1
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, Lutz AK. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2024; 29:704-717. [PMID: 38123724 PMCID: PMC11153165 DOI: 10.1038/s41380-023-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and β-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.
Collapse
Affiliation(s)
- Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
4
|
Ha BG, Jang YJ, Lee E, Kim BG, Myung K, Sun W, Jeong SJ. Isolation and identification of extracellular matrix proteins from oil-based CASPERized mouse brains for matrisomal analysis. Heliyon 2023; 9:e14777. [PMID: 37025807 PMCID: PMC10070542 DOI: 10.1016/j.heliyon.2023.e14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The extracellular matrix (ECM) components present within all tissues and organs help to maintain the cytoskeletal architecture and tissue morphology. Although the ECM plays a role in cellular events and signaling pathways, it has not been well studied due its insolubility and complexity. Brain tissue has a higher cell density and weaker mechanical strength than other tissues in the body. When removing cells using a general decellularization method to produce scaffolds and obtain ECM proteins, various problems must be considered because tissues are easily damaged. To retain the brain shape and ECM components, we performed decellularization in combination with polymerization. We immersed mouse brains in oil for polymerization and decellularization via O-CASPER (Oil-based Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine) and then isolated ECM components using sequential matrisome preparation reagents (SMPRs), namely, RIPA, PNGase F, and concanavalin A. Adult mouse brains were preserved with our decellularization method. Western blot and LC-MS/MS analyses revealed that ECM components, including collagen and laminin, were isolated efficiently from decellularized mouse brains using SMPRs. Our method will be useful to obtain matrisomal data and perform functional studies using adult mouse brains and other tissues.
Collapse
Affiliation(s)
- Byung Geun Ha
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Yu-Jin Jang
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - EunSoo Lee
- Fluorescence Core Imaging Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Jin Jeong
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Corresponding author.Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Di Y, Zheng Q, Qian Z, Fan J, Ren W, Wei Z, Tian Y. Altered expression of glycan patterns and glycan-related genes in the medial prefrontal cortex of the valproic acid rat model of autism. Front Cell Neurosci 2022; 16:1057857. [PMID: 36568890 PMCID: PMC9772556 DOI: 10.3389/fncel.2022.1057857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a group of neurodevelopmental defects characterized by social deficits and repetitive behaviors. Alteration in Glycosylation patterns could influence the nervous system development and contribute to the molecular mechanism of ASD. Interaction of environmental factors with susceptible genes may affect expressions of glycosylation-related genes and thus result in abnormal glycosylation patterns. Here, we used an environmental factor-induced model of autism by a single intraperitoneal injection of 400 mg/kg valproic acid (VPA) to female rats at day 12.5 post-conception. Following confirmation of reduced sociability and increased self-grooming behaviors in VPA-treated offspring, we analyzed the alterations in the expression profile of glycan patterns and glycan-related genes by lectin microarrays and RNA-seq, respectively. Lectin microarrays detected 14 significantly regulated lectins in VPA rats, with an up-regulation of high-mannose with antennary and down-regulation of Siaα2-3 Gal/GalNAc. Based on the KEGG and CAZy resources, we assembled a comprehensive list of 961 glycan-related genes to focus our analysis on specific genes. Of those, transcription results revealed that there were 107 differentially expressed glycan-related genes (DEGGs) after VPA treatment. Functional analysis of DEGGs encoding anabolic enzymes revealed that the process trimming to form core structure and glycan extension from core structure primarily changed, which is consistent with the changes in glycan patterns. In addition, the DEGGs encoding glycoconjugates were mainly related to extracellular matrix and axon guidance. This study provides insights into the underlying molecular mechanism of aberrant glycosylation after prenatal VPA exposure, which may serve as potential biomarkers for the autism diagnosis.
Collapse
Affiliation(s)
- Yingxun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi, China
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Qi Zheng
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhaoqiang Qian
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Juan Fan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wei Ren
- School of Education, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhaoming Wei
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,*Correspondence: Zhaoming Wei,
| | - Yingfang Tian
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Yingfang Tian,
| |
Collapse
|
6
|
Dell'Osso L, Massoni L, Battaglini S, Cremone IM, Carmassi C, Carpita B. Biological correlates of altered circadian rhythms, autonomic functions and sleep problems in autism spectrum disorder. Ann Gen Psychiatry 2022; 21:13. [PMID: 35534878 PMCID: PMC9082467 DOI: 10.1186/s12991-022-00390-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by a complex and multifaceted neurobehavioral syndrome. In the last decades, several studies highlighted an increased prevalence of sleep problems in ASD, which would be associated with autonomic system and circadian rhythm disruption. The present review aimed to summarize the available literature about sleep problems in ASD subjects and about the possible biological factors implicated in circadian rhythm and autonomic system deregulation in this population, as well as possible therapeutic approaches. Shared biological underpinnings between ASD symptoms and altered circadian rhythms/autonomic functions are also discussed. Studies on sleep showed how ASD subjects typically report more problems regarding insufficient sleep time, bedtime resistance and reduced sleep pressure. A link between sleep difficulties and irritability, deficits in social skills and behavioral problems was also highlighted. Among the mechanisms implicated, alteration in genes related to circadian rhythms, such as CLOCK genes, and in melatonin levels were reported. ASD subjects also showed altered hypothalamic pituitary adrenal (HPA) axis and autonomic functions, generally with a tendency towards hyperarousal and hyper sympathetic state. Intriguingly, some of these biological alterations in ASD individuals were not associated only with sleep problems but also with more autism-specific clusters of symptoms, such as communication impairment or repetitive behaviors Although among the available treatments melatonin showed promising results, pharmacological studies for sleep problems in ASD need to follow more standardized protocols to reach more repeatable and reliable results. Further research should investigate the issue of sleep problems in ASD in a broader perspective, taking into account shared pathophysiological mechanisms for core and associated symptoms of ASD.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Simone Battaglini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| |
Collapse
|
7
|
Kuo HY, Liu FC. Pathophysiological Studies of Monoaminergic Neurotransmission Systems in Valproic Acid-Induced Model of Autism Spectrum Disorder. Biomedicines 2022; 10:560. [PMID: 35327362 PMCID: PMC8945169 DOI: 10.3390/biomedicines10030560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. The core syndromes of ASD are deficits in social communication and self-restricted interests and repetitive behaviors. Social communication relies on the proper integration of sensory and motor functions, which is tightly interwoven with the limbic function of reward, motivation, and emotion in the brain. Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are key players in the modulation of neuronal activity. Owing to their broad distribution, the monoamine neurotransmitter systems are well suited to modulate social communication by coordinating sensory, motor, and limbic systems in different brain regions. The complex and diverse functions of monoamine neurotransmission thus render themselves as primary targets of pathophysiological investigation of the etiology of ASD. Clinical studies have reported that children with maternal exposure to valproic acid (VPA) have an increased risk of developing ASD. Extensive animal studies have confirmed that maternal treatments of VPA include ASD-like phenotypes, including impaired social communication and repetitive behavior. Here, given that ASD is a neurodevelopmental disorder, we begin with an overview of the neural development of monoaminergic systems with their neurochemical properties in the brain. We then review and discuss the evidence of human clinical and animal model studies of ASD with a focus on the VPA-induced pathophysiology of monoamine neurotransmitter systems. We also review the potential interactions of microbiota and monoamine neurotransmitter systems in ASD pathophysiology. Widespread and complex changes in monoamine neurotransmitters are detected in the brains of human patients with ASD and validated in animal models. ASD animal models are not only essential to the characterization of pathogenic mechanisms, but also provide a preclinical platform for developing therapeutic approaches to ASD.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
8
|
Li X, Wang J, Ba W, Zhang S, Lin Z, Gao M, Tian H, Ru S. Mechanistic revealing of reproductive behavior impairment in male guppy (Poecilia reticulata) induced by environmentally realistic 2,2'-dithiobis-pyridine exposure. CHEMOSPHERE 2022; 286:131839. [PMID: 34403901 DOI: 10.1016/j.chemosphere.2021.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Although (PS)2, the primary degradation product of emerging antifouling biocides metal pyrithiones (MePTs), can disrupt the reproductive behavior of fish at an environmentally relevant ng/L level, the underlying mechanism is still largely unknown. This study exposed sexually mature male guppy (Poecilia reticulata) to 20, 200, and 2000 ng/L (PS)2 to explore the compromised effect of (PS)2 on reproductive behavior through a realistic competing scenario. The results showed that (PS)2 suppressed male guppies' sexual interest to stimulus females, reduced their competitive behavior frequencies toward rival males, and decreased their mating time and frequency. (PS)2 exposure did not affect male guppies' secondary sexual characteristics or induce estrogenic activity. Whole-brain transcriptome sequencing identified 1070 differentially expressed genes (DEGs) with 872 up-regulated genes, which were functionally enriched into Gene Ontology terms pertaining to extracellular matrix (ECM) and extracellular region. KEGG enrichment for the DEGs uncovered that the activations of ECM-receptor interaction and focal adhesion pathways could be the underlying molecular mechanism implicated in the (PS)2 induced reproductive behavior impairment. This work would deliver a substantial contribution to the understanding of the ecological safety of MePTs biocides.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Wanyu Ba
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Suqiu Zhang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| | - Zhenxian Lin
- School of Biology and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an, 271000, Shandong province, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China.
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong province, China
| |
Collapse
|
9
|
Spatial-Temporal Patterns and Inflammatory Factors of Bone Matrix Remodeling. Stem Cells Int 2021; 2021:4307961. [PMID: 34777503 PMCID: PMC8580647 DOI: 10.1155/2021/4307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.
Collapse
|
10
|
Cui K, Wang Y, Zhu Y, Tao T, Yin F, Guo Y, Liu H, Li F, Wang P, Chen Y, Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. MICROSYSTEMS & NANOENGINEERING 2020; 6:49. [PMID: 34567661 PMCID: PMC8433196 DOI: 10.1038/s41378-020-0165-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/05/2023]
Abstract
Prenatal exposure to environmental insults can increase the risk of developing neurodevelopmental disorders. Administration of the antiepileptic drug valproic acid (VPA) during pregnancy is tightly associated with a high risk of neurological disorders in offspring. However, the lack of an ideal human model hinders our comprehensive understanding of the impact of VPA exposure on fetal brain development, especially in early gestation. Herein, we present the first report indicating the effects of VPA on brain development at early stages using engineered cortical organoids from human induced pluripotent stem cells (hiPSCs). Cortical organoids were generated on micropillar arrays in a controlled manner, recapitulating the critical features of human brain development during early gestation. With VPA exposure, cortical organoids exhibited neurodevelopmental dysfunction characterized by increased neuron progenitors, inhibited neuronal differentiation and altered forebrain regionalization. Transcriptome analysis showed new markedly altered genes (e.g., KLHL1, LHX9, and MGARP) and a large number of differential expression genes (DEGs), some of which are related to autism. In particular, comparison of transcriptome data via GSEA and correlation analysis revealed the high similarity between VPA-exposed organoids with the postmortem ASD brain and autism patient-derived organoids, implying the high risk of autism with prenatal VPA exposure, even in early gestation. These new findings facilitate a better understanding of the cellular and molecular mechanisms underlying postnatal brain disorders (such as autism) with prenatal VPA exposure. This established cortical organoid-on-a-chip platform is valuable for probing neurodevelopmental disorders under environmental exposure and can be extended to applications in the study of diseases and drug testing.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yujuan Zhu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangchao Yin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Li
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
| | - Yuejun Chen
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Pelsőczi P, Kelemen K, Csölle C, Nagy G, Lendvai B, Román V, Lévay G. Disrupted Social Hierarchy in Prenatally Valproate-Exposed Autistic-Like Rats. Front Behav Neurosci 2020; 13:295. [PMID: 32009915 PMCID: PMC6974458 DOI: 10.3389/fnbeh.2019.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired socio-communicational function, repetitive and restricted behaviors. Valproic acid (VPA) was reported to increase the prevalence of ASD in humans as a consequence of its use during pregnancy. VPA treatment also induces autistic-like behaviors in the offspring of rats after prenatal exposure; hence it is a preclinical disease model with high translational value. In the present study, our aim was to characterize ASD relevant behaviors of socially housed, individually identified male rats in automated home cages. The natural behavior of rats was assessed by monitoring their visits to drinking bottles in an environment without human influence aiming at reducing interventional stress. Although rodents normally tend to explore their new environment, prenatally VPA-treated rats showed a drastic impairment in initial and long-term exploratory behavior throughout their stay in the automated cage. Furthermore, VPA rats displayed psychogenic polydipsia (PPD) as well as altered circadian activity. In the competitive situation of strict water deprivation controls switched to an uneven resource sharing and only a few dominant animals had access to water. In VPA animals similar hierarchy-related changes were completely absent. While the control rats secured their chance to drink with frequent reentering visits, thereby “guarding” the water resource, VPA animals did not switch to uneven sharing and displayed no evidence of guarding behavior.
Collapse
Affiliation(s)
- Péter Pelsőczi
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Faculty of Pharmaceutical Sciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Kristóf Kelemen
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Cecília Csölle
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Nagy
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Viktor Román
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Duan W, Wang K, Duan Y, Chu X, Ma R, Hu P, Xiong B. Integrated Transcriptome Analyses Revealed Key Target Genes in Mouse Models of Autism. Autism Res 2019; 13:352-368. [PMID: 31743624 DOI: 10.1002/aur.2240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic mutations are the major pathogenic factor of Autism Spectrum Disorder (ASD). In recent years, more and more ASD risk genes have been revealed, among which there are a group of transcriptional regulators. Considering the similarity of the core clinical phenotypes, it is possible that these different factors may regulate the expression levels of certain key targets. Identification of these targets could facilitate the understanding of the etiology and developing of novel diagnostic and therapeutic methods. Therefore, we performed integrated transcriptome analyses of RNA-Seq and microarray data in multiple ASD mouse models and identified a number of common downstream genes in various brain regions, many of which are related to the structure and function of the synapse components or drug addiction. We then established protein-protein interaction networks of the overlapped targets and isolated the hub genes by 11 algorithms based on the topological structure of the networks, including Sdc4, Vegfa, and Cp in the Cortex-Adult subgroup, Gria1 in the Cortex-Juvenile subgroup, and Kdr, S1pr1, Ubc, Grm2, Grin2b, Nrxn1, Pdyn, Grin3a, Itgam, Grin2a, Gabra2, and Camk4 in the Hippocampus-Adult subgroup, many of which have been associated with ASD in previous studies. Finally, we cross compared our results with human brain transcriptional data sets and verified several key candidates, which may play important role in the pathology process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRIN2A, GABRA2, and CAMK4. In summary, by integrated bioinformatics analysis, we have identified a series of potentially important molecules for future ASD research. Autism Res 2020, 13: 352-368. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Abnormal transcriptional regulation accounts for a significant portion of Autism Spectrum Disorder. In this study, we performed transcriptome analyses of mouse models to identify common downstream targets of transcriptional regulators involved in ASD. We identified several recurrent target genes that are close related to the common pathological process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRM2, NRXN1, GRIN3A, ITGAM, GRIN2A, GABRA2, and CAMK4. These results provide potentially important targets for understanding the molecular mechanism of ASD.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruoyun Ma
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
13
|
How did I get so late so soon? A review of time processing and management in autism. Behav Brain Res 2019; 374:112121. [DOI: 10.1016/j.bbr.2019.112121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
|
14
|
Moore SM, Seidman JS, Ellegood J, Gao R, Savchenko A, Troutman TD, Abe Y, Stender J, Lee D, Wang S, Voytek B, Lerch JP, Suh H, Glass CK, Muotri AR. Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice. Transl Psychiatry 2019; 9:24. [PMID: 30655503 PMCID: PMC6336863 DOI: 10.1038/s41398-018-0344-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
SETD5, a gene linked to intellectual disability (ID) and autism spectrum disorder (ASD), is a member of the SET-domain family and encodes a putative histone methyltransferase (HMT). To date, the mechanism by which SETD5 haploinsufficiency causes ASD/ID remains an unanswered question. Setd5 is the highly conserved mouse homolog, and although the Setd5 null mouse is embryonic lethal, the heterozygote is viable. Morphological tracing and multielectrode array was used on cultured cortical neurons. MRI was conducted of adult mouse brains and immunohistochemistry of juvenile mouse brains. RNA-Seq was used to investigate gene expression in the developing cortex. Behavioral assays were conducted on adult mice. Setd5+/- cortical neurons displayed significantly reduced synaptic density and neuritic outgrowth in vitro, with corresponding decreases in network activity and synchrony by electrophysiology. A specific subpopulation of fetal Setd5+/- cortical neurons showed altered gene expression of neurodevelopment-related genes. Setd5+/- animals manifested several autism-like behaviors, including hyperactivity, cognitive deficit, and altered social interactions. Anatomical differences were observed in Setd5+/- adult brains, accompanied by a deficit of deep-layer cortical neurons in the developing brain. Our data converge on a picture of abnormal neurodevelopment driven by Setd5 haploinsufficiency, consistent with a highly penetrant risk factor.
Collapse
Affiliation(s)
- Spencer M Moore
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jason S Seidman
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Gao
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Alex Savchenko
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ty D Troutman
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Josh Stender
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Daehoon Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sicong Wang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- 5Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Jason P Lerch
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA.
- Kavli Institute for Brain and Mind, La Jolla, CA, USA.
- Rady Children's Hospital San Diego, San Diego, CA, USA.
- Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Khalaj R, Hajizadeh Moghaddam A, Zare M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. Int J Dev Neurosci 2018; 69:80-87. [PMID: 29966739 DOI: 10.1016/j.ijdevneu.2018.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/28/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
Prenatal exposure to valproic acid (VPA) induces behavioral disorders and enhancement of oxido-inflammatory stress in Autism Spectrum Disorders (ASDs). The aim of this study was to investigate the comparative effects of hesperetin (Hst) and nano-hesperetin on social behavior deficits and oxido-inflammatory indexes in prenatally valproic acid-exposed rat offspring. Pregnant Wistar rats on embryonic day 0 (E0) were segregated into six groups; Group-1 served as vehicle, received distillated water orally (PO) from E1 until the end of lactation and saline intraperitoneally (i.p) on E12.5. Group-2 received sodium valproate (500 mg/kg in 0.9% saline, i.p) on E12.5 was considered as VPA-exposed group, Group-3 to 6 were VPA-exposed which received hesperetin and nano-hesperetin (10 and 20 mg/kg/day, PO) from E0 until the end of lactation respectively. Social interaction and open field tests were conducted on postnatal day 28 (PND 28) and PND 30, cerebral antioxidant enzymes activity and biochemical indexes, the level of inflammatory factors in plasma and histopathology of cerebellum were estimated on PND 28 and PND 30. Prenatal valproic acid-exposed rat exhibited poor sociability and high level of anxiety-like behaviors (P < 0.05). In addition, increased level of oxidative stress and inflammation were found by determining different oxido-inflammatory markers. Hesperetin and nano-hesperetin treatment improved the behavioral disorder and reduced the oxidative stress in brain and significantly (p < 0.05) plasma's inflammation indexes. In conclusion, it can be state that nano-hesperetin exerts neuroprotective action in comparison with hesperetin and could be efficacious for treatment of VPA animal model of autism during pregnancy and lactation.
Collapse
Affiliation(s)
- Rashin Khalaj
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mahboobeh Zare
- Faculty of Herbs, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|