1
|
Fischer L, Paschke B, Gareis F, Schumacher M, Liere P, Hiergeist A, Gessner A, Rupprecht R, Neumann ID, Bosch OJ. The translocator protein 18 kDa (TSPO) ligand etifoxine in an animal model of anxiety: Line- and sex-dependent effects on emotionality, stress reactivity, spine density, oxytocin receptors, steroids, and microbiome composition. Neuropharmacology 2025; 266:110282. [PMID: 39725124 DOI: 10.1016/j.neuropharm.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.
Collapse
Affiliation(s)
- Lilith Fischer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Bjarne Paschke
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Franziska Gareis
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
He W, Wang Y, Chen K. A real-world pharmacovigilance study of FDA adverse event reporting system events for diazepam. Front Pharmacol 2024; 15:1278442. [PMID: 38327980 PMCID: PMC10847318 DOI: 10.3389/fphar.2024.1278442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Diazepam, one of the benzodiazepines, is widely used clinically to treat anxiety, for termination of epilepsy, and for sedation. However, the reports of its adverse events (AEs) have been numerous, and even fatal complications have been reported. In this study, we investigated the AEs of diazepam based on real data from the U.S. Food and Drug Administration (FDA) adverse event reporting system (FAERS). Methods: Disproportionality in diazepam-associated AEs was assessed through the calculation of reporting odds ratios (RORs), proportional reporting ratios (PRRs), Bayesian confidence-propagation neural networks (BCPNNs), and gamma-Poisson shrinkage (GPS). Results: Among the 19,514,140 case reports in the FAERS database, 15,546 reports with diazepam as the "principal suspect (PS)" AEs were identified. Diazepam-induced AEs occurred targeting 27 system organ categories (SOCs). Based on four algorithms, a total of 391 major disproportionate preferred terms (PTs) were filtered out. Unexpectedly significant AEs such as congenital nystagmus, developmental delays, and rhabdomyolysis were noted, which were not mentioned in the drug insert. Conclusion: Our study identified potential signals of new AEs that could provide strong support for clinical monitoring and risk identification of diazepam.
Collapse
Affiliation(s)
- Weizhen He
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xia Men, Fujian, China
| | - Yang Wang
- Department of Ear Nose and Throat, Xiang’an Hospital of Xiamen University, Xia Men, Fujian, China
| | - Kaiqin Chen
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xia Men, Fujian, China
| |
Collapse
|
4
|
Kaplan K, Hunsberger HC. Benzodiazepine-induced anterograde amnesia: detrimental side effect to novel study tool. Front Pharmacol 2023; 14:1257030. [PMID: 37781704 PMCID: PMC10536168 DOI: 10.3389/fphar.2023.1257030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Benzodiazepines (BZDs) are anxiolytic drugs that act on GABAa receptors and are used to treat anxiety disorders. However, these drugs come with the detrimental side effect of anterograde amnesia, or the inability to form new memories. In this review we discuss, behavioral paradigms, sex differences and hormonal influences affecting BZD-induced amnesia, molecular manipulations, including the knockout of GABAa receptor subunits, and regional studies utilizing lesion and microinjection techniques targeted to the hippocampus and amygdala. Additionally, the relationship between BZD use and cognitive decline related to Alzheimer's disease is addressed, as there is a lack of consensus on whether these drugs are involved in inducing or accelerating pathological cognitive deficits. This review aims to inspire new research directions, as there is a gap in knowledge in understanding the cellular and molecular mechanisms behind BZD-induced amnesia. Understanding these mechanisms will allow for the development of alternative treatments and potentially allow BZDs to be used as a novel tool to study Alzheimer's disease.
Collapse
Affiliation(s)
- Kameron Kaplan
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| | - Holly Christian Hunsberger
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
5
|
Raimondi GM, Tripp R, Ostroff L. The Track-by-Day Method for Monitoring the Rodent Estrous Cycle. Curr Protoc 2023; 3:e747. [PMID: 37039442 PMCID: PMC11259016 DOI: 10.1002/cpz1.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The exclusion of female subjects from preclinical neuroscience research has traditionally been justified in part by concerns about potential effects of cycling ovarian hormones on brain function. There is evidence that some behavioral and neurobiological measures do change over the estrous cycle and, as the use of female subjects becomes increasingly routine, there is a greater demand for accessible cycle-tracking methods. Conventional estrous cycle staging requires expert training in the qualitative interpretation of vaginal cytology smears, which serves as a barrier for novice researchers. In addition, definitions and reporting practices are not standardized across laboratories, which makes it difficult to compare results across studies and likely contributes to a false perception of the cycle as ephemeral and inconsistent. Here, we describe a streamlined method for monitoring the estrous cycle in rats, which we term Track-by-Day. It is simple to implement and inherently produces consistent reporting. Our protocol should serve to demystify and facilitate adoption of cycle tracking for those new to the practice. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Collection and staining of vaginal smears Basic Protocol 2: Track-by-Day classification of vaginal smears Support Protocol: Preparation of gelatin-subbed slides.
Collapse
Affiliation(s)
- Gianna M. Raimondi
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
- Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT
| | - Rebecca Tripp
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Linnaea Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
- Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT
- Institute of Materials Science, University of Connecticut, Storrs, CT
| |
Collapse
|
6
|
Paiva-Santos MA, Leão AHFF, Kurita JPF, Becegato MS, Lima AC, Bioni VS, Meurer YSR, Cunha DMG, Medeiros AM, Silva RH. Sex differences in the acute ethanol effects on object recognition memory: influence of estrous cycle. Behav Pharmacol 2022; 33:322-332. [PMID: 35502955 DOI: 10.1097/fbp.0000000000000680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effects of acute ethanol (EtOH) on memory depend on several factors, including type of behavioral task. Sex differences in EtOH effects have been reported in humans and animals, and recognition memory can be influenced by circulating sex hormones. The aim of this study was to investigate the influence of sex and estrous cycle in the acute effects of EtOH on novel object recognition memory in rats. Male and female Wistar rats were part of one of the groups: control, 0.6-g/kg EtOH and 1.8-g/kg EtOH (administered intraperitoneally before the training session). The estrous cycle was evaluated by vaginal smear. The task was conducted in an open field arena. During training, animals were exposed to two identical objects, and test sessions were performed 1 h (short-term) and 24 h (long-term) later. One of the objects was changed in each test. Increased novel object exploration was shown by male and female controls in the short- and long-term tests, respectively. In the short-term test, females did not show preference for the novel object, and EtOH 1.8 g/kg impaired performance in males. In the long-term test, both sexes showed object discrimination, and 1.8-g/kg EtOH reduced preference for the new object in male rats. The phase of the cycle, the performance on proestrus was worse compared with other phases, and EtOH failed to impair performance mainly on estrous. In conclusion, while male rats displayed ethanol-induced recognition memory deficit, female rats were unaffected by EtOH impairing effects. In addition, the performance of female rats was influenced by the estrous cycle phases.
Collapse
Affiliation(s)
| | | | - João P F Kurita
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| | - Marcela S Becegato
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| | - Alvaro C Lima
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| | - Vinicius S Bioni
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| | - Ywlliane S R Meurer
- Memory and Cognition Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa
| | - Débora M G Cunha
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| | - André M Medeiros
- Department of Health Sciences, Center of Health and Biological Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo
| |
Collapse
|
7
|
Carton L, Niot C, Kyheng M, Petrault M, Laloux C, Potey C, Lenski M, Bordet R, Deguil J. Lack of direct involvement of a diazepam long-term treatment in the occurrence of irreversible cognitive impairment: a pre-clinical approach. Transl Psychiatry 2021; 11:612. [PMID: 34857741 PMCID: PMC8640018 DOI: 10.1038/s41398-021-01718-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022] Open
Abstract
Several observational studies have found a link between the long-term use of benzodiazepines and dementia, which remains controversial. Our study was designed to assess (i) whether the long-term use of benzodiazepines, at two different doses, has an irreversible effect on cognition, (ii) and whether there is an age-dependent effect. One hundred and five C57Bl/6 male mice were randomly assigned to the 15 mg/kg/day, the 30 mg/kg/day diazepam-supplemented pellets, or the control group. Each group comprised mice aged 6 or 12 months at the beginning of the experiments and treated for 16 weeks. Two sessions of behavioral assessment were conducted: after 8 weeks of treatment and after treatment completion following a 1-week wash-out period. The mid-treatment test battery included the elevated plus maze test, the Y maze spontaneous alternation test, and the open field test. The post-treatment battery was upgraded with three additional tests: the novel object recognition task, the Barnes maze test, and the touchscreen-based paired-associated learning task. At mid-treatment, working memory was impaired in the 15 mg/kg diazepam group compared to the control group (p = 0.005). No age effect was evidenced. The post-treatment assessment of cognitive functions (working memory, visual recognition memory, spatial reference learning and memory, and visuospatial memory) did not significantly differ between groups. Despite a cognitive impact during treatment, the lack of cognitive impairment after long-term treatment discontinuation suggests that benzodiazepines alone do not cause irreversible deleterious effects on cognitive functions and supports the interest of discontinuation in chronically treated patients.
Collapse
Affiliation(s)
- Louise Carton
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, 59000, Lille, France.
| | - Candice Niot
- Pharmacy Service, Arras Hospital Center, 62000 Arras, France
| | - Maéva Kyheng
- grid.410463.40000 0004 0471 8845Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, 59000 Lille, France ,grid.410463.40000 0004 0471 8845Département de Biostatistiques, CHU Lille, 59000 Lille, France
| | - Maud Petrault
- grid.410463.40000 0004 0471 8845Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, 59000 Lille, France
| | - Charlotte Laloux
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille In vivo Imaging and Functional Exploration, 59000 Lille, France
| | - Camille Potey
- grid.410463.40000 0004 0471 8845Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, 59000 Lille, France
| | - Marie Lenski
- grid.410463.40000 0004 0471 8845Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS – Impact de l’Environnement Chimique sur la Santé, 59000 Lille, France
| | - Régis Bordet
- grid.410463.40000 0004 0471 8845Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, 59000 Lille, France
| | - Julie Deguil
- grid.410463.40000 0004 0471 8845Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, 59000 Lille, France
| |
Collapse
|
8
|
Impaired discriminative avoidance and increased plasma corticosterone levels induced by vaginal lavage procedure in rats. Physiol Behav 2021; 232:113343. [DOI: 10.1016/j.physbeh.2021.113343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
|
9
|
Vozella V, Cruz B, Natividad LA, Benvenuti F, Cannella N, Edwards S, Zorrilla EP, Ciccocioppo R, Roberto M. Glucocorticoid Receptor Antagonist Mifepristone Does Not Alter Innate Anxiety-Like Behavior in Genetically-Selected Marchigian Sardinian (msP) Rats. Int J Mol Sci 2021; 22:3095. [PMID: 33803557 PMCID: PMC8003048 DOI: 10.3390/ijms22063095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Marchigian Sardinian alcohol-preferring (msP) rats serve as a unique model of heightened alcohol preference and anxiety disorders. Their innate enhanced stress and poor stress-coping strategies are driven by a genetic polymorphism of the corticotropin-releasing factor receptor 1 (CRF1) in brain areas involved in glucocorticoid signaling. The activation of glucocorticoid receptors (GRs) regulates the stress response, making GRs a candidate target to treat stress and anxiety. Here, we examined whether mifepristone, a GR antagonist known to reduce alcohol drinking in dependent rats, decreases innate symptoms of anxiety in msPs. Male and female msPs were compared to non-selected Wistar counterparts across three separate behavioral tests. We assessed anxiety-like behavior via the novelty-induced hypophagia (NIH) assay. Since sleep disturbances and hyperarousal are common features of stress-related disorders, we measured sleeping patterns using the comprehensive lab monitoring system (CLAMS) and stress sensitivity using acoustic startle measures. Rats received an acute administration of vehicle or mifepristone (60 mg/kg) 90 min prior to testing on NIH, acoustic startle response, and CLAMS. Our results revealed that both male and female msPs display greater anxiety-like behaviors as well as enhanced acoustic startle responses compared to Wistar counterparts. Male msPs also displayed reduced sleeping bout duration versus Wistars, and female msPs displayed greater acoustic startle responses versus male msPs. Importantly, the enhanced anxiety-like behavior and startle responses were not reduced by mifepristone. Together, these findings suggest that increased expression of stress-related behaviors in msPs are not solely mediated by acute activation of GRs.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Luis A. Natividad
- College of Pharmacy, The University of Austin, Austin, TX 78712, USA;
| | - Federica Benvenuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Scott Edwards
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, LA 70112, USA;
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (F.B.); (N.C.); (R.C.)
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (V.V.); (B.C.); (E.P.Z.)
| |
Collapse
|
10
|
Ahire A, Nair KP, Shankaranarayana Rao BS, Srikumar BN. The potential involvement of cholinergic system in finasteride induced cognitive dysfunction. Psychoneuroendocrinology 2021; 124:105066. [PMID: 33249331 DOI: 10.1016/j.psyneuen.2020.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Neurosteroids are known to exert diverse functions in the brain. 5α-reductase (5α-R), a rate-limiting enzyme involved in the biosynthesis of neurosteroids is inhibited by finasteride. Clinical studies suggest that administration of finasteride causes the emergence of affective symptoms and cognitive dysfunction. Modeling this in rats would provide an opportunity to understand the mechanisms. Accordingly, in the present study, we evaluated the effects of repeated finasteride administration on spatial learning and memory in the partially baited radial arm maze task (RAM) and social cognitive behavior in the social interaction test. Further, to initiate the quest to understand the mechanisms underlying the effects of finasteride, in a separate group of animals, acetylcholinesterase (AChE) activity in the frontal cortex, hippocampus, septum and striatum was estimated. METHODS 2 months old male Wistar rats were trained to learn a partially baited radial arm maze task (four trials per day till they reach a choice accuracy of 80 %). Following this, rats were administered with either vehicle (HPβCD) or finasteride (30 or 100 mg/Kg, s.c.) for 7 days and then subjected to retention test on the eighth day. To evaluate the social cognition, finasteride was administered for 7 days, followed by social interaction test on the eighth day. All the sessions were video-recorded and analyzed using Noldus Ethovision XT™ software. Following finasteride administration, on the eighth day, rats were euthanized, and AChE activity was estimated by modified Ellman's method. RESULTS Finasteride (100 mg/Kg, s.c.) administration decreased the percent correct choice during the retention trial of the RAM task. This was paralleled by an increase in the number of total number of errors and reference memory errors. In the social interaction test, finasteride (100 mg/Kg, s.c.) administration decreased the time spent with the rat compared to the object, implying decreased sociability and diminished social preference evidenced by similar time spent with the novel and familiar rat. Reduced AChE activity was observed in the frontal cortex, hippocampus and septum. CONCLUSION Our study provides evidence that repeated administration of finasteride decreases social interaction and results in cognitive deficits, potentially through a cholinergic mechanism. Further studies are required to understand the exact link between the cognitive effects and the cholinergic system. A deeper probe of the current findings holds promise for the development of novel neurosteroid-based therapeutics to treat affective and cognitive disorders.
Collapse
Affiliation(s)
- Ashutosh Ahire
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
11
|
Feng P, Li P, Tan J. Human Menstrual Blood-Derived Stromal Cells Promote Recovery of Premature Ovarian Insufficiency Via Regulating the ECM-Dependent FAK/AKT Signaling. Stem Cell Rev Rep 2020; 15:241-255. [PMID: 30560467 PMCID: PMC6441404 DOI: 10.1007/s12015-018-9867-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
POI is characterized by “absent not abnormal” menstruation with hormonal disorders in woman younger than 40 years of age, and etiological and pathophysiological mechanisms underlying the POI development have not been clearly defined. Recently, due to advantages such as abundant sources and non-invasive methods of harvest, MenSCs have been emerging as a promising treatment strategy for the recovery of female reproductive damage. Here, we demonstrated that MenSCs graft in POI mice after CTX treatment could restore ovarian function by regulating normal follicle development and estrous cycle, reducing apoptosis in ovaries to maintain homeostasis of microenvironment and modulating serum sex hormones to a relatively normal status. Moreover, MenSCs participated in the activation of ovarian transcriptional expression in ECM-dependent FAK/AKT signaling pathway and thus restored ovarian function to a certain extent. MenSCs transplantation was proved to be an effective way to repair ovarian function with low immunogenicity, suggesting its great potential for POI treatment.
Collapse
Affiliation(s)
- Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Pingping Li
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Jichun Tan
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
12
|
Flavones-bound in benzodiazepine site on GABA A receptor: Concomitant anxiolytic-like and cognitive-enhancing effects produced by Isovitexin and 6-C-glycoside-Diosmetin. Eur J Pharmacol 2018; 831:77-86. [PMID: 29738701 DOI: 10.1016/j.ejphar.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that flavones can modulate memory and anxiety-like behaviour. However, these therapeutic effects are inconsistent and induce of adverse effects, which have been associated with interactions at the Benzodiazepine (BZ)-binding site. To improve our understanding of flavone effects on memory and anxiety, we employed a plus-maze discriminative avoidance task. Furthermore, we evaluated the potential of the compounds in modulating GABAA receptors via BZ-binding site using molecular modelling studies. Adult male Wistar rats were treated 30 min before training session with Vicenin-2 (0.1 and 0.25 mg/kg), Vitexin (0.1 and 0.25 mg/kg), Isovitexin (0.1 and 0.25 mg/kg) and 0.1 mg/kg 6-C-glycoside-Diosmetin, vehicle and a GABAA receptor agonist. The analysis of the time spent in the non-aversive vs aversive enclosed arms during the test session and percentage of time in the open arms within the training session revealed that treatment with Isovitexin and 6-C-glycoside-Diosmetin had memory-enhancing and anxiolytic-like effects (P < 0.001). In contrast, treatment with a higher dose of Diazepam impaired short-and long-term memory when it alleviated anxiety level. Docking studies revealed that flavones docked in a very similar way to that observed to the Diazepam, except by a lack of interaction in residue α1His101 in the BZ-binding site on GABAA receptors, which may be related to memory-enhancing effect. The occurrence of the α1His101 interaction could justify the memory-impairing observed following Diazepam treatment. These findings provide the first evidence that Isovitexin and 6-C-glycoside-Diosmetin could exert their memory-enhancing and anxiolytic-like effects via GABAA receptor modulation, which likely occurs via their benzodiazepine-binding site.
Collapse
|
13
|
Abstract
OBJECTIVE Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. METHODS CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. RESULTS Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. CONCLUSIONS These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.
Collapse
|
14
|
Casasola-Castro C, Weissmann-Sánchez L, Calixto-González E, Aguayo-Del Castillo A, Velázquez-Martínez DN. Short-term and long-term effects of diazepam on the memory for discrimination and generalization of scopolamine. Psychopharmacology (Berl) 2017; 234:3083-3090. [PMID: 28735367 DOI: 10.1007/s00213-017-4692-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Benzodiazepines are among the most widely prescribed and misused psychopharmaceutical drugs. Although they are well-tolerated, they are also capable of producing amnestic effects similar to those observed after pharmacological or organic cholinergic dysfunction. To date, the effect of benzodiazepine diazepam on the memory for discrimination of anticholinergic drugs has not been reported. The aim of the present study was to analyze the immediate and long-term effects of diazepam on a drug discrimination task with scopolamine. Male Wistar rats were trained to discriminate between scopolamine and saline administration using a two-lever discrimination task. Once discrimination was acquired, the subjects were divided into three independent groups, (1) control, (2) diazepam, and (3) diazepam chronic administration (10 days). Subsequently, generalization curves for scopolamine were obtained. Additionally, the diazepam and control groups were revaluated after 90 days without having been given any other treatment. The results showed that diazepam produced a significant reduction in the generalization gradient for scopolamine, indicating an impairment of discrimination. The negative effect of diazepam persisted even 90 days after drug had been administered. Meanwhile, the previous administration of diazepam for 10 days totally abated the generalization curve and the general performance of the subjects. The results suggest that diazepam affects memory for the stimulus discrimination of anticholinergic drugs and does so persistently, which could be an important consideration during the treatment of amnesic patients with benzodiazepines.
Collapse
Affiliation(s)
- C Casasola-Castro
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3004, Col. Copilco-Universidad, 04510, Mexico City, Mexico.
| | - L Weissmann-Sánchez
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3004, Col. Copilco-Universidad, 04510, Mexico City, Mexico
| | - E Calixto-González
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3004, Col. Copilco-Universidad, 04510, Mexico City, Mexico.,Departamento de Neurobiología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, México City, Mexico
| | - A Aguayo-Del Castillo
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3004, Col. Copilco-Universidad, 04510, Mexico City, Mexico
| | - D N Velázquez-Martínez
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3004, Col. Copilco-Universidad, 04510, Mexico City, Mexico
| |
Collapse
|
15
|
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB. Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 2017; 18:ijms18040673. [PMID: 28333073 PMCID: PMC5412268 DOI: 10.3390/ijms18040673] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|