1
|
Pasquetta L, Ferreyra E, Wille-Bille A, Pautassi RM, Ramirez A, Piovano J, Molina JC, Miranda-Morales RS. C57BL/6J offspring mice reared by a single-mother exhibit, compared to mice reared in a biparental parenting structure, distinct neural activation patterns and heightened ethanol-induced anxiolysis. Psychopharmacology (Berl) 2025; 242:1123-1135. [PMID: 38811403 DOI: 10.1007/s00213-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE Parenting experiences with caregivers play a key role in neurodevelopment. We recently reported that adolescents reared by a single-mother (SM) display an anxiety-prone phenotype and drink more alcohol, compared to peers derived from a biparental (BP) rearing condition. OBJECTIVES To investigate if SM and BP offspring infant mice exhibit differential sensitivity to ethanol-induced locomotor activity and differential activity patterns in brain areas related to anxiety response. We also analyzed anxiety response and ethanol-induced anxiolysis in SM and BP adolescents. METHODS Mice reared in SM or BP conditions were assessed for (a) ethanol-induced locomotor activity at infancy, (b) central expression of Fos-like proteins (likely represented mostly by FosB, a transcription factor that accumulates after chronic stimuli exposure and serves as a molecular marker of neural plasticity) and cathecolaminergic activity, and (c) anxiety-like behavior and ethanol-induced anxiolysis in adolescence. RESULTS Infant mice were sensitive to the stimulating effects of 2.0 g/kg alcohol, regardless parenting structure. SM mice exhibited, relative to BP mice, a significantly greater number of Fos-like positive cells in the central amygdala and basolateral amygdala nuclei. Ethanol treatment, but not parenting condition, induced greater activation of dopaminergic neurons in ventral tegmental area. SM, but not BP, adolescent mice were sensitive to ethanol-induced anxiolysis. CONCLUSIONS These results highlight the complex relationship between parenting experiences and neurodevelopment. The SM parenting may result in greater neural activation patterns in brain areas associated with anxiety response, potentially contributing to increased basal anxiety and alcohol sensitivity.
Collapse
Affiliation(s)
- Lucila Pasquetta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Eliana Ferreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Abraham Ramirez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Jesica Piovano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| |
Collapse
|
2
|
Ravasi C, Salguero A, Marengo L, Peñalver P, Pautassi RM. Adolescent binge drinking in male Wistar rats increases ethanol consumption and reduces intoxication sensitivity in early adulthood without affecting withdrawal. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2025:1-12. [PMID: 39969851 DOI: 10.1080/00952990.2025.2464644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025]
Abstract
Background: Early adolescent ethanol exposure increases the risk of developing an alcohol use disorder. The mechanisms underlying this relationship may involve early ethanol exposure influencing anxiety or altering ethanol sensitivity.Objectives: To examine how adolescent binge drinking impacts sensitivity to ethanol intoxication, withdrawal symptoms, anxiety, compulsive behaviors, and ethanol intake in adulthood.Methods: Thirty-seven male Wistar rats self-administered ethanol during adolescence [postnatal days (PD) 27-45] or were housed under control conditions. In adulthood, the rats received intragastric intubations to simulate heavy alcohol (PDs 61-65, 3 daily doses of 0.0 or 1.5 g/kg) exposure. Intoxication and withdrawal symptoms were assessed (PDs 61-70), along with compulsive behaviors (marble burying test, PD68) and anxiety-related behaviors (light-dark box and elevated plus maze tests, PDs 69-70). Two-bottle choice tests provided measures of ethanol intake (PDs 75-87).Results: Adolescent binge exposure increased ethanol consumption in adulthood (p < .001; η2 = 0.51), with binge-exposed rats drinking 4.5-6.5 g/kg/day vs. 2 g/kg/day in controls. Binge-exposed rats exhibited reduced sensitivity to ethanol intoxication (p < .05; η2 = 0.17). Withdrawal symptoms were significantly greater (p < .005; η2 = 0.36) in rats exposed to alcohol during adulthood compared to controls, regardless of binge ethanol exposure. Anxiety or compulsive behaviors were unaffected by binge ethanol.Conclusions: Adolescent binge drinking led, in male rats, to significant increases in ethanol intake and reduced sensitivity to intoxication in adulthood. These findings suggest that early ethanol exposure results in decreased ethanol sensitivity, potentially increasing the likelihood of ethanol use. Adolescent binge drinking is a key vulnerability factor, and interventions should target this behavior.
Collapse
Affiliation(s)
- Camila Ravasi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín Salguero
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Leonardo Marengo
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Pedro Peñalver
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
El Mostafi H, Elhessni A, Doumar H, Touil T, Mesfioui A. Behavioral and Amygdala Biochemical Damage Induced by Alternating Mild Stress and Ethanol Intoxication in Adolescent Rats: Reversal by Argan Oil Treatment? Int J Mol Sci 2024; 25:10529. [PMID: 39408860 PMCID: PMC11476757 DOI: 10.3390/ijms251910529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Adolescence is a critical period when the effects of ethanol and stress exposure are particularly pronounced. Argan oil (AO), a natural vegetable oil known for its diverse pharmacological benefits, was investigated for its potential to mitigate addictive-like behaviors and brain damage induced by adolescent intermittent ethanol intoxication (IEI) and unpredictable mild stress (UMS). From P30 to P43, IEI rats received a daily ip ethanol (3 g/kg) on a two-day on/two-day off schedule. On alternate days, the rats were submitted to UMS protocol. Next, a two-bottle free access paradigm was performed over 10 weeks to assess intermittent 20% ethanol voluntary consumption. During the same period, the rats were gavaged daily with AO (15 mL/kg). Our results show that IEI/UMS significantly increased voluntary alcohol consumption (from 3.9 g/kg/24 h to 5.8 g/kg/24 h) and exacerbated withdrawal signs and relapse-like drinking in adulthood. Although AO treatment slightly reduced ethanol intake, it notably alleviated withdrawal signs during abstinence and relapse-like drinking in adulthood. AO's effects were associated with its modulation of the HPA axis (elevated serum corticosterone), restoration of amygdala oxidative balance, BDNF levels, and attenuation of neurodegeneration. These findings suggest that AO's neuroprotective properties could offer a potential therapeutic avenue for reducing ethanol/stress-induced brain damage and addiction. Further research is needed to explore its mechanisms and therapeutic potential in alcohol use disorders.
Collapse
Affiliation(s)
- Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Tarik Touil
- Higher Institute of Nursing and Health Professions of Rabat, Rabat 4502, Morocco;
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| |
Collapse
|
4
|
Buján GE, D'Alessio L, Serra HA, Guelman LR, Molina SJ. Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy. Neurotox Res 2024; 42:29. [PMID: 38856796 DOI: 10.1007/s12640-024-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.
Collapse
Affiliation(s)
- G E Buján
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L D'Alessio
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H A Serra
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L R Guelman
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina.
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - S J Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Vázquez-Ágredos A, Valero M, Aparicio-Mescua T, García-Rodríguez R, Gámiz F, Gallo M. Adolescent alcohol exposure modifies adult anxiety-like behavior and amygdala sensitivity to alcohol in rats: Increased c-Fos activity and sex-dependent microRNA-182 expression. Pharmacol Biochem Behav 2024; 238:173741. [PMID: 38437922 DOI: 10.1016/j.pbb.2024.173741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Adolescent binge alcohol drinking is a serious health concern contributing to adult alcohol abuse often associated with anxiety disorders. We have used adolescent intermittent ethanol (AIE) administration as a model of binge drinking in rats in order to explore its long-term effect on the basolateral amygdala (BLA) responsiveness to alcohol and anxiety-like behavior. AIE increased the number of BLA c-Fos positive cells in adult Wistar rats and anxiety-like behavior assessed by the open field test (OFT). Additionally, in adult female rats receiving AIE BLA over expression of miR-182 was found. Therefore, our results indicate that alcohol consumption during adolescence can lead to enduring changes in anxiety-like behavior and BLA susceptibility to alcohol that may be mediated by sex-dependent epigenetic changes. These results contribute to understanding the mechanisms involved in the development of alcohol use disorders (AUD) and anxiety-related disorders.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain.
| | - Marta Valero
- Department of Psychology, University of Jaén, Jaén, Spain
| | - Teresa Aparicio-Mescua
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behavior (CIMCYC), Faculty of Psychology, University of Granada, Granada, Spain
| | - Raquel García-Rodríguez
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria (IBS), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
7
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Holloway KN, Pinson MR, Douglas JC, Rafferty TM, Kane CJM, Miranda RC, Drew PD. Cerebellar Transcriptomic Analysis in a Chronic plus Binge Mouse Model of Alcohol Use Disorder Demonstrates Ethanol-Induced Neuroinflammation and Altered Glial Gene Expression. Cells 2023; 12:745. [PMID: 36899881 PMCID: PMC10000476 DOI: 10.3390/cells12050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most common preventable mental health disorders and can result in pathology within the CNS, including the cerebellum. Cerebellar alcohol exposure during adulthood has been associated with disruptions in proper cerebellar function. However, the mechanisms regulating ethanol-induced cerebellar neuropathology are not well understood. High-throughput next generation sequencing was performed to compare control versus ethanol-treated adult C57BL/6J mice in a chronic plus binge model of AUD. Mice were euthanized, cerebella were microdissected, and RNA was isolated and submitted for RNA-sequencing. Down-stream transcriptomic analyses revealed significant changes in gene expression and global biological pathways in control versus ethanol-treated mice that included pathogen-influenced signaling pathways and cellular immune response pathways. Microglial-associated genes showed a decrease in homeostasis-associated transcripts and an increase in transcripts associated with chronic neurodegenerative diseases, while astrocyte-associated genes showed an increase in transcripts associated with acute injury. Oligodendrocyte lineage cell genes showed a decrease in transcripts associated with both immature progenitors as well as myelinating oligodendrocytes. These data provide new insight into the mechanisms by which ethanol induces cerebellar neuropathology and alterations to the immune response in AUD.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.N.H.); (J.C.D.); (T.M.R.); (C.J.M.K.)
| | - Marisa R. Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (M.R.P.); (R.C.M.)
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.N.H.); (J.C.D.); (T.M.R.); (C.J.M.K.)
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.N.H.); (J.C.D.); (T.M.R.); (C.J.M.K.)
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.N.H.); (J.C.D.); (T.M.R.); (C.J.M.K.)
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (M.R.P.); (R.C.M.)
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.N.H.); (J.C.D.); (T.M.R.); (C.J.M.K.)
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
9
|
Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review. Transl Psychiatry 2022; 12:345. [PMID: 36008381 PMCID: PMC9411553 DOI: 10.1038/s41398-022-02100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Adolescence is an important developmental period associated with increased risk for excessive alcohol use, but also high rates of recovery from alcohol use-related problems, suggesting potential resilience to long-term effects compared to adults. The aim of this systematic review is to evaluate the current evidence for a moderating role of age on the impact of chronic alcohol exposure on the brain and cognition. We searched Medline, PsycInfo, and Cochrane Library databases up to February 3, 2021. All human and animal studies that directly tested whether the relationship between chronic alcohol exposure and neurocognitive outcomes differs between adolescents and adults were included. Study characteristics and results of age-related analyses were extracted into reference tables and results were separately narratively synthesized for each cognitive and brain-related outcome. The evidence strength for age-related differences varies across outcomes. Human evidence is largely missing, but animal research provides limited but consistent evidence of heightened adolescent sensitivity to chronic alcohol's effects on several outcomes, including conditioned aversion, dopaminergic transmission in reward-related regions, neurodegeneration, and neurogenesis. At the same time, there is limited evidence for adolescent resilience to chronic alcohol-induced impairments in the domain of cognitive flexibility, warranting future studies investigating the potential mechanisms underlying adolescent risk and resilience to the effects of alcohol. The available evidence from mostly animal studies indicates adolescents are both more vulnerable and potentially more resilient to chronic alcohol effects on specific brain and cognitive outcomes. More human research directly comparing adolescents and adults is needed despite the methodological constraints. Parallel translational animal models can aid in the causal interpretation of observed effects. To improve their translational value, future animal studies should aim to use voluntary self-administration paradigms and incorporate individual differences and environmental context to better model human drinking behavior.
Collapse
|
10
|
Buján GE, D'Alessio L, Serra HA, Molina SJ, Guelman LR. Behavioral alterations induced by intermittent ethanol intake and noise exposure in adolescent rats. Eur J Neurosci 2022; 55:1756-1773. [PMID: 35342999 DOI: 10.1111/ejn.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Alcohol intake and exposure to noise are common activities of human adolescents performed in entertainment contexts worldwide that can induce behavioral disturbances. Therefore, the aim of the present work was to investigate in an experimental model of adolescent animals whether noise exposure and intermittent ethanol intake, when present individually or sequentially, might be able to modify different behaviors. Adolescent Wistar rats of both sexes were subjected to voluntary intermittent ethanol intake for 1 week followed by exposure to noise for 2 h and tested in a battery of behavioral tasks. Data show that males exposed to noise experienced a deficit in associative memory (AM), increase in anxiety-like behaviors (ALB) and altered reaction to novelty (RN) when compared with sham animals, whereas females also showed an increase in risk assessment behaviors (RAB) and a decrease in exploratory activity (EA). In contrast, ethanol intake induced an increase in RAB and RN in males and females, whereas females also showed a deficit in AM and EA as well as an increase in ALB. When ethanol was ingested before noise exposure, most parameters were counteracted both in male and females, but differed among sexes. In consequence, it could be hypothesized that an environmental acute stressor like noise might trigger a behavioral counteracting induced by a previous repeated exposure to a chemical agent such as ethanol, leading to a compensation of a non-adaptive behavior and reaching a better adjustment to the environment.
Collapse
Affiliation(s)
- Gustavo Ezequiel Buján
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Luciana D'Alessio
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología Celular y Neurociencias (IBCN, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Héctor Alejandro Serra
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia Jazmín Molina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
11
|
Siska F, Amchova P, Kuruczova D, Tizabi Y, Ruda-Kucerova J. Effects of low-dose alcohol exposure in adolescence on subsequent alcohol drinking in adulthood in a rat model of depression. World J Biol Psychiatry 2021; 22:757-769. [PMID: 33821763 DOI: 10.1080/15622975.2021.1907717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Adolescence drinking and subsequent development of alcohol use disorder (AUD) is a worldwide health concern. In particular, mood dysregulation or early alcohol exposure can be the cause of heavy drinking in some individuals or a consequence of heavy drinking in others. METHODS This study investigated the effects of voluntary alcohol intake during adolescence, i.e. continuous 10% alcohol access between postnatal days (PND) 29 to 43 and olfactory bulbectomy (OBX) model of depression (performed on PND 59) on alcohol drinking in Wistar rats during adulthood (PND 80-120, intermittent 20% alcohol access). In addition, the effect of NBQX, an AMPA/kainate receptor antagonist (5 mg/kg, IP) on spontaneous alcohol consumption was examined. RESULTS Rats exposed to 10% alcohol during adolescence exhibited a lower 20% alcohol intake in the intermittent paradigm during adulthood, while the OBX-induced phenotype did not exert a significant effect on the drinking behaviour. NBQX exerted a transient reduction on alcohol intake in the OBX rats. CONCLUSIONS Our results indicate that exposure to alcohol during adolescence can affect alcohol drinking in adulthood and that further exploration of AMPA and/or kainate receptor antagonists in co-morbid alcoholism-depression is warranted.
Collapse
Affiliation(s)
- Filip Siska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Kuruczova
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Wille-Bille A, Marengo L, Godino A, Pautassi RM. Effects of escalating versus fixed ethanol exposure on ∆FosB expression in the mesocorticolimbic pathway in adolescent and adult rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:569-580. [PMID: 34383595 DOI: 10.1080/00952990.2021.1954188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: We have reported induction of ∆FosB in adolescent rats that drank less ethanol than adults yet exhibited a progressive increase in ethanol intake.Objective: To test the hypothesis that an escalating pattern of ethanol exposure is more effective to induce ∆FosB expression [at prelimbic cortex (PrL), nucleus accumbens core and shell, striatum, basolateral amygdala (BLA) and central amygdala (CeC)] than a pattern equated for number of exposures yet employing a fixed ethanol dose.Methods: Adolescent and adult (Exp. 1, n = 48) male and female (n = 24 of each sex) or only adult male (Exp. 2, n = 36) Wistar rats were intermittently intubated with vehicle, escalating (from 0.5 to 2.5 g/kg) or fixed (2.0 g/kg) doses of ethanol, across 18 sessions. ∆FosB induction was assessed using immunohistochemistry. Ethanol intake, anxiety and risk-taking were assessed (in adults only) via two-bottles tests and the multivariate concentric square field.Results: Both patterns heightened ∆FosB levels similarly in adolescents and adults and in males and females. Fixed dosing induced ∆FosB in all areas (p < .05) except the CeC, whereas the escalating pattern induced ∆FosB in the PrL and BLA only (p < .05). Ethanol intake was initially lower in ethanol pre-exposed subjects than in control subjects (p < .05). Rats exposed to the fixed pattern exhibited enhanced risk-taking behavior (p < .05).Conclusions: The results agree with studies showing ethanol-mediated induction of ∆FosB in reward areas and indicate that, following ethanol intubations, this induction is similar in adolescents and adults. The induction of ∆FosB seems not necessarily associated with susceptibility for ethanol intake.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Leonardo Marengo
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Andrea Godino
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
13
|
Soledad Fernández M, Edward Nizhnikov M, García Virgolini R, Marcos Pautassi R. Prediction of ethanol self-administration in pre-weanling, adolescent, and young adult rats. Dev Psychobiol 2020; 63:378-384. [PMID: 33629398 DOI: 10.1002/dev.22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022]
Abstract
Alcohol (ethanol) use is almost normative by late adolescence, in most western countries. It is important to identify factors that distinguish those who progress from alcohol initiation to sustained use of the drug, from those that keep a controlled pattern of drinking. The factors precipitating this transition may change across development. This study analyzed associations between behavioral endophenotypes and ethanol intake at three developmental periods. Exp. 1 measured ethanol drinking at postnatal day 18, via an intraoral infusion procedure, in male or female pre-weanling rats screened for anxiety response in the light-dark box test and for distance traveled in a novel open field. Exp. 2 measured, in juvenile/adolescent or young adult rats, the association between shelter seeking, exploratory/risk-taking behaviors, anxiety or hedonic responses, and ethanol intake. Ethanol intake in pre-weanlings was explained by distance traveled in a novel environment, whereas anxiety responses, measured in the multivariate concentric square field apparatus (MSCF), selectively predicted ethanol intake at adolescence, but not at adulthood. Those juvenile/adolescents with lower mean duration of visit to areas of the MSCF that evoke anxiogenic responses exhibited heightened ethanol intake. These findings suggest that the association between anxiety and ethanol intake may be specifically relevant during adolescence.
Collapse
Affiliation(s)
- Macarena Soledad Fernández
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Rodrigo García Virgolini
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
15
|
Buján GE, Serra HA, Molina SJ, Guelman LR. Oxidative Stress-Induced Brain Damage Triggered by Voluntary Ethanol Consumption during Adolescence: A Potential Target for Neuroprotection? Curr Pharm Des 2020; 25:4782-4790. [PMID: 31814553 DOI: 10.2174/1381612825666191209121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022]
Abstract
Alcohol consumption, in particular ethanol (EtOH), typically begins in human adolescence, often in a "binge like" manner. However, although EtOH abuse has a high prevalence at this stage, the effects of exposure during adolescence have been less explored than prenatal or adult age exposure. Several authors have reported that EtOH intake during specific periods of development might induce brain damage. Although the mechanisms are poorly understood, it has been postulated that oxidative stress may play a role. In fact, some of these studies revealed a decrease in brain antioxidant enzymes' level and/or an increase in reactive oxygen species (ROS) production. Nevertheless, although existing literature shows a number of studies in which ROS were measured in developing animals, fewer reported the measurement of ROS levels after EtOH exposure in adolescence. Importantly, neuroprotective agents aimed to these potential targets may be relevant tools useful to reduce EtOH-induced neurodegeneration, restore cognitive function and improve treatment outcomes for alcohol use disorders (AUDs). The present paper reviews significant evidences about the mechanisms involved in EtOH-induced brain damage, as well as the effect of different potential neuroprotectants that have shown to be able to prevent EtOH-induced oxidative stress. A selective inhibitor of the endocannabinoid anandamide metabolism, a flavonol present in different fruits (quercetin), an antibiotic with known neuroprotective properties (minocycline), a SOD/catalase mimetic, a potent antioxidant and anti-inflammatory molecule (resveratrol), a powerful ROS scavenger (melatonin), an isoquinoline alkaloid (berberine), are some of the therapeutic strategies that could have some clinical relevance in the treatment of AUDs. As most of these works were performed in adult animal models and using EtOH-forced paradigms, the finding of neuroprotective tools that could be effective in adolescent animal models of voluntary EtOH intake should be encouraged.
Collapse
Affiliation(s)
- Gustavo E. Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Hector A. Serra
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia J. Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Laura R. Guelman
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
16
|
Salguero A, Suarez A, Luque M, Ruiz-Leyva L, Cendán CM, Morón I, Pautassi RM. Binge-Like, Naloxone-Sensitive, Voluntary Ethanol Intake at Adolescence Is Greater Than at Adulthood, but Does Not Exacerbate Subsequent Two-Bottle Choice Drinking. Front Behav Neurosci 2020; 14:50. [PMID: 32327981 PMCID: PMC7161160 DOI: 10.3389/fnbeh.2020.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
The present study assessed the effects of ethanol exposure during adolescence or adulthood. We exposed Wistar rats, males or females, to self-administered 8–10% (v/v) ethanol (BINGE group) during the first 2 h of the dark cycle, three times a week (Monday, Wednesday, and Friday) during postnatal days (PDs) 32–54 or 72–94 (adolescent and adults, respectively). During this period, controls were only handled, and a third (IP) condition was given ethanol intraperitoneal administrations, three times a week (Monday, Wednesday, and Friday), at doses that matched those self-administered by the BINGE group. The rats were tested for ethanol intake and preference in a two-bottle (24 h long) choice test, shortly before (PD 30 or 70) and shortly after (PD 56 or 96) exposure to the binge or intraperitoneal protocol; and then tested for free-choice drinking during late adulthood (PDs 120–139) in intermittent two-bottle intake tests. Binge drinking was significantly greater in adolescents vs. adults, and was blocked by naloxone (5.0 mg/kg) administered immediately before the binge session. Mean blood ethanol levels (mg/dl) at termination of binge session 3 were 60.82 ± 22.39. Ethanol exposure at adolescence, but not at adulthood, significantly reduced exploration of an open field-like chamber and significantly increased shelter-seeking behavior in the multivariate concentric square field. The rats that had been initially exposed to ethanol at adolescence drank, during the intake tests conducted at adulthood, significantly more than those that had their first experience with ethanol at adulthood, an effect that was similar among BINGE, IP and control groups. The study indicates that binge ethanol drinking is greater in adolescent that in adults and is associated with heightened ethanol intake at adulthood. Preventing alcohol access to adolescents should reduce the likelihood of problematic alcohol use or alcohol-related consequences.
Collapse
Affiliation(s)
- Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Suarez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maribel Luque
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Ruiz-Leyva
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Ignacio Morón
- Department of Psychobiology and Research Center for Mind, Brain, and Behavior (CIMCYC), University of Granada, Faculty of Psychology, Granada, Spain
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Marcolin ML, Baumbach JL, Hodges TE, McCormick CM. The effects of social instability stress and subsequent ethanol consumption in adolescence on brain and behavioral development in male rats. Alcohol 2020; 82:29-45. [PMID: 31465790 DOI: 10.1016/j.alcohol.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
Excessive drinking in adolescence continues to be a problem, and almost a quarter of young Canadians have reported consuming five or more alcoholic drinks in one occasion in recent surveys. The consequences of such drinking may be more pronounced when commenced in adolescence, given the ongoing brain development during this period of life. Here, we investigated the consequences of 3 weeks' intermittent access to ethanol in mid-adolescence to early adulthood in rats, and the extent to which a stress history moderated the negative consequences of ethanol access. In experiment 1, male rats that underwent adolescent social instability stress (SS; daily 1 h isolation + return to unfamiliar cage partner every day from postnatal day [PND] 30-45) did not differ from control (CTL) rats in intake of 10% ethanol sweetened with 0.1% saccharin (access period; PND 47-66). Ethanol drinking reduced proteins relevant for synaptic plasticity (αCaMKII, βCaMKII, and PSD-95) in the dorsal hippocampus, and in CTL rats only in the prefrontal cortex (αCaMKII and PSD 95), attenuating the difference between CTL and SS rats in the water-drinking group. In experiment 2, ethanol also attenuated the difference between SS and CTL rats in a social interaction test by reducing social interaction in SS rats; CTL rats, however, had a higher intake of ethanol than did SS rats during the access period. Ethanol drinking reduced baseline and fear recall recovery concentrations of corticosterone relative to those exposed only to water, although there was no effect of either ethanol or stress history on fear conditioning. Ethanol drinking did not influence intake after 9 days of withdrawal; however, ethanol-naïve SS rats drank more than did CTL rats when given a 24-h access in adulthood. These results reveal a complex relationship between stress history and ethanol intake in adolescence on outcomes in adulthood.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
18
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Wscieklica T, Le Sueur-Maluf L, Prearo L, Conte R, Viana MDB, Céspedes IC. Chronic intermittent ethanol administration differentially alters DeltaFosB immunoreactivity in cortical-limbic structures of rats with high and low alcohol preference. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:264-275. [DOI: 10.1080/00952990.2019.1569667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tatiana Wscieklica
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Leandro Prearo
- Pró-Reitor de Graduação, Universidade Municipal de São Caetano do Sul (USCS), São Caetano do Sul, SP, Brazil
| | - Rafael Conte
- Departamento de Neurociências e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Isabel Cristina Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
20
|
Prenatal ethanol exposure potentiates isolation-induced ethanol consumption in young adult rats. Alcohol 2019; 75:39-46. [PMID: 30342395 DOI: 10.1016/j.alcohol.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
Abstract
Prenatal and/or early postnatal ethanol exposure (PEE) is associated with significant behavioral and physiological deficits in offspring, including alterations in stress response systems and a greater likelihood of alcohol use disorders. Stress-induced ethanol drinking after PEE, however, has been largely unexplored. The present study analyzed ethanol intake in male Sprague-Dawley rats after protracted prenatal and early postnatal ethanol exposure and tested whether social isolation during the sensitive period of adolescence modulates the effects of PEE on ethanol drinking. The dams were given 10% ethanol (or its vehicle) as the sole drinking fluid from gestational day 0 (GD0) to postnatal day 7 (PD7). On PD21, male offspring were housed individually (isolated housing group) or in pairs in standard cages (standard housing group). From PD56 to PD84, these male rats were tested for ethanol intake in 24-h, intermittent two-bottle choice sessions that were conducted across 4 weeks. Maternal ethanol consumption during gestation and during the first week of life of the offspring averaged 6.10-8.20 g/kg/22 h. Isolation housing during adolescence increased free-choice ethanol drinking in young adulthood. The main novel finding was that this facilitative effect of isolation on absolute and percent ethanol intake was significantly greater in PEE rats than in control counterparts not exposed to the prenatal and early postnatal ethanol exposure (effect sizes [η2p]: 0.24-0.32). The present results suggest that PEE renders the individual sensitive to the facilitative effect of stress exposure on ethanol intake.
Collapse
|
21
|
Fernández MS, Ferreyra A, de Olmos S, Pautassi RM. The offspring of rats selected for high or low ethanol intake at adolescence exhibit differential ethanol-induced Fos immunoreactivity in the central amygdala and in nucleus accumbens core. Pharmacol Biochem Behav 2018; 176:6-15. [PMID: 30419270 DOI: 10.1016/j.pbb.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Adolescents exhibit, when compared to adults, altered responsivity to the unconditional effects of ethanol. It is unclear if this has a role in the excessive ethanol intake of adolescents. Wistar rats from the third filial generation (F3) of a short-term breeding program which were selected for high (STDRHI) vs. low (STDRLO) ethanol intake during adolescence, were assessed for ethanol-induced (0.0, 1.25 or 2.5 g/kg) Fos immunoreactivity (Fos-ir) in the central (Ce), basolateral (BLA) and medial (Me) amygdaloid nuclei; nucleus accumbens core and shell (AcbC, AcbSh), ventral tegmental area (VTA), as well as prelimbic and infralimbic (PrL, IL) prefrontal cortices. Following i.p. administration of saline, and across the structures measured, Fos-ir was significantly greater in STDRHI than in STDRLO rats. Across both lines, baseline Fos-ir was significantly lower in BLA than in any other structure, whereas PrL, IL and Shell did not differ between each other and exhibited significantly greater level of baseline neural activation than Ce, Me, AcbC and VTA. STDRLO, but not STDRHI, rats exhibited ethanol-induced Fos-ir in Ce. STRDHI, but not STDRLO, rats exhibited an ethanol-induced Fos-ir depression in AcbC. Key maternal care behaviors (i.e., grooming of the pups, latency to retrieve the pups, time spent in the nest and time adopting a kiphotic posture) were fairly similar across lines. There were significant intergenerational variations in the amount self-licking behaviors in STDRHI dams as well as an increased amount of exploration of the cage in these animals, when compared to STDRLO counterparts. These results indicate that short term selection for differential alcohol intake during adolescence yields heightened neural activity at baseline (i.e., after vehicle) in STRDHI vs. STDRLO adolescent rats, and differential sensitivity to ethanol-induced Fos immunoreactivity in Ce and in AcbC. It is unlikely that rearing patterns explained the neural differences reported, between STDRHI and STDRLO rats.
Collapse
Affiliation(s)
- Macarena Soledad Fernández
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| | - Ana Ferreyra
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Soledad de Olmos
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| |
Collapse
|
22
|
Logrip ML, Milivojevic V, Bertholomey ML, Torregrossa MM. Sexual dimorphism in the neural impact of stress and alcohol. Alcohol 2018; 72:49-59. [PMID: 30227988 PMCID: PMC6148386 DOI: 10.1016/j.alcohol.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
Collapse
Affiliation(s)
- Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| | - Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Megan L Bertholomey
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| |
Collapse
|
23
|
Fernandes LM, Cartágenes SC, Barros MA, Carvalheiro TC, Castro NC, Schamne MG, Lima RR, Prediger RD, Monteiro MC, Fontes-Júnior EA, Cunha RA, Maia CS. Repeated cycles of binge-like ethanol exposure induce immediate and delayed neurobehavioral changes and hippocampal dysfunction in adolescent female rats. Behav Brain Res 2018; 350:99-108. [DOI: 10.1016/j.bbr.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
|
24
|
Ruiz P, Calliari A, Pautassi RM. Reserpine-induced depression is associated in female, but not in male, adolescent rats with heightened, fluoxetine-sensitive, ethanol consumption. Behav Brain Res 2018; 348:160-170. [DOI: 10.1016/j.bbr.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023]
|
25
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
26
|
Hou L, Guo Y, Lian B, Wang Y, Li C, Wang G, Li Q, Pang J, Sun H, Sun L. Synaptic Ultrastructure Might Be Involved in HCN 1-Related BDNF mRNA in Withdrawal-Anxiety After Ethanol Dependence. Front Psychiatry 2018; 9:215. [PMID: 29896126 PMCID: PMC5986948 DOI: 10.3389/fpsyt.2018.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Withdrawal from ethanol dependence has been associated with heightened anxiety and reduced expression of Brain-derived neurotropic factor which promotes the synaptic transmission and plasticity of synapses. Hyperpolarization-activated cyclic nucleotide-gated channel 1 regulates expression; however, whether Hyperpolarization-activated cyclic nucleotide-gated channel 1-related Brain-derived neurotropic factor is involved in the synaptic ultrastructure that generates withdrawal-anxiety has been poorly perceived. Sprague-Dawley rats were treated with ethanol 3-9% (v/v) for a period of 21 days. Conditioned place preference and body weight were investigated during ethanol administration. Rats were subjected to behavioral testing and biochemical assessments after ethanol withdrawal, which was induced by abrupt discontinuation of the treatment. The results showed that the ethanol administration induced severe ethanol dependence behaviors, with higher body weight and more time in the ethanol-paired compartment. After withdrawal, rats had a higher total ethanol withdrawal score and explored less. Additionally, increased Hyperpolarization-activated cyclic nucleotide-gated channel 1 protein and gene expression and decreased Brain-derived neurotropic factor protein and gene expression were detected in the Ethanol group. Eventually, there was a negative correlation between the level of Brain-derived neurotropic factor mRNA and Hyperpolarization-activated cyclic nucleotide-gated channel 1 protein. Importantly, the synaptic ultrastructure changed in the Ethanol group, including increased synaptic cleft width and reduction in postsynaptic density thickness or synaptic curvature. The synthesis of the Brain-derived neurotropic factor mRNA could be down-regulated by higher Hyperpolarization-activated cyclic nucleotide-gated channel 1 protein expression. Changes in synaptic ultrastructure may be induced by lower Brain-derived neurotropic factor protein, which could be associated with the withdrawal-anxiety that is experiences after ethanol dependence.
Collapse
Affiliation(s)
- Lanwei Hou
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yujuan Guo
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Changjiang Li
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Gang Wang
- Laboratory for Cognitive Neuroscience, Weifang Medical University, Weifang, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, Hong Kong
| | - Jinjing Pang
- Department of Rehabilitation Medicine, Han Ting People's Hospital of Weifang, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Lin Sun
- Department of Clinical Medicine, Weifang Medical University, Weifang, China.,Department of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
27
|
Moaddab M, Mangone E, Ray MH, McDannald MA. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders. Brain Sci 2017; 7:brainsci7110151. [PMID: 29135933 PMCID: PMC5704158 DOI: 10.3390/brainsci7110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Elizabeth Mangone
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Madelyn H Ray
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
28
|
Miceli M, Molina SJ, Forcada A, Acosta GB, Guelman LR. Voluntary alcohol intake after noise exposure in adolescent rats: Hippocampal-related behavioral alterations. Brain Res 2017; 1679:10-18. [PMID: 29113737 DOI: 10.1016/j.brainres.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents.
Collapse
Affiliation(s)
- M Miceli
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - S J Molina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Buenos Aires, Argentina
| | - A Forcada
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - G B Acosta
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Buenos Aires, Argentina
| | - L R Guelman
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|