gov/ct2/show/NCT03880032. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/43193.
Collapse
Affiliation(s)
- Morgan L Sherer
- Johns Hopkins Center for Women's Reproductive Mental Health, Departments of Psychiatry & Behavioral Sciences and Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Abid Malik
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Lauren M Osborne
- Johns Hopkins Center for Women's Reproductive Mental Health, Departments of Psychiatry & Behavioral Sciences and Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Armaan A Rowther
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ahmed Zaidi
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Najia Atif
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Atif Rahman
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lubna E Kahloon
- Department of Obstetrics and Gynecology, Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Muhammad Salman
- Public Health Laboratory Division, National Institute of Health, Islamabad, Pakistan
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
15
|
Umminger LF, Rojczyk P, Seitz-Holland J, Sollmann N, Kaufmann E, Kinzel P, Zhang F, Kochsiek J, Langhein M, Kim CL, Wiegand TLT, Kilts JD, Naylor JC, Grant GA, Rathi Y, Coleman MJ, Bouix S, Tripodis Y, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, O'Donnell LJ, Marx CE, Shenton ME, Koerte IK. White Matter Microstructure Is Associated with Serum Neuroactive Steroids and Psychological Functioning. J Neurotrauma 2023; 40:649-664. [PMID: 36324218 PMCID: PMC10061338 DOI: 10.1089/neu.2022.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (β = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (β = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (β = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.
Collapse
Affiliation(s)
- Lisa F. Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Epilepsy Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janna Kochsiek
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cara L. Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jason D. Kilts
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer C. Naylor
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- School of Public Health, University of California San Diego, La Jolla, California, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lauren J. O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
16
|
A focus on Rho/ROCK signaling pathway: An emerging therapeutic target in depression. Eur J Pharmacol 2023; 946:175648. [PMID: 36894049 DOI: 10.1016/j.ejphar.2023.175648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Depression is the most common mental health disorder worldwide; however, the exact cellular and molecular mechanisms of this major depressive disorder are unclear so far. Experimental studies have demonstrated that depression is associated with significant cognitive impairment, dendrite spine loss, and reduction in connectivity among neurons that contribute to symptoms associated with mood disorders. Rho/Rho-associated coiled-coil containing protein kinase (ROCK) receptors are exclusively expressed in the brain and Rho/ROCK signaling has gained considerable attention as it plays a crucial role in the development of neuronal architecture and structural plasticity. Chronic stress-induced activation of the Rho/ROCK signaling pathway promotes neuronal apoptosis and loss of neural processes and synapses. Interestingly, accumulated evidence has identified Rho/ROCK signaling pathways as a putative target for treating neurological disorders. Furthermore, inhibition of the Rho/ROCK signaling pathway has proven to be effective in different models of depression, which signify the potential benefits of clinical Rho/ROCK inhibition. The ROCK inhibitors extensively modulate antidepressant-related pathways which significantly control the synthesis of proteins, and neuron survival and ultimately led to the enhancement of synaptogenesis, connectivity, and improvement in behavior. Therefore, the present review refines the prevailing contribution of this signaling pathway in depression and highlighted preclinical shreds of evidence for employing ROCK inhibitors as disease-modifying targets along with possible underlying mechanisms in stress-associated depression.
Collapse
|
17
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
18
|
Gundogmus AG, Sezer Katar K, Orsel S, Ozturk G, Yilmaz KB. The relationship of potential biomarkers with psychological resilience and post-traumatic growth in female patients with breast cancer. PLoS One 2022; 17:e0277119. [PMID: 36525411 PMCID: PMC9757578 DOI: 10.1371/journal.pone.0277119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
While investigating psychosocial factors on resilience and post-traumatic growth draws attention, research on biological correlates is limited. We investigated the relationship between post-traumatic growth, resilience, post-traumatic stress, and potential biomarkers in female patients with breast cancer (n = 71) from the general surgery or oncology clinics. They completed the Post-Traumatic Growth Inventory (PTGI), Connor Davidson Psychological Resilience Scale (CD-RISC), Brief Resilience Scale (BRS), PTSD Checklist for DSM-V, and Hospital Anxiety and Depression Scale. Blood samples were collected for NPY, ALLO, DHEA-S, testosterone, cortisol, and hsCRP levels. The relationship between biochemical parameters and the scales was investigated in the whole patient group and in the subgroup of patients who perceived breast cancer as traumatic. When all the patients were evaluated, hsCRP and depression scores were significantly and positively correlated; and hsCRP, BRS score, and PTGI change in self-perception subscale score were significantly and negatively correlated. There was a significant positive correlation between the ALLO level and the psychological resilience (CD-RISC) score in the patient group who perceived breast cancer as traumatic. It was observed that psychological resilience and PTG were positively correlated, and that multiple biomarkers were associated with psychological resilience in female breast cancer patients. Especially findings regarding ALLO levels and psychological resilience could be a new target for future research.
Collapse
Affiliation(s)
- Ayse Gokcen Gundogmus
- Department of Psychiatry, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
- * E-mail:
| | - Kubra Sezer Katar
- Department of Psychiatry, Islahiye State Hospital, Gaziantep, Turkey
| | - Sibel Orsel
- Department of Psychiatry, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Gulfer Ozturk
- Department of Biochemistry, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Kerim Bora Yilmaz
- Department of Surgery, University of Health Sciences, Gulhane Training and Research Hospital, Ankara, Turkey
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
MAYNE GB, DeWITT PE, RINGHAM B, WARRENER AG, CHRISTIANS U, DABELEA D, HURT KJ. A Nested Case-Control Study of Allopregnanolone and Preterm Birth in the Healthy Start Cohort. J Endocr Soc 2022; 7:bvac179. [PMID: 36632210 PMCID: PMC9825133 DOI: 10.1210/jendso/bvac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Context Chronic stress is a risk factor for preterm birth; however, objective measures of stress in pregnancy are limited. Maternal stress biomarkers may fill this gap. Steroid hormones and neurosteroids such as allopregnanolone (ALLO) play important roles in stress physiology and pregnancy maintenance and therefore may be promising for preterm birth prediction. Objective We evaluated maternal serum ALLO, progesterone, cortisol, cortisone, pregnanolone, and epipregnanolone twice in gestation to evaluate associations with preterm birth. Methods We performed a nested case-control study using biobanked fasting serum samples from the Healthy Start prebirth cohort. We included healthy women with a singleton pregnancy and matched preterm cases with term controls (1:1; N = 27 per group). We used a new HPLC-tandem mass spectrometry assay to quantify ALLO and five related steroids. We used ANOVA, Fisher exact, χ2, t test, and linear and logistic regression as statistical tests. Results Maternal serum ALLO did not associate with preterm birth nor differ between groups. Mean cortisol levels were significantly higher in the preterm group early in pregnancy (13w0d-18w0d; P < 0.05) and higher early pregnancy cortisol associated with increased odds of preterm birth (at 13w0d; odds ratio, 1.007; 95% CI, 1.0002-1.014). Progesterone, cortisone, pregnanolone, and epipregnanolone did not associate with preterm birth. Conclusion The findings from our pilot study suggest potential utility of cortisol as a maternal serum biomarker for preterm birth risk assessment in early pregnancy. Further evaluation using larger cohorts and additional gestational timepoints for ALLO and the other analytes may be informative.
Collapse
Affiliation(s)
- Gabriella B MAYNE
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Peter E DeWITT
- Department of Pediatrics Informatics and Data Science, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brandy RINGHAM
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna G WARRENER
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Uwe CHRISTIANS
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana DABELEA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Joseph HURT
- Correspondence: K. Joseph Hurt, MD, PhD, 12700 East 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Hernandez GD, Brinton RD. Allopregnanolone: Regenerative therapeutic to restore neurological health. Neurobiol Stress 2022; 21:100502. [PMID: 36532370 PMCID: PMC9755066 DOI: 10.1016/j.ynstr.2022.100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
Chronic stress has been proposed as a driver of altered brain structure and function, including the pathogenesis of neurodegenerative diseases and a driver of disease progression. A key outcome of stress in the brain is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicate failed resilience. Neuroendocrine homeostasis and stress response are mainly dependent upon the functioning of the hypothalamic-pituitary-adrenal axis. Neurosteroids will fluctuate depending on whether the stress is acute or chronic. Advancements in neurosteroid research have led to the identification of multiple targets for drug development, but the most promising innovative target may be neurogenesis, given its potential impact in neurodegenerative disorders like Alzheimer's disease. Allopregnanolone is an endogenous pregnane neurosteroid and a reduced metabolite of progesterone, which acts as a potent allosteric modulator and direct activator of the GABA-chloride channel complex. Perhaps the most intriguing finding related to the potential therapeutic effects of allopregnanolone is its potential to promote neuroregeneration.
Collapse
Affiliation(s)
- Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Novick AM, Duffy KA, Johnson RL, Sammel MD, Cao W, Strasser AA, Sofuoglu M, Kuzma A, Loughead J, Morrow AL, Epperson CN. Effect of progesterone administration in male and female smokers on nicotine withdrawal and neural response to smoking cues: role of progesterone conversion to allopregnanolone. Biol Sex Differ 2022; 13:60. [PMID: 36274158 PMCID: PMC9590190 DOI: 10.1186/s13293-022-00472-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Progesterone administration has therapeutic effects in tobacco use disorder (TUD), with females benefiting more than males. Conversion of progesterone to the neurosteroid allopregnanolone is hypothesized to partly underlie the therapeutic effects of progesterone; however, this has not been investigated clinically. METHODS Smokers (n = 18 males, n = 21 females) participated in a randomized, double-blind, placebo-controlled crossover study of 200 mg progesterone daily across 4 days of abstinence. The ratio of allopregnanolone:progesterone was analyzed in relationship to nicotine withdrawal, smoking urges, mood states, subjective nicotine effects, and neural response to smoking cues. RESULTS Allopregnanolone:progesterone ratio interacted with sex to predict withdrawal symptoms (p = 0.047), such that females with higher allopregnanolone:progesterone ratios reported lower withdrawal severity (b = - 0.98 [- 1.95, - 0.01]; p = 0.048). In addition, allopregnanolone:progesterone ratio interacted with sex to predict confusion (p = 0.014) and fatigue (p = 0.034), such that females with higher allopregnanolone:progesterone ratios reported less confusion (b = - 0.45 [- 0.78, - 0.12]; p = 0.008) and marginally lower fatigue (b = - 0.50 [- 1.03, 0.02]; p = 0.062. Irrespective of sex, higher ratios of allopregnanolone:progesterone were associated with stronger "good effects" of nicotine (b = 8.39 [2.58, 14.20]); p = 0.005) and weaker "bad effects" of nicotine (b = - 7.13 [- 13.53, - 0.73]; p = 0.029). CONCLUSIONS Conversion of progesterone to allopregnanolone correlated with smoking-related outcomes in both sex-dependent and sex-independent ways. Sex-dependent effects suggest that conversion of progesterone to allopregnanolone may contribute to greater therapeutic benefits in females but not males with TUD. Trial registration Clinicaltrials.gov registration, retrospectively registered: NCT01954966; https://clinicaltrials.gov/ct2/show/NCT01954966 \.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.
| | - Korrina A Duffy
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mary D Sammel
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Wen Cao
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Strasser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Alexandra Kuzma
- Larner College of Medicine, University of Vermont, Burlington, VM, 05405, USA
| | - James Loughead
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - A Leslie Morrow
- Departments of Psychiatry and Pharmacology and the Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - C Neill Epperson
- Department of Psychiatry, School of Medicine, University of CO-Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
- Department of Family Medicine, School of Medicine, University of CO-Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
22
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
23
|
Walkery A, Leader LD, Cooke E, VandenBerg A. Review of Allopregnanolone Agonist Therapy for the Treatment of Depressive Disorders. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3017-3026. [PMID: 34267503 PMCID: PMC8276990 DOI: 10.2147/dddt.s240856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022]
Abstract
Objective This paper reviews the current literature available for the efficacy and safety of allopregnanolone agonists and discusses considerations for their place in therapy. Literature Search A literature search was conducted utilizing PubMed, clinicaltrials.gov, and the manufacturer's website. Data Synthesis One phase II trial and two phase III trials evaluating the efficacy and safety of brexanolone were identified. Brexanolone demonstrated efficacy through significantly reduced Hamilton Depression Rating Scale (HAM-D) scores compared to placebo in the treatment of postpartum depression (PPD). Noted adverse effects were somnolence and dizziness, excessive sedation, and loss of consciousness. One published phase II study and the interim results of two phase III trials and one phase II trial on zuranolone were included in this review. Zuranolone, an oral allopregnanolone agonist, is given as a single, 14-day course. A significant reduction in HAM-D scores was demonstrated in patients with major depressive disorder (MDD) at 15 and 28 days compared to placebo. Interim results for zuranolone in PPD and bipolar disorder (BPD) show promising reductions in HAM-D scores. Adverse effects included sedation, dizziness, and headache. Place in Therapy Allopregnanolone agonists seem to have a role in PPD when weighing the quick onset of action and potential risks of untreated PPD. The class of medications is limited by the single course for this indication and may fit as a bridge to maintenance therapy with selective serotonin reuptake inhibitors (SSRIs). Brexanolone, specifically, is hindered by the long infusion time, hospitalization associated with administration, and risk evaluation and mitigation strategy program. Zuranolone may also have a role in MDD or BPD, but more data are needed. Conclusion Allopregnanolone agonists present a novel mechanism of action in the treatment of depressive disorders. Clinical trials and interim results support significant reductions in depression scores for brexanolone in PPD, and for zuranolone in PPD, MDD, and BPD.
Collapse
Affiliation(s)
- Autumn Walkery
- Department of Pharmacy Services, Michigan Medicine, Ann Arbor, MI, USA
| | - Lauren D Leader
- Department of Pharmacy Services, Michigan Medicine, Ann Arbor, MI, USA
| | - Emily Cooke
- Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Amy VandenBerg
- Department of Pharmacy Services, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Lin YC, Papadopoulos V. Neurosteroidogenic enzymes: CYP11A1 in the central nervous system. Front Neuroendocrinol 2021; 62:100925. [PMID: 34015388 DOI: 10.1016/j.yfrne.2021.100925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroid hormones synthesized locally in the nervous system, have important neuromodulatory and neuroprotective effects in the central nervous system. Progress in neurosteroid research has led to the successful translation of allopregnanolone into an approved therapy for postpartum depression. However, there is insufficient evidence to support the assumption that steroidogenesis is exactly the same between the nervous system and the periphery. This review focuses on CYP11A1, the only enzyme currently known to catalyze the first reaction in steroidogenesis to produce pregnenolone, the precursor to all other steroids. Although CYP11A1 mRNA has been found in brain of many mammals, the presence of CYP11A1 protein has been difficult to detect, particularly in humans. Here, we highlight the discrepancies in the current evidence for CYP11A1 in the central nervous system and propose new directions for understanding neurosteroidogenesis, which will be crucial for developing neurosteroid-based therapies for the future.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
25
|
Jacobson MH, Stein CR, Liu M, Ackerman MG, Blakemore JK, Long SE, Pinna G, Romay-Tallon R, Kannan K, Zhu H, Trasande L. Prenatal Exposure to Bisphenols and Phthalates and Postpartum Depression: The Role of Neurosteroid Hormone Disruption. J Clin Endocrinol Metab 2021; 106:1887-1899. [PMID: 33792735 PMCID: PMC8502446 DOI: 10.1210/clinem/dgab199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Postpartum depression (PPD) is a serious psychiatric disorder. While causes remain poorly understood, perinatal sex hormone fluctuations are an important factor, and allopregnanolone in particular has emerged as a key determinant. Although synthetic environmental chemicals such as bisphenols and phthalates are known to affect sex hormones, no studies have measured allopregnanolone and the consequences of these hormonal changes on PPD have not been interrogated. OBJECTIVE To investigate associations of repeated measures of urinary bisphenols and phthalates in early and midpregnancy with serum pregnenolone, progesterone, allopregnanolone, and pregnanolone concentrations in midpregnancy and PPD symptoms at 4 months postpartum. METHODS Prospective cohort study of 139 pregnant women recruited between 2016 and 2018. Bisphenols and phthalates were measured in early and midpregnancy urine samples. Serum sex steroid hormone concentrations were measured in midpregnancy. PPD was assessed at 4 months postpartum using the Edinburgh Postnatal Depression Scale (EPDS). Multiple informant models were fit using generalized estimating equations. Serum levels of allopregnanolone, progesterone, pregnanolone, and pregnenolone were examined as log-transformed continuous variables. PPD symptoms were examined as continuous EPDS scores and dichotomously with scores ≥10 defined as PPD. RESULTS Di-n-octyl phthalate (DnOP) and diisononyl phthalate (DiNP) metabolites were associated with reduced progesterone concentrations. Log-unit increases in ∑DnOP and ∑DiNP predicted 8.1% (95% CI -15.2%, -0.4%) and 7.7% (95% CI -13.3%, -1.7%) lower progesterone, respectively. ∑DnOP was associated with increased odds of PPD (odds ratio 1.48; 95% CI 1.04, 2.11). CONCLUSION Endocrine disrupting chemicals may influence hormonal shifts during pregnancy as well as contribute to PPD.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: Melanie Jacobson, Department of Pediatrics, Division of Environmental Pediatrics, New York University School of Medicine, 462 1st Avenue, Building A, 8th floor, Room 850, New York, NY 10016, USA.
| | - Cheryl R Stein
- Hassenfeld Children’s Hospital at NYU Langone; Department of Child and Adolescent Psychiatry, New York, NY 10016, USA
| | - Mengling Liu
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Marra G Ackerman
- Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer K Blakemore
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Sara E Long
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raquel Romay-Tallon
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Hongkai Zhu
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Wagner School of Public Service, New York, NY 10012, USA
- NYU College of Global Public Health, New York, NY 10012, USA
| |
Collapse
|
26
|
Almeida FB, Pinna G, Barros HMT. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int J Mol Sci 2021; 22:5495. [PMID: 34071053 PMCID: PMC8197074 DOI: 10.3390/ijms22115495] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Under stressful conditions, the hypothalamic-pituitary-adrenal (HPA) axis acts to promote transitory physiological adaptations that are often resolved after the stressful stimulus is no longer present. In addition to corticosteroids (e.g., cortisol), the neurosteroid allopregnanolone (3α,5α-tetrahydroprogesterone, 3α-hydroxy-5α-pregnan-20-one) participates in negative feedback mechanisms that restore homeostasis. Chronic, repeated exposure to stress impairs the responsivity of the HPA axis and dampens allopregnanolone levels, participating in the etiopathology of psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). MDD and PTSD patients present abnormalities in the HPA axis regulation, such as altered cortisol levels or failure to suppress cortisol release in the dexamethasone suppression test. Herein, we review the neurophysiological role of allopregnanolone both as a potent and positive GABAergic neuromodulator but also in its capacity of inhibiting the HPA axis. The allopregnanolone function in the mechanisms that recapitulate stress-induced pathophysiology, including MDD and PTSD, and its potential as both a treatment target and as a biomarker for these disorders is discussed.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Chronic Disease
- Corticosterone/metabolism
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Feedback, Physiological
- Female
- GABA-A Receptor Agonists/therapeutic use
- Humans
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Models, Biological
- Pituitary-Adrenal System/physiopathology
- Pregnanolone/biosynthesis
- Pregnanolone/physiology
- Receptors, GABA-A/physiology
- Sex Characteristics
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Physiological
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| |
Collapse
|
27
|
Abstract
BACKGROUND Finasteride is one of several inhibitors of the 5α-reductase that converts testosterone to dihydrotestosterone used to treat hair loss and benign prostatic enlargement. Emerging clinical observations indicate that such treatment may be associated with depression, anxiety, and possibly increased suicidal risks, in addition to sexual dysfunction, even after its discontinuation. METHODS We carried out a systematic review of reports pertaining to association of finasteride treatment with clinical depression or other adverse psychiatric effects. We analyzed reported risks of depression by pooling of rates and by meta-analysis of comparisons of subjects treated with finasteride or not. FINDINGS Crude pooled rates of depressive symptoms with versus without finasteride were 3.33% (confidence interval, 3.22%-3.44%) versus 2.54% (2.44%-2.64%); random-effects meta-analysis yielded an odds ratio of 2.14 (1.40-3.27) (both P < 0.0001). In addition, risk of suicidal ideation or behavior was greater with versus without finasteride (21.2% [21.0%-21.5%] vs 14.0% [13.8%-14.2%], P < 0.0001), and risk of sustained sexual dysfunction was high (60.1% [37.3%-82.9%]). CONCLUSIONS The findings support a growing impression that finasteride is associated with adverse psychiatric effects that can persist in association with sexual dysfunction after discontinuing finasteride treatment.
Collapse
|
28
|
Dinh T, Gangestad SW, Thompson ME, Tomiyama AJ, Fessler DMT, Robertson TE, Haselton MG. Endocrinological effects of social exclusion and inclusion: Experimental evidence for adaptive regulation of female fecundity. Horm Behav 2021; 130:104934. [PMID: 33476675 DOI: 10.1016/j.yhbeh.2021.104934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
When current conditions are probabilistically less suitable for successful reproduction than future conditions, females may prevent or delay reproduction until conditions improve. Throughout human evolution, social support was likely crucial to female reproductive success. Women may thus have evolved fertility regulation systems sensitive to cues from the social environment. However, current understanding of how psychological phenomena might affect female ovarian function is limited. In this study, we examined whether cues of reduced social support-social ostracism-impact women's hormone production. Following an in-lab group bonding task, women were randomly assigned to a social exclusion (n = 88) or social inclusion (n = 81) condition. After social exclusion, women with low background levels of social support experienced a decrease in estradiol relative to progesterone. In contrast, socially-included women with low background social support experienced an increase in estradiol relative to progesterone. Hormonal changes in both conditions occurred specifically when women were in their mid-to-late follicular phase, when baseline estradiol is high and progesterone is low. Follow-up analyses revealed that these changes were primarily driven by changes in progesterone, consistent with existing evidence for disruption of ovarian function following adrenal release of follicular-phase progesterone. Results offer support for a potential mechanism by which fecundity could respond adaptively to the loss or lack of social support.
Collapse
Affiliation(s)
- Tran Dinh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Steven W Gangestad
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - A Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Bedari Kindness Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel M T Fessler
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, USA; Bedari Kindness Institute, University of California, Los Angeles, Los Angeles, CA, USA; Center for Behavior, Evolution, & Culture, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Martie G Haselton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Communication, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone - Friend or foe? Front Neuroendocrinol 2020; 59:100856. [PMID: 32730861 DOI: 10.1016/j.yfrne.2020.100856] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Estradiol is the "prototypic" sex hormone of women. Yet, women have another sex hormone, which is often disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual dysphoric disorder as well as contraception that women can use without risking mental health problems are still needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative.
Collapse
Affiliation(s)
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Eileen Luders
- School of Psychology, University of Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
31
|
Matrisciano F, Pinna G. PPAR and functional foods: Rationale for natural neurosteroid-based interventions for postpartum depression. Neurobiol Stress 2020; 12:100222. [PMID: 32426424 PMCID: PMC7226878 DOI: 10.1016/j.ynstr.2020.100222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
32
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Jung ME, Metzger DB, Hall J. The long-term but not short-term use of benzodiazepine impairs motoric function and upregulates amyloid β in part through the suppression of translocator protein. Pharmacol Biochem Behav 2020; 191:172873. [PMID: 32105662 DOI: 10.1016/j.pbb.2020.172873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 02/15/2020] [Indexed: 11/24/2022]
Abstract
Many elderly American women use CNS depressant benzodiazepine (BZD) to ameliorate anxiety or insomnia. However, the chronic use of BZD (cBZD) is prevalent, causing adverse effects of BZD that include movement deficit. We previously reported that cBZD upregulates neurotoxic amyloid β42 (Aβ42) and downregulates neuroprotective translocator protein (TSPO) in the cerebellum, the brain area of movement and balance. The aim of the current study is two-fold: 1) to determine a direct effect of TSPO (inhibition) on cBZD-induced Aβ42 and Aβ-associated molecules; Aβ-producing-protein presenilin-1 (PS1) and Aβ-degrading-enzyme neprilysin and 2) to determine whether Aβ42 upregulation and motoric deficit occur upon a long-term (cBZD) rather than a short-term BZD (sBZD) treatment. Old female mice received BZD (lorazepam) for 20 days (cBZD) or 3 days (sBZD) with or without prototype TSPO ligand PK11195 and were tested for motoric performance for 3 days using Rotarod. ELISA was conducted to measure Aβ42 level and neprilysin activity in cerebellum. RT-PCR and immunoblot were conducted to measure the mRNA and protein levels of TSPO, PS1, and neprilysin. cBZD treatment decreased TSPO and neprilysin but increased Aβ42 accompanied by motoric deficit. Chronic PK11195 treatment acted as a TSPO inhibitor by suppressing TSPO expression and mimicked or exacerbated the effects of cBZD on all parameters measured except for PS1. None of the molecular and behavioral changes induced by cBZD were reproduced by sBZD treatment. These data suggest that cBZD upregulates Aβ42 and downregulates neprilysin in part through TSPO inhibition, the mechanisms distinct from sBZD, collectively contributing to motoric deficit.
Collapse
Affiliation(s)
- Marianna E Jung
- Pharmacology and Neuroscience, UNT Health Science Center, Institute for Healthy Aging, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, United States of America.
| | - Daniel B Metzger
- Pharmacology and Neuroscience, UNT Health Science Center, Institute for Healthy Aging, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, United States of America
| | - James Hall
- Pharmacology and Neuroscience, UNT Health Science Center, Institute for Healthy Aging, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, United States of America
| |
Collapse
|
34
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
35
|
Bannister E. There is increasing evidence to suggest that brain inflammation could play a key role in the aetiology of psychiatric illness. Could inflammation be a cause of the premenstrual syndromes PMS and PMDD? Post Reprod Health 2019; 25:157-161. [PMID: 31630609 DOI: 10.1177/2053369119875386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Antidepressant-like effect of fluoxetine may depend on translocator protein activity and pretest session duration in forced swimming test in mice. Behav Pharmacol 2019; 29:375-378. [PMID: 29076866 DOI: 10.1097/fbp.0000000000000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antidepressant-like effect of fluoxetine (20 mg/kg i.p.) has been assessed using the forced swimming test (FST) in IRC (CD-1) mice exposed or not to a pretest session of different duration (5 or 20 min). The influence of the mitochondrial translocator protein (TSPO) activity on the antidepressant-like effect of fluoxetine (20 mg/kg i.p.) in the FST was also studied. The antidepressant-like effect of fluoxetine was observed only in mice subjected to a 5-min pretest session 24 h before the FST. The TSPO antagonist PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; 1 or 3 mg/kg i.p.] inhibited the antidepressant activity of fluoxetine in the FST. In the present study, fluoxetine or PK11195 was administered for a short duration. We suppose that the functional activity of TSPO may depend on a pretest session and that using this procedure is necessary to detect antidepressant activity of fluoxetine-like drugs.
Collapse
|
37
|
Aoyama B, Kawano T, Iwata H, Nishigaki A, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Eguchi S, Locatelli FM, Yokoyama M. Role of neurosteroid allopregnanolone on age-related differences in exercise-induced hypoalgesia in rats. J Pharmacol Sci 2019; 139:77-83. [DOI: 10.1016/j.jphs.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
|
38
|
Thitipitchayanant K, Somrongthong R, Kumar R, Kanchanakharn N. Effectiveness of self-empowerment-affirmation-relaxation (Self-EAR) program for postpartum blues mothers: A randomize controlled trial. Pak J Med Sci 2018; 34:1488-1493. [PMID: 30559809 PMCID: PMC6290217 DOI: 10.12669/pjms.346.15986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background and Objecvites: Approximately 55-85% of women worldwide have experienced postpartum blues (PPB) during 6-9 weeks after delivery without receiving the counseling program; more than 20% of them have developed into postpartum depression. Study objectives were to evaluate the effect of the Self-EAR program to improve the postpartum blues scores and serum allopregnanolone level among newly blues mothers. Methods: During June 2015 to May 2016, the randomized controlled trial was conducted among 76 Nulliparous blues mothers who were screened with Stein’s postpartum blues scores ≥ 3. All participants were randomly assigned either to the intervention group (Self-EAR program) and the control group (standard postpartum care program). The Self-EAR program was transformed into audio files which were installed in an MP3 digital device before providing it to the intervention group in order to be implemented at home three times per day for four weeks. Participants were assessed at baseline, 1-month, 2-month and 3-month follow-up for serum allopregnanolone level. Data were analyzed by using descriptive statistic, chi-square test, t-test, and repeated measure analysis of variance. Result: After the 3-month follow-up, the results revealed positive effects of the Self-EAR program on postpartum blues scores (p-value=0.002) and serum allopregnanolone concertation (p-value=0.001). The participants in the intervention group had experienced significantly lower postpartum blues scores; on the other hand, they had significantly higher serum allopregnanolone level when compared with the control group. Conclusions: The findings suggested that the Self-EAR program was effective to improve postpartum blues scores and allopregnanolone level among newly postpartum blues mothers.
Collapse
Affiliation(s)
- Krittipitch Thitipitchayanant
- Krittipitch Thitipitchayanant, School of Nursing, University of Phayao, Thailand. College of Public Health Sciences, Chulalongkorn University, Thailand
| | - Ratana Somrongthong
- Ratana Somrongthong, College of Public Health Sciences, Chulalongkorn University, Thailand
| | - Ramesh Kumar
- Ramesh Kumar, Health Services Academy Islamabad, Pakistan
| | - Naowarat Kanchanakharn
- Naowarat Kanchanakharn, College of Public Health Sciences, Chulalongkorn University, Thailand
| |
Collapse
|
39
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
40
|
Lima-Maximino MG, Cueto-Escobedo J, Rodríguez-Landa JF, Maximino C. FGIN-1-27, an agonist at translocator protein 18 kDa (TSPO), produces anti-anxiety and anti-panic effects in non-mammalian models. Pharmacol Biochem Behav 2018; 171:66-73. [PMID: 29698632 DOI: 10.1016/j.pbb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
FGIN-1-27 is an agonist at the translocator protein 18 kDa (TSPO), a cholesterol transporter that is associated with neurosteroidogenesis. This protein has been identified as a peripheral binding site for benzodiazepines; in anamniotes, however, a second TSPO isoform that is absent in amniotes has been implicated in erythropoiesis. Functional conservation of the central benzodiazepine-binding site located in the GABAA receptors has been demonstrated in anamniotes and amniotes alike; however, it was not previously demonstrated for TSPO. The present investigation explored the behavioral effects of FGIN-1-27 on an anxiety test in zebrafish (Danio rerio, Family: Cyprinide) and on a mixed anxiety/panic test on wall lizards (Tropidurus oreadicus, Family: Tropiduridae). Results showed that FGIN-1-27 reduced anxiety-like behavior in the zebrafish light/dark preference test similar to diazepam, but with fewer sedative effects. Similarly, FGIN-1-27 also reduced anxiety- and fear-like behaviors in the defense test battery in wall lizards, again producing fewer sedative-like effects than diazepam; the benzodiazepine was also unable to reduce fear-like behaviors in this species. These results A) underline the functional conservation of TSPO in defensive behavior in anamniotes; B) strengthen the proposal of using anamniote behavior as models in behavioral pharmacology; and C) suggest TSPO/neurosteroidogenesis as a target in treating anxiety disorders.
Collapse
Affiliation(s)
- Monica Gomes Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII, Marabá, Brazil
| | - Jonathan Cueto-Escobedo
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Caio Maximino
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
41
|
Biggio F, Talani G, Locci V, Pisu M, Boero G, Ciarlo B, Grayson D, Serra M. Low doses of prenatal ethanol exposure and maternal separation alter HPA axis function and ethanol consumption in adult male rats. Neuropharmacology 2018; 131:271-281. [DOI: 10.1016/j.neuropharm.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
|
42
|
Forray A, Gilstad-Hayden K, Suppies C, Bogen D, Sofuoglu M, Yonkers KA. Progesterone for smoking relapse prevention following delivery: A pilot, randomized, double-blind study. Psychoneuroendocrinology 2017; 86:96-103. [PMID: 28926762 PMCID: PMC5659923 DOI: 10.1016/j.psyneuen.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Close to half of women who were smokers prior to conception quit smoking in pregnancy, when endogenous progesterone levels are high. However, at least half resume pre-pregnancy smoking levels within weeks after delivery and when progesterone levels drop. The current pilot study tested the feasibility and preliminary efficacy of postpartum progesterone replacement in preventing relapse to smoking in postpartum women with a history of pre-pregnancy smoking. METHODS This was an 8-week, double-blind, parallel, randomized, placebo-controlled pilot trial of 41 women with a history of pre-pregnancy smoking who achieved abstinence by 32 weeks of gestation. Immediately following delivery women were randomized to oral micronized progesterone (200mg twice daily) or placebo via computerized urn randomization program. The main outcome measures were descriptions of study feasibility: recruitment and retention. Secondary outcomes were 7-day point prevalence of abstinence at week 8, time to relapse and smoking cravings. RESULTS The trial was feasible with adequate randomization, 64% (41/64) of eligible women, and trial retention, 78% (32/41) completed the trial. Women taking progesterone were 1.8 times more likely to be abstinent during week 8 and took longer to relapse (10 vs. 4 weeks) compared to the placebo group, although these differences did not reach statistical significance. After adjusting for age and pre-quit smoking level, the number needed to treat was 7. There was a 10% greater decline per week in craving ratings in the progesterone group compared to placebo (β=-0.10, 95% CI: -0.15, -0.04, p<0.01). No serious adverse events occurred during the trial. CONCLUSIONS These preliminary findings support the promise of progesterone treatment in postpartum smokers and could constitute a therapeutic breakthrough.If these preliminary findings can be evaluated and replicated in a larger study with sufficient power, this may constitute an acceptable and safe smoking relapse prevention strategy for use during lactation.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States.
| | - Kathryn Gilstad-Hayden
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States
| | - Cristine Suppies
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States
| | - Debra Bogen
- Department of Pediatrics, University of Pittsburgh School of Medicine, 3420 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States; VA Connecticut Healthcare System, Building 35, 950 Campbell Avenue, West Haven, CT, 06516, United States
| | - Kimberly A Yonkers
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States; Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine,20 York Street, New Haven, CT, 06510, United States
| |
Collapse
|
43
|
Rebas E, Radzik T, Boczek T, Zylinska L. Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids. Curr Neuropharmacol 2017; 15:1174-1191. [PMID: 28356049 PMCID: PMC5725547 DOI: 10.2174/1570159x15666170329091935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/01/1970] [Accepted: 03/25/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neurosteroids form the unique group because of their dual mechanism of action. Classically, they bind to specific intracellular and/or nuclear receptors, and next modify genes transcription. Another mode of action is linked with the rapid effects induced at the plasma membrane level within seconds or milliseconds. The key molecules in neurotransmission are calcium ions, thereby we focus on the recent advances in understanding of complex signaling crosstalk between action of neurosteroids and calcium-engaged events. METHODS Short-time effects of neurosteroids action have been reviewed for GABAA receptor complex, glycine receptor, NMDA receptor, AMPA receptor, G protein-coupled receptors and sigma-1 receptor, as well as for several membrane ion channels and plasma membrane enzymes, based on available published research. RESULTS The physiological relevance of neurosteroids results from the fact that they can be synthesized and accumulated in the central nervous system, independently from peripheral sources. Fast action of neurosteroids is a prerequisite for genomic effects and these early events can significantly modify intracellular downstream signaling pathways. Since they may exert either positive or negative effects on calcium homeostasis, their role in monitoring of spatio-temporal Ca2+ dynamics, and subsequently, Ca2+-dependent physiological processes or initiation of pathological events, is evident. CONCLUSION Neurosteroids and calcium appear to be the integrated elements of signaling systems in neuronal cells under physiological and pathological conditions. A better understanding of cellular and molecular mechanisms of nongenomic, calcium-engaged neurosteroids action could open new ways for therapeutic interventions aimed to restore neuronal function in many neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Elzbieta Rebas
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
- Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| |
Collapse
|
44
|
Abstract
There is significant variation in the way individuals react and respond to extreme stress and adversity. While some individuals develop psychiatric conditions such as posttraumatic stress disorder or major depressive disorder, others recover from stressful experiences without displaying significant symptoms of psychological ill-health, demonstrating stress-resilience. To understand why some individuals exhibit characteristics of a resilient profile, the interplay between neurochemical, genetic, and epigenetic processes over time needs to be explained. In this review, we examine the hormones, neuropeptides, neurotransmitters, and neural circuits associated with resilience and vulnerability to stress-related disorders. We debate how this increasing body of knowledge could also be useful in the creation of a stress-resilient profile. Additionally, identification of the underlying neurobiological components related to resilience may offer a contribution to improved approaches toward the prevention and treatment of stress-related disorders.
Collapse
|
45
|
Osborne LM, Gispen F, Sanyal A, Yenokyan G, Meilman S, Payne JL. Lower allopregnanolone during pregnancy predicts postpartum depression: An exploratory study. Psychoneuroendocrinology 2017; 79:116-121. [PMID: 28278440 PMCID: PMC5420429 DOI: 10.1016/j.psyneuen.2017.02.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/08/2017] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
Current evidence is mixed on the role of progesterone and its metabolites in perinatal mood and anxiety disorders. We measured second and third trimester (T2 and T3) progesterone (PROG) and allopregnanolone (ALLO) levels by ELISA and postpartum depression (PPD) by clinician interview (DSM-IV criteria) in 60 pregnant women with a prior diagnosis of a mood disorder. Methods included multivariate and logistic regression with general linear mixed effect models. We found that, after adjustment, every additional ng/mL of T2 ALLO resulted in a 63% (95% CI 13% to 84%, p=0.022) reduction in the risk of developing PPD. Our findings extend previous work connecting ALLO and depression within pregnancy, and indicate that the relationship between pregnancy ALLO and PPD is worth further exploration in a larger sample.
Collapse
Affiliation(s)
- Lauren M Osborne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States.
| | - Fiona Gispen
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Abanti Sanyal
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Gayane Yenokyan
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Samantha Meilman
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| | - Jennifer L Payne
- Women's Mood Disorders Center, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
46
|
Gangestad SW, Grebe NM. Hormonal systems, human social bonding, and affiliation. Horm Behav 2017; 91:122-135. [PMID: 27530218 DOI: 10.1016/j.yhbeh.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/04/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
Which hormones are implicated in human social bonding and affiliation? And how does field research speak to this issue? We begin by laying out a broad view of how endocrine hormones in general modulate life history allocations of energy and other resources, and the ways in which their neuromodulatory functions must be understood within a broader conceptualization of how they have been shaped to affect allocations. We then turn to four specific hormones or hormone families that have received much attention: oxytocin, opioids, prolactin, and progesterone. Each plays a role in regulating psychological capacities and propensities that underlie individuals' interactions with important social targets. Yet in no case is it clear exactly what regulatory roles these hormones play. We suggest several directions for future research.
Collapse
Affiliation(s)
- Steven W Gangestad
- Department of Psychology, University of New, Albuquerque, NM 87111, Mexico.
| | - Nicholas M Grebe
- Department of Psychology, University of New, Albuquerque, NM 87111, Mexico
| |
Collapse
|
47
|
Borrow AP, Cameron NM. Maternal care and affective behavior in female offspring: Implication of the neurosteroid/GABAergic system. Psychoneuroendocrinology 2017; 76:29-37. [PMID: 27883962 DOI: 10.1016/j.psyneuen.2016.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022]
Abstract
In female rats, the proestrus phase of the estrous cycle is associated with decreased levels of anxiety-like and depressive-like behavior relative to the metestrus phase. Progesterone likely modulate these behaviors, in part through the influence of its metabolite, allopregnanolone (THP) on hippocampal GABAAR subunit expression. As natural variations in maternal care have been found to influence both progesterone levels at proestrus and anxiety-like behavior in female offspring, we sought to investigate the importance of maternal care and the estrous cycle on affective behavior in female rats that had received Low or High levels of licking/grooming (LG) during early life. Subjects were tested for anxiety-like behavior in the elevated plus maze at proestrus or metestrus or for estrous cycle-dependent changes in depressive-like anhedonic behavior with a saccharin preference test. GABAAR subunit expression, and THP levels in the dorsal hippocampus and in plasma were also evaluated. Estrous cycle phase influenced saccharine preference and hippocampal THP level in both phenotypes. Low LG animals showed higher levels of hedonic behavior and anxiety-like behavior, irrespective of estrous cycle phase, as well as lower THP levels within the dorsal hippocampus when compared to High LG animals. Only High LG animals showed positive correlations between hippocampal THP levels and GABAAR subunit expression, suggesting a relative insensitivity to THP's modulation of these receptor subunits in Low LG offspring. These findings suggest that natural variations in maternal care influence anxiety-like and hedonic behavior through the modulation of the neurosteroid/GABAergic system.
Collapse
Affiliation(s)
- Amanda P Borrow
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA; Department of Biomedical Sciences/Neurosciences Division, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole M Cameron
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
48
|
Li SH, Graham BM. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 2017; 4:73-82. [PMID: 27856395 DOI: 10.1016/s2215-0366(16)30358-3] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Increased prevalence, severity, and burden of anxiety, trauma-related and stress-related disorders in women compared with men has been well documented. Evidence from a variety of fields has emerged suggesting that sex hormones, particularly oestradiol and progesterone, play a significant part in generation of these sex differences. In this Series paper, we aim to integrate the literature reporting on the effects of sex hormones on biological, behavioural, and cognitive pathways, to propose two broad mechanisms by which oestradiol and progesterone influence sex differences in anxiety disorders: augmentation of vulnerability factors associated with anxiety disorder development; and facilitation of the maintenance of anxious symptoms post-development. The implications for future research, along with novel approaches to psychological and pharmacological treatment of anxiety disorders, are also considered.
Collapse
Affiliation(s)
- Sophie H Li
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Leppä E, Linden AM, Aller MI, Wulff P, Vekovischeva O, Luscher B, Lüddens H, Wisden W, Korpi ER. Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABA A Receptor γ2 Subunit in the Cerebellum. Front Pharmacol 2016; 7:403. [PMID: 27833556 PMCID: PMC5081378 DOI: 10.3389/fphar.2016.00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022] Open
Abstract
Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABAA receptors. In recombinant receptors and genetic mouse models their actions depend on the α, β, and δ subunits of the receptor, especially on those that form extrasynaptic GABAA receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched γ2 subunit-containing receptors and even on αβ binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5β-pregnan-3α-ol-20-one is altered in genetically engineered mouse models that have deficient GABAA receptor-mediated synaptic inhibition in selected neuronal populations. Mouse lines with the GABAA receptor γ2 subunit gene selectively deleted either in parvalbumin-containing cells (including cerebellar Purkinje cells), cerebellar granule cells, or just in cerebellar Purkinje cells were trained on the accelerated rotating rod and then tested for motor impairment after cumulative intraperitoneal dosing of 5β-pregnan-3α-ol-20-one. Motor-impairing effects of 5β-pregnan-3α-ol-20-one were strongly increased in all three mouse models in which γ2 subunit-dependent synaptic GABAA responses in cerebellar neurons were genetically abolished. Furthermore, rescue of postsynaptic GABAA receptors in Purkinje cells normalized the effect of the steroid. Anxiolytic/explorative effects of the steroid in elevated plus maze and light:dark exploration tests in mice with Purkinje cell γ2 subunit inactivation were similar to those in control mice. The results suggest that, when the deletion of γ2 subunit has removed synaptic GABAA receptors from the specific cerebellar neuronal populations, the effects of neuroactive steroids solely on extrasynaptic αβ or αβδ receptors lead to enhanced changes in the cerebellum-generated behavior.
Collapse
Affiliation(s)
- Elli Leppä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Maria I Aller
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche San Juan de Alicante, Spain
| | - Peer Wulff
- Institute of Physiology, University of Kiel Kiel, Germany
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Bernhard Luscher
- Department of Biology, The Pennsylvania State University University Park, PA, USA
| | - Hartmut Lüddens
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | - William Wisden
- Department of Life Sciences, Imperial College London London, UK
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| |
Collapse
|
50
|
Saito K, Matsuzaki T, Iwasa T, Miyado M, Saito H, Kubota T, Irahara M, Ogata T, Fukami M. Blood allopregnanolone levels in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2016; 85:151-2. [PMID: 27061737 DOI: 10.1111/cen.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kazuki Saito
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, Tokushima, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, Tokushima, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidekazu Saito
- Division of Reproductive Medicine, Center for Maternal-Fetal-Neonatal and Reproductive Medicine, National Medical Center for Children and Mothers, Tokyo, Japan
| | - Toshiro Kubota
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, Tokushima, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|