1
|
Kassim FM, Davey AJW, Tod S, Rodger J, Albrecht MA, Martin-Iverson MT. The effect of a synthetic cannabinoid agonist (nabilone) on unimodal tactile illusion correlates with a psychometric scores in healthy volunteers. Sci Rep 2025; 15:18469. [PMID: 40425618 PMCID: PMC12116753 DOI: 10.1038/s41598-025-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Our previous studies showed that dexamphetamine, an indirect dopamine agonist, widens Stimulus Binding Windows (BWs) in healthy subjects. The present study aimed to investigate the effect of nabilone, a synthetic cannabinoid agonist, on the BWs in a unimodal illusion: the tactile funneling illusion (TFI). The study also aimed to study the association between tactile illusion with psychometric scores. Healthy participants (n = 32) completed the TFI at various delays and distances of separation of stimuli after receiving nabilone (2-4 mg, PO) or placebo in a randomized, double-blind, counterbalanced, crossover manner. The primary illusory measures were funneling and errors of localisation (EL). Three physiological and five psychometric measurements were also performed. The results showed that nabilone decreased funneling in a delay-dependent manner (p = 0.0016), whereby funneling was reduced at 0 ms (p = 0.01). Nabilone also significantly reduced EL in a distance-dependent manner (p = 0.038). Nabilone increased ratings on two of the five administered psychometric scales (p < 0.05), without significantly changing the overall (average) scores. However, there were associations between the overall psychometric scores and funneling under the strongest (0 ms delay) illusion condition, which is dependent on the drug condition (nabilone ρ = 0.45, p = 0.028). To conclude, unlike the effects of dexamphetamine, low activation of the cannabinoid system decreases the illusory perception of funneling, with narrowing spatial BWs.
Collapse
Affiliation(s)
- Faiz Mohammed Kassim
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
| | - Alexander J W Davey
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sophie Tod
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Matthew A Albrecht
- Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Mathew T Martin-Iverson
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
3
|
Blest‐Hopley G, O'Neill A, Wilson R, Giampietro V, Lythgoe D, Egerton A, Bhattacharyya S. Adolescent-onset heavy cannabis use associated with significantly reduced glial but not neuronal markers and glutamate levels in the hippocampus. Addict Biol 2020; 25:e12827. [PMID: 31478302 DOI: 10.1111/adb.12827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Cannabis use has been associated with adverse mental health outcomes, the neurochemical underpinnings of which are poorly understood. Although preclinical evidence suggests glutamatergic dysfunction following cannabis exposure in several brain regions including the hippocampus, evidence from human studies have been inconsistent. We investigated the effect of persistent cannabis use on the brain levels of N-acetyl aspartate (NAA) and myoinositol, the metabolite markers of neurons and glia, the site of the main central cannabinoid CB1 receptor, and the levels of glutamate, the neurotransmitter directly affected by CB1 modulation. We investigated cannabis users (CUs) who started using during adolescence, the period of greatest vulnerability to cannabis effects and focused on the hippocampus, where type 1 cannabinoid receptors (CBR1) are expressed in high density and have been linked to altered glutamatergic neurotransmission. Twenty-two adolescent-onset CUs and 21 nonusing controls (NU), completed proton magnetic resonance spectroscopy, to measure hippocampal metabolite concentrations. Glutamate, NAA, and myoinositol levels were compared between CU and NU using separate analyses of covariance. CU had significantly lower myoinositol but not glutamate or NAA levels in the hippocampus compared with NU. Myoinositol levels in CU positively correlated with glutamate levels, whereas this association was absent in NU. Altered myoinositol levels may be a marker of glia dysfunction and is consistent with experimental preclinical evidence that cannabinoid-induced glial dysfunction may underlie cannabinoid-induced memory impairments. Future studies using appropriate imaging techniques such as positron emission tomography should investigate whether glial dysfunction associated with cannabis use underlies hippocampal dysfunction and memory impairment in CUs.
Collapse
Affiliation(s)
- Grace Blest‐Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience King's College London London UK
- South London and Maudsley NHS Foundation Trust London UK
| |
Collapse
|
4
|
Lupica CR, Hoffman AF. Cannabinoid disruption of learning mechanisms involved in reward processing. ACTA ACUST UNITED AC 2018; 25:435-445. [PMID: 30115765 PMCID: PMC6097761 DOI: 10.1101/lm.046748.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Abstract
The increasing use of cannabis, its derivatives, and synthetic cannabinoids for medicinal and recreational purposes has led to burgeoning interest in understanding the addictive potential of this class of molecules. It is estimated that ∼10% of marijuana users will eventually show signs of dependence on the drug, and the diagnosis of cannabis use disorder (CUD) is increasing in the United States. The molecule that sustains the use of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC), and our knowledge of its effects, and those of other cannabinoids on brain function has expanded rapidly in the past two decades. Additionally, the identification of endogenous cannabinoid (endocannabinoid) systems in brain and their roles in physiology and behavior, demonstrate extensive involvement of these lipid signaling molecules in regulating CNS function. Here, we examine roles for endogenous cannabinoids in shaping synaptic activity in cortical and subcortical brain circuits, and we discuss mechanisms in which exogenous cannabinoids, such as Δ9-THC, interact with endocannabinoid systems to disrupt neuronal network oscillations. We then explore how perturbation of the interaction of this activity within brain reward circuits may lead to impaired learning. Finally, we propose that disruption of cellular plasticity mechanisms by exogenous cannabinoids in cortical and subcortical circuits may explain the difficulty in establishing viable cannabinoid self-administration models in animals.
Collapse
Affiliation(s)
- Carl R Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
5
|
Thiruchselvam T, Malik S, Le Foll B. A review of positron emission tomography studies exploring the dopaminergic system in substance use with a focus on tobacco as a co-variate. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:197-214. [PMID: 27901585 DOI: 10.1080/00952990.2016.1257633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the evolving sensitivity of positron emission tomography (PET) and the emergence of novel radiotracers, greater insight has been gained into the dopaminergic system as it relates to substance use. In this review, we summarize PET investigations from the last ten years that explore the dopaminergic system in tobacco, alcohol, stimulant, opiates, and cannabis addiction. In light of the prevalence of substance co-use, this review will also explore the effect of tobacco and other substance abuse co-morbidity on the dopaminergic system across study samples in the reviewed literature. In non-dependence, increased DA transmission following acute stimulant administration is a robust and consistent observation but is less detectable following acute alcohol and tobacco, where it likely represents a conditioned effect mediating reward expectation. Chronic drug exposure is generally associated with a hypo-functioning pre-synaptic dopamine system and lower D2/D3 receptor availability relative to healthy controls. Emerging evidence also shows that stimulant use disorders in particular may also be associated with greater D3 receptor availability relative to controls. A defined role for the dopaminergic system in cannabis and opiate use is yet to be elucidated. Future work is also needed to delineate the potential interactive effects of acute and chronic tobacco and substance co-use on the dopaminergic system.
Collapse
Affiliation(s)
- Thulasi Thiruchselvam
- b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Saima Malik
- b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Bernard Le Foll
- a Addiction Medicine Service, Ambulatory Care and Structured Treatments , Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada.,c Department of Family and Community Medicine , Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto , Toronto , ON , Canada.,d Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health , Toronto , ON , Canada
| |
Collapse
|
6
|
Trifilieff P, Ducrocq F, van der Veldt S, Martinez D. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior. Semin Nucl Med 2016; 47:64-74. [PMID: 27987559 DOI: 10.1053/j.semnuclmed.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use.
Collapse
Affiliation(s)
- Pierre Trifilieff
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France.
| | - Fabien Ducrocq
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France
| | - Suzanne van der Veldt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Diana Martinez
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical College, New York, NY.
| |
Collapse
|
7
|
Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJA, Parsons LH. Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 2016; 17:293-306. [PMID: 27052382 DOI: 10.1038/nrn.2016.28] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an increasing number of states and countries, cannabis now stands poised to join alcohol and tobacco as a legal drug. Quantifying the relative adverse and beneficial effects of cannabis and its constituent cannabinoids should therefore be prioritized. Whereas newspaper headlines have focused on links between cannabis and psychosis, less attention has been paid to the much more common problem of cannabis addiction. Certain cognitive changes have also been attributed to cannabis use, although their causality and longevity are fiercely debated. Identifying why some individuals are more vulnerable than others to the adverse effects of cannabis is now of paramount importance to public health. Here, we review the current state of knowledge about such vulnerability factors, the variations in types of cannabis, and the relationship between these and cognition and addiction.
Collapse
Affiliation(s)
- H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA
| | - Celia J A Morgan
- Clinical Psychopharmacology Unit, University College London, Gower Street, London WC1E 6BT, UK.,Psychopharmacology and Addiction Research Centre, University of Exeter, Perry Road, Exeter EX4 4QG, UK
| | - Loren H Parsons
- The Scripps Research Institute, 10550 N. Torrey Pines Road, SP30-2001, La Jolla, California 92037, USA
| |
Collapse
|
8
|
Colizzi M, McGuire P, Pertwee RG, Bhattacharyya S. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neurosci Biobehav Rev 2016; 64:359-81. [PMID: 26987641 DOI: 10.1016/j.neubiorev.2016.03.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/04/2023]
Abstract
Use of cannabis or delta-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive ingredient, is associated with psychotic symptoms or disorder. However, the neurochemical mechanism that may underlie this psychotomimetic effect is poorly understood. Although dopaminergic dysfunction is generally recognized as the final common pathway in psychosis, evidence of the effects of Δ9-THC or cannabis use on dopaminergic measures in the brain is equivocal. In fact, it is thought that cannabis or Δ9-THC may not act on dopamine firing directly but indirectly by altering glutamate neurotransmission. Here we systematically review all studies examining acute and chronic effects of cannabis or Δ9-THC on glutamate signalling in both animals and man. Limited research carried out in humans tends to support the evidence that chronic cannabis use reduces levels of glutamate-derived metabolites in both cortical and subcortical brain areas. Research in animals tends to consistently suggest that Δ9-THC depresses glutamate synaptic transmission via CB1 receptor activation, affecting glutamate release, inhibiting receptors and transporters function, reducing enzyme activity, and disrupting glutamate synaptic plasticity after prolonged exposure.
Collapse
Affiliation(s)
- Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
9
|
Sami MB, Rabiner EA, Bhattacharyya S. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur Neuropsychopharmacol 2015; 25:1201-24. [PMID: 26068702 DOI: 10.1016/j.euroneuro.2015.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man.
Collapse
Affiliation(s)
- Musa Basser Sami
- Kent and Medway Partnership, NHS Trust, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK
| | - Eugenii A Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, UK; Imanova, Centre for Imaging Sciences, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
10
|
Dopamine challenge reveals neuroadaptive changes in marijuana abusers. Proc Natl Acad Sci U S A 2014; 111:11915-6. [PMID: 25114244 DOI: 10.1073/pnas.1412314111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Samaha AN, Potvin S. Drugs of abuse and psychiatric disorders: neurobiological and clinical aspects. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:1-3. [PMID: 24699021 DOI: 10.1016/j.pnpbp.2014.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anne-Noël Samaha
- Department of Pharmacology and CNS Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Stéphane Potvin
- Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|