1
|
Yachou Y, Bouaziz N, Makdah G, Senova YS, Januel D, Pelissolo A, Mallet L, Leboyer M, Houenou J, Opitz A, Wischnewski M, Laidi C. Transcranial direct current stimulation in patients with depression: An electric field modeling meta-analysis. J Affect Disord 2025; 374:540-552. [PMID: 39778744 DOI: 10.1016/j.jad.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Transcranial Direct Current Stimulation (tDCS) has shown potential in modulating cortical activity and treating depression. Despite its promise, variability in electrode montage configurations and electric field strength across studies has resulted in inconsistent outcomes. Traditional meta-analytic methods assessing the effect of tDCS in depression typically do not compare tDCS montage and the anatomical distribution of electric field, which is a major source of inter-experimental variability. We hypothesize that considering these parameters and anatomical variability in a meta-analysis might unravel brain regions associated with tDCS response in patients with depression. We correlate the clinical outcome (Effect size) with electric field intensities across 8 diverse head models, analyzing data from 29 studies involving 1766 patients between 2000 and 2023. Our analysis found a significant effect of tDCS on depression, with a Hedge's g = 0.66 (95 % CI: 0.565 to 0.767). Although studies aimed to target the L-DLPFC, particularly Brodmann area (BA) 46, based on the Frontal Brain Asymmetry theory, our findings show that all the montages do not selectively target the L-DLPFC as intended. Instead, our findings indicated that the electric field impact was dispersing broadly across the frontal lobes and exhibiting significant heterogeneity. We found a correlation between electric field strength and clinical outcomes in BA 10, BA 11, and the anterior part of BA 46 despite tDCS montages heterogeneity and individual variability, suggesting that targeting frontopolar prefrontal and orbitofrontal cortices could be ideal for tDCS in treating depression. Our work underscores brain regions associated with tDCS response and highlights the need for simulation-guided, personalized trials that consider individual anatomical differences.
Collapse
Affiliation(s)
- Yassine Yachou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| | - Noomane Bouaziz
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Gabriel Makdah
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Yann-Sühan Senova
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Dominique Januel
- Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Antoine Pelissolo
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Luc Mallet
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Marion Leboyer
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Josselin Houenou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Charles Laidi
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| |
Collapse
|
2
|
Yang X, Ma L, Fan C, Wang H, Zhang M, Du H, Zhou T, Li X. Efficacy and acceptability of brain stimulation for anxiety disorders, OCD, and PTSD: A systematic review and network meta-analysis of randomized controlled trials. J Affect Disord 2025; 370:62-75. [PMID: 39477076 DOI: 10.1016/j.jad.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND The present study aimed to conduct a systematic review and network meta-analysis to investigate the efficacy and acceptability of brain stimulation techniques (BSTs) for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS A comprehensive search was performed in Embase, PubMed, Web of Science, PsycINFO, Cochrane, ClinicalTrials.gov and HowNet databases for studies published before September 10, 2023. Randomized clinical trials that involved deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), sham therapy, or health control were included for analysis. The primary outcome was efficacy, while acceptability was considered as a secondary outcome. RESULTS The sample consisted of 1333 patients with various anxiety disorders including social anxiety disorder, general anxiety disorder, panic disorder, social panic, obsessive-compulsive disorder, post-traumatic stress disorder, and agoraphobia, recruited from 41 trials with 86 treatment arms. Network meta-analysis showed that some BSTs had higher efficacy compared to controls, including DBS, ECT, cathodal tDCS, high-frequency rTMS (hf-rTMS), anodal tDCS, and low-frequency rTMS (lf-rTMS). Furthermore, hf-rTMS, lf-rTMS, and ECT had high acceptability in terms of odds ratio (OR). LIMITATIONS This study has limitations, including a focus on specific types of brain stimulation for anxiety disorders, OCD and PTSD and not considering factors like stimulation parameters. Future research should explore a broader range of technologies and parameters across various psychiatric and neurological conditions. CONCLUSION The study results suggest that BSTs are effective treatments for anxiety disorders, OCD and PTSD; lf-rTMS may be considered as the most promising option.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Chuan Fan
- Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huixue Wang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Mi Zhang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - He Du
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Tiangang Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoming Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Xu Y, Huang H, Wu M, Zhuang Z, Liu H, Hou M, Chen C. Transcranial Direct Current Stimulation for Cognitive Impairment Rehabilitation: A Bibliometric Analysis. Arch Med Res 2025; 56:103086. [PMID: 39326160 DOI: 10.1016/j.arcmed.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS As global demographics shift toward an older population, cognitive impairment is becoming increasingly critical. Transcranial Direct Current Stimulation (tDCS), an innovative brain stimulation technique, has the potential to significantly improve cognitive function. Our main aim is to comprehensively analyze the existing literature, identify key aspects of tDCS research in the rehabilitation of cognitive impairment, and predict future trends in this field. METHODS We used the Web of Science (WOS) database to search for English articles and reviews relevant to this topic. For visual analysis of the literature, we employed the WOS analysis tool, CiteSpace, along with VOSviewer software to ensure comprehensive analysis. RESULTS We included 2940 articles published between 1998 and 2023. Over 25 years, annual publications and citations in this field increased steadily, peaking at 379 articles in 2021. Michael A. Nitsche was a major contributor. Most articles came from developed countries, primarily North America and Europe, and journals generally had modest impact factors. Research in this field primarily aims to treat cognitive impairment resulting from pathological aging or neuropsychiatric disorders, with a particular focus on specific brain regions. Recently, researchers have integrated various treatment modalities with tDCS techniques to actively investigate effective strategies to mitigate cognitive impairments associated with pathological aging. CONCLUSION This study presents the first bibliometric analysis of the literature on tDCS in the rehabilitation of cognitive impairment, highlighting key areas of research and emerging trends. These findings provide critical insights for future tDCS interventions targeting cognitive impairment associated with pathological aging.
Collapse
Affiliation(s)
- Ying Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Haoyu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mengyuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zesen Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meijin Hou
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Zhou J, Li D, Ye F, Liu R, Feng Y, Feng Z, Li R, Li X, Liu J, Zhang X, Zhou J, Wang G. Effect of add-on transcranial alternating current stimulation (tACS) in major depressive disorder: A randomized controlled trial. Brain Stimul 2024; 17:760-768. [PMID: 38880208 DOI: 10.1016/j.brs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The effect of transcranial alternating current stimulation (tACS) on major depressive disorder (MDD) was not confirmed. OBJECTIVE To evaluate the feasibility, safety, and efficacy of tACS as an add-on treatment for the symptoms of depression and to understand how tACS affects brain activity. METHODS The 4-week, double-blind, randomized, sham-controlled trial was performed from January 29, 2023 to December 22, 2023. Sixty-six participants were recruited and randomly assigned to receive 20 40-min sessions of either active (77.5Hz, 15 mA) or sham stimulation, with one electrode on the forehead and two on the mastoid, each day (n = 33 for each group) for four weeks (till Week 4). The participants were followed for 4 more weeks (till Week 8) without stimulation for efficacy/safety assessment. During the 4-week trial, all participants were required to take 10-20 mg of escitalopram daily. The primary efficacy endpoint was the change in HAMD-17 scores from baseline to Week 4 (with 20 treatment sessions completed). Resting-state electroencephalography (EEG) was collected with a 64-channel EEG system (Brain Products, Germany) at baseline and the Week 4 follow-up. The chi-square test, Fisher's exact test, independent-sample t-test, or Wilcoxon rank-sum test were used, as appropriate, to compare the differences in variables between groups. The effect of the intervention on the HAMD-17 score was also evaluated with linear mixed modeling (LMM) as sensitivity analysis. The correlation between the mean reduction in EEG and the mean reduction in the HAMD-17 total score was evaluated using Spearman correlation analysis. RESULTS A total of 66 patients (mean [SD] age, 28.4 [8.18] years; 52 [78.8 %] female) were randomized, and 57 patients completed the study. Significant differences were found in the reductions in the HAMD-17 scores at Week 4 (t = 3.44, P = 0.001). Response rates at Week 4 were significantly higher in the active tACS group than in the sham tACS group (22 out of 33 patients [66.7 %] versus 11 out of 33 [33.3 %], P = 0.007). In the active tACS group, a correlation between the mean change in alpha power and HAMD-17 scores at Week 4 was found (r = 2.38, P = 0.024), and the mean change in alpha power was significantly bigger for responders (Z = 2.46, P = 0.014). No serious adverse events were observed in this trial. CONCLUSION The additional antidepressant effect of tACS is significant, and the combination of tACS with antidepressants is a feasible and effective approach for the treatment of MDD. The antidepressant mechanism of tACS may be the reduction in alpha power in the left frontal lobe. Future research directions may include exploring more appropriate treatment parameters of tACS.
Collapse
Affiliation(s)
- Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fukang Ye
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zizhao Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ruinan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaoya Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xueshan Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kochanowski B, Kageki-Bonnert K, Pinkerton EA, Dougherty DD, Chou T. A Review of Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation Combined with Medication and Psychotherapy for Depression. Harv Rev Psychiatry 2024; 32:77-95. [PMID: 38728568 DOI: 10.1097/hrp.0000000000000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
LEARNING OBJECTIVES After participating in this CME activity, the psychiatrist should be better able to:• Compare and contrast therapies used in combination with transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for treating MDD. BACKGROUND Noninvasive neuromodulation, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has emerged as a major area for treating major depressive disorder (MDD). This review has two primary aims: (1) to review the current literature on combining TMS and tDCS with other therapies, such as psychotherapy and psychopharmacological interventions, and (2) to discuss the efficacy, feasibility, limitations, and future directions of these combined treatments for MDD. METHOD This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched three databases: PubMed, PsycInfo, and Cochrane Library. The last search date was December 5, 2023. RESULTS The initial search revealed 2,519 records. After screening and full-text review, 58 studies (7 TMS plus psychotherapy, 32 TMS plus medication, 7 tDCS plus psychotherapy, 12 tDCS plus medication) were included. CONCLUSIONS The current literature on tDCS and TMS paired with psychotherapy provides initial support for integrating mindfulness interventions with both TMS and tDCS. Adding TMS or tDCS to stable doses of ongoing medications can decrease MDD symptoms; however, benzodiazepines may interfere with TMS and tDCS response, and antipsychotics can interfere with TMS response. Pairing citalopram with TMS and sertraline with tDCS can lead to greater MDD symptom reduction compared to using these medications alone. Future studies need to enroll larger samples, include randomized controlled study designs, create more uniform protocols for combined treatment delivery, and explore mechanisms and predictors of change.
Collapse
Affiliation(s)
- Brian Kochanowski
- From Harvard Medical School, Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | | | | | | | | |
Collapse
|
7
|
Tao Y, Liang Q, Zhang F, Guo S, Fan L, Zhao F. Efficacy of non-invasive brain stimulation combined with antidepressant medications for depression: a systematic review and meta-analysis of randomized controlled trials. Syst Rev 2024; 13:92. [PMID: 38509623 PMCID: PMC10953221 DOI: 10.1186/s13643-024-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Antidepressants, noninvasive brain stimulation (NIBS), and their combination are commonly used in routine clinical practice. Nevertheless, there is a continuous dispute regarding whether the effectiveness of NIBS in combination with antidepressants exceeds that of antidepressants alone. This meta-analysis aimed to evaluate the existing evidence and draw a definitive conclusion on this issue. METHODS We conducted a comprehensive search of five databases: Embase, PubMed, Web of Science, SinoMed, and the Cochrane Database of Randomized Controlled Trials. The search was conducted until October 6, 2023. The primary outcomes were the pre- and post-intervention depression and anxiety scores. Secondary outcomes included dropout rates, response rates, and certain levels of neurotransmitters [ 5-hydroxytryptamine (5-HT), dopamine (DA), and gamma-aminobutyric acid (GABA)] at the end of the intervention. Subgroup, meta-regression, and sensitivity analyses were performed to explore the sources of heterogeneity. The data were analysed using R 4.2.2. RESULTS We included 18 RCTs [1357 participants; 11 studies used repetitive transcranial magnetic stimulation (rTMS) and 7 studies used transcranial direct current stimulation (tDCS)]. The follow-up duration varied from two weeks to three months. Overall, whether in combination with rTMS or tDCS, antidepressants proved more effective in alleviating depressive symptoms compared to when used as monotherapy. However, this advantage was not evident during the follow-up period. (p > 0.05). And the combination's efficacy in improving anxiety was found to be lacking. Post-treatment serum levels of 5-HT, DA, and GABA were higher in the rTMS group were higher than antidepressant medication group (p < 0.05). Furthermore, subgroup analysis results indicated that only the rTMS + antidepressant medication treatment significantly improved remission and remission rates. The meta-regression results showed that the type of antidepressant and the sex of the participants had a significant association with the depression score. CONCLUSION Combination treatment with NIBS was significantly more effective in improving depression symptoms than medication alone. rTMS combined with antidepressants appears to be more effective in improving response and remission rates. However, efficacy may be influenced by the type of medicine used in combination, and long-term efficacy data is lacking. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023388259.
Collapse
Affiliation(s)
- Yuan Tao
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, 73000, PR China
| | - Qian Liang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, 73000, PR China
| | - Fenghong Zhang
- Second Provincial Peoples Hospital of Gansu, Lanzhou, 73000, PR China
| | - Shaofan Guo
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, 73000, PR China
| | - Lingyun Fan
- Second Provincial Peoples Hospital of Gansu, Lanzhou, 73000, PR China
| | - Fei Zhao
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, 730030, PR China.
| |
Collapse
|
8
|
Arafat SMY, Ali SAEZ. Non-invasive Brain Stimulation in the Management of Suicidal Behavior. Curr Behav Neurosci Rep 2024; 11:99-105. [DOI: 10.1007/s40473-024-00276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 05/03/2025]
|
9
|
Soldini A, Vogelmann U, Aust S, Goerigk S, Plewnia C, Fallgatter A, Normann C, Frase L, Zwanzger P, Kammer T, Schönfeldt-Lecuona C, Vural G, Bajbouj M, Padberg F, Burkhardt G. Neurocognitive function as outcome and predictor for prefrontal transcranial direct current stimulation in major depressive disorder: an analysis from the DepressionDC trial. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01759-2. [PMID: 38407625 DOI: 10.1007/s00406-024-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024]
Abstract
Transcranial direct current stimulation (tDCS) of the prefrontal cortex might beneficially influence neurocognitive dysfunctions associated with major depressive disorder (MDD). However, previous studies of neurocognitive effects of tDCS have been inconclusive. In the current study, we analyzed longitudinal, neurocognitive data from 101 participants of a randomized controlled multicenter trial (DepressionDC), investigating the efficacy of bifrontal tDCS (2 mA, 30 min/d, for 6 weeks) in patients with MDD and insufficient response to selective serotonin reuptake inhibitors (SSRI). We assessed whether active tDCS compared to sham tDCS elicited beneficial effects across the domains of memory span, working memory, selective attention, sustained attention, executive process, and processing speed, assessed with a validated, digital test battery. Additionally, we explored whether baseline cognitive performance, as a proxy of fronto-parietal-network functioning, predicts the antidepressant effects of active tDCS versus sham tDCS. We found no statistically significant group differences in the change of neurocognitive performance between active and sham tDCS. Furthermore, baseline cognitive performance did not predict the clinical response to tDCS. Our findings indicate no advantage in neurocognition due to active tDCS in MDD. Additional research is required to systematically investigate the effects of tDCS protocols on neurocognitive performance in patients with MDD.
Collapse
Affiliation(s)
- Aldo Soldini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry, Munich, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Freiburg, Breisgau, Germany.
| | - Ulrike Vogelmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Sabine Aust
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
- Charlotte Fresenius Hochschule, Munich, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, German Center for Mental Health (DZPG), Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, German Center for Mental Health (DZPG), Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, University of Freiburg, Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, University of Freiburg, Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, Kbo-Inn-Salzach-Klinikum, Gabersee, Germany
| | - Thomas Kammer
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | - Gizem Vural
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| |
Collapse
|
10
|
Chen Y, Lyu D, Wang F, Huang Q, Yang W, Zhang M, Wei Z, Shi S, Kong S, Chen S, He S, Yang V, Fang Y, Douiri A, Hong W. Adjunctive duration-doubled transcranial direct current stimulation for the treatment of depressive patients with suicidal ideation: study protocol for a double-blind, randomized, sham-controlled trial. Trials 2024; 25:15. [PMID: 38167178 PMCID: PMC10759703 DOI: 10.1186/s13063-023-07858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The problem of suicide has become increasingly common in individuals with major depressive disorder (MDD). Transcranial direct current stimulation (tDCS) is an effective treatment for MDD with 2 milliamperes (mA) for at least 30 min per day for 2 weeks. This study aims to investigate the efficacy of daily duration-doubled tDCS as an adjunctive intervention for rapidly reducing suicidal ideation and improving depression in MDD patients. METHODS In this double-blind, randomized, sham-controlled study, 76 MDD patients with suicidal ideation are randomly assigned to either active (n=38) or sham (n=38) tDCS group. The anode and cathode are placed over the scalp areas corresponding to left and right dorsolateral prefrontal cortex (DLPFC), respectively, and each stimulation lasts for 60 min. The primary outcome is defined as change of Beck Scale for Suicide Ideation (BSI) after 5 and 10 sessions. The change of other clinical assessments, blood biomarkers related to suicidal ideation and depressive sumptoms are defined as secondary outcomes. Blood biomarkers related to suicidal ideation are collected at baseline and after 10 sessions. DISCUSSION This study suggests the adjunctive duration-doubled tDCS might be a novel method to rapidly reduce suicidal ideation and improve depressive symptom. The variation of biomarkers could be potential predictive models of suicide risk. TRIAL REGISTRATION The trial protocol is registered with ClinicalTrials.gov under protocol registration number NCT05555927. Registered on September 25, 2022.
Collapse
Affiliation(s)
- Yiming Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Kong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shentse Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Vivien Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
- Hunan Second People's Hospital (Hunan Brain Hospital), Hunan, China
| | - Abdel Douiri
- King's College London, School of Life Course & Population Sciences, London, UK.
- National Institute for Health Research Biomedical Research Centre (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
11
|
Lee SH, Kim YK. Application of Transcranial Direct and Alternating Current Stimulation (tDCS and tACS) on Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:129-143. [PMID: 39261427 DOI: 10.1007/978-981-97-4402-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Chen Y, Wu C, Lyu D, Wang F, Huang Q, Yang W, Huang H, Zhang M, Zhou N, Wei Z, Shi S, Kong S, Qian N, Chen S, Li C, Fang Y, Davis J, Smith R, Jin H, Hong W. Comparison of 60-minute vs 30-minute transcranial direct current stimulation (tDCS) in major depressive disorder: Effects on depression suicidal ideation and anxiety. Psychiatry Res 2023; 330:115556. [PMID: 37951032 DOI: 10.1016/j.psychres.2023.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
We investigated whether changes through doubling the duration of each tDCS session would increase efficacy of tDCS for depression. tDCS was applied for 10 sessions, followed by two additional weekly sessions. 63 patients with MDD underwent randomization, with 22 being assigned to 60-min/d group, 25 to 30 min/d group, and 16 to sham group. HAMD-17 reductive ratios at week 2 and 4 were of no significant differences among treatment groups. 60 min group had a greater decrease in anxiety compared to 30 min group and sham group based on HAMA at 4 weeks but only in the completer analysis, not in ITT analysis.
Collapse
Affiliation(s)
- Yiming Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglin Wu
- Shanghai Pudong Mental Health Center, Tongji University, Shanghai, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Haijing Huang
- Shenzhen Institute of advanced technology, Chinese academy of Science, Shenzhen, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Zhou
- Division of Mood Disorders, Hongkou District Mental Health Center, Shanghai, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, China
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Kong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuoshi Qian
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Shentse Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China; Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hunan Second People's Hospital (Hunan Brain Hospital), Hunan, China
| | - John Davis
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA; Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Robert Smith
- Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Hua Jin
- Department of Psychiatry, University of California San Diego, San Diego, California, USA; VA San Diego Healthcare System, San Diego, California, USA.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
13
|
Huang H, Chen Y, Kong S, Zhang M, Wu C, Lyu D, Huang Q, Yang W, Shi S, Qian N, Wang F, Wei Z, Chen S, Zhou N, Zhang J, Hong W. Targeting right orbitofrontal cortex (OFC) with transcranial direct current stimulation (tDCS) can improve cognitive executive function in a major depressive episode, but not depressive mood: A Double-blind Randomized Controlled Pilot Trial. J Psychiatr Res 2023; 168:108-117. [PMID: 39492235 DOI: 10.1016/j.jpsychires.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Transcranial direct current stimulation (tDCS) has emerged as a potential treatment for major depressive episodes (MDE). This study aimed to evaluate the efficacy of targeting the right orbitofrontal cortex (rOFC) with tDCS in improving depressed mood and cognitive function in patients with depression. A double-blind, randomized sham-controlled trial was conducted in which 70 patients with depression were randomly assigned to receive rOFC-tDCS (n = 24), left dorsolateral prefrontal cortex (lDLPFC) tDCS (n = 23), or SHAM (n = 23). The treatment course consisted of ten treatments (2 mA, 20 min) delivered over two weeks. Participants were then given once-a-week interventions for the next two weeks. The Hamilton Depression Scale 17 evaluated the severity of depressive symptoms, while the cognitive function was assessed using the Stroop Color-Word Test (SCWT) and the Wisconsin Card Sorting Test (WCST). The primary outcomes were evaluated following ten interventions, with the assessment additionally conducted after maintenance treatment and 4-week follow-up visits. Analyses were performed using linear mixed models. The trial was registered with ChiCTR2000034671. The study did not reveal antidepressant efficacy for rOFC-tDCS or lDLPFC-tDCS over SHAM. Cognitive performance improved for rOFC -tDCS and lDLPFC-tDCS compared to sham for response time on the SWCT and non-perseverative errors in the WCST. However, no statistically significant difference was observed between the two active stimulation groups concerning cognitive performance-enhancing effects. No serious adverse events were noted. In conclusion, while rOFC-tDCS did not present advantages for mood outcomes over lDLPFC-tDCS and SHAM, it may have promising effectiveness in cognitive executive function compared to SHAM.
Collapse
Affiliation(s)
- Haijing Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiming Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuqi Kong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chenglin Wu
- Shanghai Pudong Mental Center, Shanghai, 201399, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Nuoshi Qian
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shentse Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ni Zhou
- Shanghai Hongkou Mental Center, Shanghai, 200083, China
| | - Jianming Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Kumari B, Singh A, Kar SK, Tripathi A, Agarwal V. Bifrontal-transcranial direct current stimulation as an early augmentation strategy in major depressive disorder: A single-blind randomised controlled trial. Asian J Psychiatr 2023; 86:103637. [PMID: 37270874 DOI: 10.1016/j.ajp.2023.103637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Patients with major depressive disorder who have a poor or inconsistent response to antidepressants have been treated using transcranial direct current stimulation (tDCS). Early tDCS augmentation may help with the early amelioration of symptoms. In this study, the efficacy and safety of tDCS as early augmentation therapy in major depressive disorder were evaluated. METHODS Fifty adults were randomized into two groups and were administered either active tDCS or sham tDCS, along with escitalopram 10 mg/day. A total of 10 tDCS sessions with anodal stimulation at the left dorsolateral prefrontal cortex (DLPFC) and cathode at the right DLPFC were given over two weeks. Assessments were done using Hamilton Depression Rating Scale (HAM-D), Beck's Depression Inventory (BDI), and Hamilton Anxiety Rating Scale (HAM-A) at baseline, two weeks, and four weeks. A tDCS side effect checklist was administered during therapy. RESULTS A significant reduction in HAM-D, BDI, and HAM-A scores were observed in both groups from baseline to week-4. At week-2, the active group had a significantly greater reduction in HAM-D and BDI scores than the sham group. However, at the end of therapy, both groups were comparable. The active group was 1.12 times more likely to experience any side effect than the sham group, but the intensity ranged from mild to moderate. CONCLUSION tDCS is an effective and safe strategy for managing depression as an early augmentation strategy, and it produces an early reduction of depressive symptoms and is well tolerated in moderate to severe depressive episodes.
Collapse
Affiliation(s)
- Babli Kumari
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Amit Singh
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Adarsh Tripathi
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Vivek Agarwal
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| |
Collapse
|
15
|
Kamali AM, Ijadi M, Keshtkarhesamabadi B, Kazemiha M, Mahmoudi R, Roozbehi A, Nami M. A dual-mode neurostimulation approach to enhance athletic performance outcome in experienced taekwondo practitioners. Sci Rep 2023; 13:251. [PMID: 36604440 PMCID: PMC9816304 DOI: 10.1038/s41598-022-26610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a growing empirical approach to improve athletic performance. Some recent studies have investigated the effects of transcutaneous spinal direct current stimulation (tsDCS) on the motor performance such as reaction time. TDCS and tsDCS can lead to alteration of the spontaneous neural activity, and the membrane potentials of motor neurons in cerebral cortex and spinal interneurons, respectively. Given the paucity of experimental studies on the non-invasive brain stimulation in the field of sports neuroscience, especially martial sports, the present study aimed at investigating the effects of neurostimulation in potentiating the motor and cognitive functions in experienced taekwondo practitioners. The study sample included 15 experienced male taekwondo players who received real or sham direct current stimulation on the primary motor cortex (M1) and the lumbar spinal segment (T12-L2) over two sessions, 72 h apart. Next, the performance of the participants was evaluated through a simulation of taekwondo exercise directly after the sham and real sessions. Moreover, a cognitive platform (CBS: Cambridge Brain Science) was used to investigate the participants' cognitive profile in each instance. Unlike sham stimulation, real tDCS was associated with improved selective attention and reaction time in both in the simulated task performance and cognitive examination. The concurrent cortical and trans-spinal tDCS was found to improve selective attention (31% performance improvement) (P < 0.0001) [EFFECT SIZE; 1.84]. and reduce reaction time (4.7% performance improvement) (P < 0.0001) [EFFECT SIZE; 0.02]. Meanwhile, the intervention failed to leave a significant change in cognitive functions evaluated through CBS (P > 0.05). As informed by our results, the present dual-mode neurostimulation could improve motor functions potentially through the effect of tsDCS over the spinal interneurons and tDCS over the primary motor cortex. Likewise, our findings suggested an improved performance in simulated taekwondo task after real- but not sham-stimulation. This study paves the way for designing neurostimulation protocols to improve the performance of professional athletes, namely martial art practitioners, including their accuracy and velocity of reactions. Such positive effects of neuostimulation in athletic performance as demonstrated in this research and similar reports are expected to enhance the athletes' success in professional competitions.
Collapse
Affiliation(s)
- Ali-Mohammad Kamali
- grid.412571.40000 0000 8819 4698Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran
| | - Mojtaba Ijadi
- grid.413020.40000 0004 0384 8939Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnam Keshtkarhesamabadi
- Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran ,High Performance Brain, Helena Félix Street, No. 7 to 7 D, 1600-121 Lisbon, Portugal
| | - Milad Kazemiha
- grid.412571.40000 0000 8819 4698Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran
| | - Reza Mahmoudi
- grid.413020.40000 0004 0384 8939Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amrollah Roozbehi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohammad Nami
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. .,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran. .,Instituto de Investigaciones Científicas Y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Neuroscience Center, Panama City, Panama. .,Harvard Alumni in Healthcare, Harvard University, Boston, MA, USA. .,Brain, Cognition, and Behavior Unit, BrainHub Academy, Dubai, United Arab Emirates.
| |
Collapse
|
16
|
Camacho‐Conde JA, del Rosario Gonzalez‐Bermudez M, Carretero‐Rey M, Khan ZU. Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neurosci Ther 2022; 29:8-23. [PMID: 36229994 PMCID: PMC9804057 DOI: 10.1111/cns.13971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | - Zafar U. Khan
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain,CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
17
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Wang J, Luo H, Schülke R, Geng X, Sahakian BJ, Wang S. Is transcranial direct current stimulation, alone or in combination with antidepressant medications or psychotherapies, effective in treating major depressive disorder? A systematic review and meta-analysis. BMC Med 2021; 19:319. [PMID: 34915885 PMCID: PMC8680114 DOI: 10.1186/s12916-021-02181-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has shown mixed results for depression treatment. The efficacies of tDCS combination therapies have not been investigated deliberately. This review aims to evaluate the clinical efficacy of tDCS as a monotherapy and in combination with medication, psychotherapy, and ECT for treating adult patients with major depressive disorder (MDD) and identified the factors influencing treatment outcome measures (i.e. depression score, dropout, response, and remission rates). METHODS The systematic review was performed in PubMed/Medline, EMBASE, PsycINFO, Web of Sciences, and OpenGrey. Two authors performed independent literature screening and data extraction. The primary outcomes were the standardized mean difference (SMD) for continuous depression scores after treatment and odds ratio (OR) dropout rate; secondary outcomes included ORs for response and remission rates. Random effects models with 95% confidence intervals were employed in all outcomes. The overall effect of tDCS was investigated by meta-analysis. Sources of heterogeneity were explored via subgroup analyses, meta-regression, sensitivity analyses, and assessment of publication bias. RESULTS Twelve randomised, sham-controlled trials (active group: N = 251, sham group: N = 204) were included. Overall, the integrated depression score of the active group after treatment was significantly lower than that of the sham group (g = - 0.442, p = 0.017), and further analysis showed that only tDCS + medication achieved a significant lower score (g = - 0.855, p < 0.001). Moreover, this combination achieved a significantly higher response rate than sham intervention (OR = 2.7, p = 0.006), while the response rate remained unchanged for the other three therapies. Dropout and remission rates were similar in the active and sham groups for each therapy and also for the overall intervention. The meta-regression results showed that current intensity is the only predictor for the response rate. None of publication bias was identified. CONCLUSION The effect size of tDCS treatment was obviously larger in depression score compared with sham stimulation. The tDCS combined selective serotonin re-uptake inhibitors is the optimized therapy that is effective on depression score and response rate. tDCS monotherapy and combined psychotherapy have no significant effects. The most important parameter for optimization in future trials is treatment strategy.
Collapse
Affiliation(s)
- Jingying Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Huichun Luo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China. .,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China. .,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China. .,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Herrera-Melendez AL, Bajbouj M, Aust S. Application of Transcranial Direct Current Stimulation in Psychiatry. Neuropsychobiology 2021; 79:372-383. [PMID: 31340213 DOI: 10.1159/000501227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique, which noninvasively alters cortical excitability via weak polarizing currents between two electrodes placed on the scalp. Since it is comparably easy to handle, cheap to use and relatively well tolerated, tDCS has gained increasing interest in recent years. Based on well-known behavioral effects, a number of clinical studies have been performed in populations including patients with major depressive disorder followed by schizophrenia and substance use disorders, in sum with heterogeneous results with respect to efficacy. Nevertheless, the potential of tDCS must not be underestimated since it could be further improved by systematically investigating the various stimulation parameters to eventually increase clinical efficacy. The present article briefly explains the underlying physiology of tDCS, summarizes typical stimulation protocols and then reviews clinical efficacy for various psychiatric disorders as well as prevalent adverse effects. Future developments include combined and more complex interactions of tDCS with pharmacological or psychotherapeutic interventions. In particular, using computational models to individualize stimulation protocols, considering state dependency and applying closed-loop technologies will pave the way for tDCS-based personalized interventions as well as the development of home treatment settings promoting the role of tDCS as an effective treatment option for patients with mental health problems.
Collapse
Affiliation(s)
- Ana-Lucia Herrera-Melendez
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Clinical effectiveness of non-TMS neurostimulation in depression: Clinical trials from 2010 to 2020. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110287. [PMID: 33610609 DOI: 10.1016/j.pnpbp.2021.110287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Treatment for major depressive disorder (MDD) have evolved, although there is still a strong unmet need for more effective and tolerable options. The present study summarizes and discusses recent evidence regarding the non-transcranial magnetic stimulation (non-TMS) neurostimulation treatment for MDD. METHODS The authors reviewed non-TMS neurostimulation clinical trials for MDD between 2010 and 2020. Electroconvulsive therapy was not included in this review. A systematic review was performed in MEDLINE database through PubMed, the Cochrane Collaboration's Clinical Trials Register (CENTRAL), PsycINFO and Thomson Reuters's Web of Science. RESULTS Only 20 articles met the inclusion criteria. Randomized controlled trials demonstrated efficacy of transcranial direct current stimulation (tDCS) in five of seven trials. tDCS augmented with sertraline, fluoxetine, citalopram and escitalopram was superior to placebo and to tDCS only. A comparative trial demonstrated that the duration of tDCS sessions can modulate the effectiveness of this treatment. Open trials indicated that deep brain stimulation, epidural cortical stimulation, trigeminal nerve stimulation, magnetic seizure therapy and vagus nerve stimulation may be effective in treatment-resistant depression. CONCLUSION This review confirmed the efficacy of tDCS in MDD. Despite new evidence showing effectiveness for other non-TMS neurostimulation, their effectiveness is still unclear. Non-TMS neurostimulation RCTs with large samples and head-to-head studies comparing non-TMS neurostimulation and gold standard pharmacological treatments are still lacking.
Collapse
|
21
|
De Smet S, Nikolin S, Moffa A, Suen P, Vanderhasselt MA, Brunoni AR, Razza LB. Determinants of sham response in tDCS depression trials: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110261. [PMID: 33497753 DOI: 10.1016/j.pnpbp.2021.110261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Randomised clinical trials (RCTs) investigating transcranial direct current stimulation (tDCS) efficacy for depression show significant heterogeneity in outcomes. OBJECTIVE To investigate the magnitude of the sham tDCS response and its potential moderators in the treatment of depression. METHODOLOGY A systematic review and aggregate meta-analysis (PROSPERO ID CRD42020161254). The systematic review was conducted in the PubMed, Scopus (EMBASE) and Cochrane Library databases. Only RCTs enrolling adult subjects with an acute depressive episode with a sham tDCS group were included. RESULTS Twenty-three studies (twenty-five datasets, 501 participants) were included. Sham tDCS response was large (Hedges' g = 1.09; 95% CI: 0.8;1.38). Secondary and subgroup analyses showed that sham protocols employing a ramp-up/ramp-down at the beginning and end of stimulation presented a significantly lower sham response compared to other protocols. Univariate meta-regression analyses found that sham response was associated with higher risk of blinding bias, and with thetreatment effect size of the active tDCS group. Subgroup analyses also showed that placement of the cathode over the lateral right frontal area (F8) presented a significantly lower sham response. Other moderators, including treatment resistance, baseline severity of depressive symptoms, and total charge delivered were not associated with the magnitude of the sham response. CONCLUSION The sham tDCS response was large. Our findings demonstrate the need for standardization of sham tDCS protocols and bring attention to important considerations that can guide future RCTs employing tDCS for the treatment of MDD.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Adriano Moffa
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Paulo Suen
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil; Department of Internal Medicine, University of São Paulo Medical School & University Hospital, University of São Paulo, Av. Prof Lineu Prestes 2565, 05508-000 São Paulo, Brazil
| | - Laís B Razza
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
22
|
Zhang R, Lam CLM, Peng X, Zhang D, Zhang C, Huang R, Lee TMC. Efficacy and acceptability of transcranial direct current stimulation for treating depression: A meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 2021; 126:481-490. [PMID: 33789158 DOI: 10.1016/j.neubiorev.2021.03.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising nonpharmacological intervention for treating depression. We aimed to provide an updated meta-analysis assessing the anti-depressant efficacy of tDCS. METHODS We searched the literature from the first available date to 30 December 2020 to identify relevant randomized controlled trials (RCTs). RESULTS 27 RCTs (N = 1204 patients, 653 in active tDCS and 551 in sham tDCS) were included. Active tDCS was superior to sham tDCS (g = 0.46, 95 % CI 0.15-0.76) in modulating depressive symptoms measured by depression rating scales. Active tDCS was also superior to sham tDCS in reducing response and remission rates, but these differences did not reach statistically significant levels (ORresponse = 1.75, 95 % CI 0.85-3.58; ORremission = 1.29, 95 % CI 0.59-2.83). The two groups had comparable dropout rates (OR = 1.28, 95 % CI 0.62-1.64). CONCLUSION For treatments of depressive episodes, tDCS may be efficacious. Specific tDCS parameters (e.g., a 2-mA stimulation current and 30-min sessions) and clinical characteristics (e.g., antidepressant-free) may augment the treatment efficacy of tDCS.
Collapse
Affiliation(s)
- Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Charlene L M Lam
- Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | | | - Dongming Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chichen Zhang
- School of Health Management, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China.
| | - Tatia M C Lee
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, China.
| |
Collapse
|
23
|
Pavlova EL, Menshikova AA, Akzhigitov RG, B Guekht A. [Transcranial direct current stimulation in neurology and psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:123-130. [PMID: 33459552 DOI: 10.17116/jnevro2020120121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive method of modulating brain excitability by low intensity direct current. At present, there are numerous studies of tDCS application in various mental and neurological diseases. In this review, the data of tDCS efficiency in the treatment of different disorders are presented and the recommendations on using this method in clinical practice are given.
Collapse
Affiliation(s)
| | - A A Menshikova
- Soloviev Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - R G Akzhigitov
- Soloviev Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - A B Guekht
- Soloviev Scientific and Practical Psychoneurological Center, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
24
|
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med 2020; 50:2465-2486. [PMID: 33070785 PMCID: PMC7737055 DOI: 10.1017/s0033291720003670] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognition is commonly affected in brain disorders. Non-invasive brain stimulation (NIBS) may have procognitive effects, with high tolerability. This meta-analysis evaluates the efficacy of transcranial magnetic stimulation (TMS) and transcranial Direct Current Stimulation (tDCS) in improving cognition, in schizophrenia, depression, dementia, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. METHODS A PRISMA systematic search was conducted for randomized controlled trials. Hedges' g was used to quantify effect sizes (ES) for changes in cognition after TMS/tDCS v. sham. As different cognitive functions may have unequal susceptibility to TMS/tDCS, we separately evaluated the effects on: attention/vigilance, working memory, executive functioning, processing speed, verbal fluency, verbal learning, and social cognition. RESULTS We included 82 studies (n = 2784). For working memory, both TMS (ES = 0.17, p = 0.015) and tDCS (ES = 0.17, p = 0.021) showed small but significant effects. Age positively moderated the effect of TMS. TDCS was superior to sham for attention/vigilance (ES = 0.20, p = 0.020). These significant effects did not differ across the type of brain disorder. Results were not significant for the other five cognitive domains. CONCLUSIONS Our results revealed that both TMS and tDCS elicit a small trans-diagnostic effect on working memory, tDCS also improved attention/vigilance across diagnoses. Effects on the other domains were not significant. Observed ES were small, yet even slight cognitive improvements may facilitate daily functioning. While NIBS can be a well-tolerated treatment, its effects appear domain specific and should be applied only for realistic indications (i.e. to induce a small improvement in working memory or attention).
Collapse
Affiliation(s)
- Marieke J. Begemann
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bodyl A. Brand
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. Sommer
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Cotovio G, Talmasov D, Barahona-Corrêa JB, Hsu J, Senova S, Ribeiro R, Soussand L, Velosa A, Silva VCE, Rost N, Wu O, Cohen AL, Oliveira-Maia AJ, Fox MD. Mapping mania symptoms based on focal brain damage. J Clin Invest 2020; 130:5209-5222. [PMID: 32831292 PMCID: PMC7524493 DOI: 10.1172/jci136096] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Talmasov
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - J. Bernardo Barahona-Corrêa
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joey Hsu
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suhan Senova
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Neurosurgery Department and
- PePsy Department, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and
- Faculté de Médecine, Université Paris Est, Créteil, France
| | - Ricardo Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Louis Soussand
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Vera Cruz e Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Natalia Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology and
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - Alexander L. Cohen
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, and
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Michael D. Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Department of Psychiatry, Department of Neurosurgery, and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Zanardi R, Poletti S, Prestifilippo D, Attanasio F, Barbini B, Colombo C. Transcranial direct current stimulation: A novel approach in the treatment of vascular depression. Brain Stimul 2020; 13:1559-1565. [PMID: 32896644 DOI: 10.1016/j.brs.2020.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the impact of depression in terms of personal suffering and socioeconomic burden, most currently available treatment options are often ineffective. A particularly difficult-to-treat depressive disorder characteristic of the elderly is vascular depression, a late-life depressive syndrome related to a variety of potential vascular mechanisms. Transcranial Direct Current Stimulation (tDCS), a non-invasive and effective somatic approach to depression, also showed positive effects on cognitive deficits. AIM We performed a double-blind randomized study to investigate the efficacy of tDCS as augmentation strategy to sertraline in the treatment of vascular depression, hypothesizing a positive effect in both depressive symptoms and cognitive functions. METHODS We enrolled 93 inpatients over 60 years of age with a diagnosis of vascular depression. Depressive symptoms were weekly assessed (T0, T1, T2) with the 21-items Hamilton depression rating scale (HDRS). Cognitive functioning was evaluated with the Milan Overall Dementia Assessment (MODA) at baseline and after the treatment protocol. All patients were randomly assigned into three groups, Group I: one tDCS stimulation per day, Group II: two tDCS stimulations per day, Sham group: one sham tDCS stimulation per day. Stimulation was performed for 10 consecutive working days. RESULTS A significant interaction time∗treatment was observed on HDRS scores (F = 14, p < 0.001). All groups improved at T1 but whereas Group II significantly differed from the Sham group (p < 0.001) we observed no difference between Sham and Group I. At T2 all groups improved but Group II showed the greater improvement (vs. Sham p < 0.001; vs. Group I p < 0.001) and the Sham group the smallest (vs. Group I p = 0.005). A significant interaction time∗treatment was also observed on MODA scores (F = 3.31, p = 0.04). Only subjects treated with tDCS improved at T2 (Group I: p < 0.001; Group II: p = 0.007). However, no difference between Group I and II was shown. CONCLUSION tDCS as augmentation treatment of an adequate pharmacotherapy is a potential strategy in the management of vascular depression, a disease known to be often unresponsive to antidepressants only. Non-invasiveness, the absence of severe side effects and the possibility of administering it to outpatients at an affordable price make tDCS an important tool in clinical practice.
Collapse
Affiliation(s)
- Raffaella Zanardi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milan, Italy; University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy.
| | - Sara Poletti
- University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Dario Prestifilippo
- University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Attanasio
- University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Barbara Barbini
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milan, Italy; University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milan, Italy; University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| |
Collapse
|
27
|
Ciullo V, Spalletta G, Caltagirone C, Banaj N, Vecchio D, Piras F, Piras F. Transcranial Direct Current Stimulation and Cognition in Neuropsychiatric Disorders: Systematic Review of the Evidence and Future Directions. Neuroscientist 2020; 27:285-309. [PMID: 32644874 DOI: 10.1177/1073858420936167] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been implemented in neuropsychiatric disorders characterized by cognitive impairment. However, methodological heterogeneity challenges conclusive remarks. Through a critical analysis of previous conflicting findings and in the light of current neurobiological models of pathophysiology, we qualitatively assessed the effects of tDCS in neuropsychiatric disorders that share neurobiological underpinnings, as to evaluate whether stimulation can improve cognitive deficits in patients' cohorts. We performed a systematic review of tDCS studies targeting cognitive functions in mental disorders and pathological cognitive aging. Data from 41 studies, comprising patients with diagnosis of mood disorders, schizophrenia-spectrum disorders, Alzheimer's disease (AD), and mild cognitive impairment (MCI), were included. Results indicate that tDCS has the capacity to enhance processing speed, working memory, and executive functions in patients with mood and schizophrenia-spectrum disorders. The evidence of a positive effect on general cognitive functioning and memory is either inconclusive in AD, or weak in MCI. Future directions are discussed for developing standardized stimulation protocols and for translating the technique therapeutic potential into effective clinical practice.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
28
|
Razza LB, Palumbo P, Moffa AH, Carvalho AF, Solmi M, Loo CK, Brunoni AR. A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety 2020; 37:594-608. [PMID: 32101631 DOI: 10.1002/da.23004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has shown mixed results for depression treatment. OBJECTIVE To perform a systematic review and meta-analysis of trials using tDCS to improve depressive symptoms. METHODS A systematic review was performed from the first date available to January 06, 2020 in PubMed, EMBASE, Cochrane Library, and additional sources. We included randomized, sham-controlled clinical trials (RCTs) enrolling participants with an acute depressive episode and compared the efficacy of active versus sham tDCS, including association with other interventions. The primary outcome was the Hedges' g for continuous depression scores; secondary outcomes included odds ratios (ORs) and number needed to treat (NNT) for response, remission, and acceptability. Random effects models were employed. Sources of heterogeneity were explored via metaregression, sensitivity analyses, subgroup analyses, and bias assessment. RESULTS We included 23 RCTs (25 datasets, 1,092 participants), most (57%) presenting a low risk of bias. Active tDCS was superior to sham regarding endpoint depression scores (k = 25, g = 0.46, 95% confidence interval [CI]: 0.22-0.70), and also achieved superior response (k = 18, 33.3% vs. 16.56%, OR = 2.28 [1.52-3.42], NNT = 6) and remission (k = 18, 19.12% vs. 9.78%, OR = 2.12 [1.42-3.16], NNT = 10.7) rates. Moreover, active tDCS was as acceptable as sham. No risk of publication bias was identified. Cumulative meta-analysis showed that effect sizes are basically unchanged since total sample reached 439 participants. CONCLUSIONS TDCS is modestly effective in treating depressive episodes. Further well-designed, large-scale RCTs are warranted.
Collapse
Affiliation(s)
- Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscila Palumbo
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano H Moffa
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Colleen K Loo
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre Russowsky Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Moffa AH, Martin D, Alonzo A, Bennabi D, Blumberger DM, Benseñor IM, Daskalakis Z, Fregni F, Haffen E, Lisanby SH, Padberg F, Palm U, Razza LB, Sampaio-Jr B, Loo C, Brunoni AR. Efficacy and acceptability of transcranial direct current stimulation (tDCS) for major depressive disorder: An individual patient data meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109836. [PMID: 31837388 DOI: 10.1016/j.pnpbp.2019.109836] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/16/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
We evaluated the efficacy and acceptability of transcranial direct current stimulation (tDCS) for treating acute depressive episodes using individual patient data that provide more precise estimates than aggregate data meta-analysis. A systematic review of placebo-controlled trials on tDCS as only intervention was conducted until December-2018. Data from each study was collated to estimate odds ratio (OR) and number needed to treat (NNT) of response and remission, and depression improvement. Endpoints were pre-determined. Nine eligible studies (572 participants), presenting moderate/high certainty of evidence, were included. Active tDCS was significantly superior to sham for response (30.9% vs. 18.9% respectively; OR = 1.96, 95%CI [1.30-2.95], NNT = 9), remission (19.9% vs. 11.7%, OR = 1.94 [1.19-3.16], NNT = 13) and depression improvement (effect size of β = 0.31, [0.15-0.47]). Moreover, continuous clinical improvement was observed even after the end of acute tDCS treatment. There were no differences in all-cause discontinuation rates and no predictors of response were identified. To conclude, active tDCS was statistically superior to sham in all outcomes, although its clinical effects were moderate.
Collapse
Affiliation(s)
- Adriano H Moffa
- School of Psychiatry, Black Dog Institute, University of New South Wales, Hospital Rd, Randwick, Sydney, NSW 2031, Australia; Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000 São Paulo, Brazil
| | - Donel Martin
- School of Psychiatry, Black Dog Institute, University of New South Wales, Hospital Rd, Randwick, Sydney, NSW 2031, Australia
| | - Angelo Alonzo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Hospital Rd, Randwick, Sydney, NSW 2031, Australia
| | - Djamila Bennabi
- Department of Clinical Psychiatry, Clinical Investigation Center 1431 Inserm, EA 481 Neurosciences, University Hospital of Besancon and FondaMental Foundation, Créteil, France
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Isabela M Benseñor
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000 São Paulo, Brazil
| | - Zafiris Daskalakis
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, Clinical Investigation Center 1431 Inserm, EA 481 Neurosciences, University Hospital of Besancon and FondaMental Foundation, Créteil, France
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Munich, Germany
| | - Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000 São Paulo, Brazil
| | - Bernardo Sampaio-Jr
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000 São Paulo, Brazil
| | - Colleen Loo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Hospital Rd, Randwick, Sydney, NSW 2031, Australia
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000 São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000 São Paulo, Brazil.
| |
Collapse
|
30
|
Zandvakili A, Berlow YA, Carpenter LL, Philip NS. Transcranial Direct Current Stimulation in Psychiatry: What Psychiatrists Need to Know. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 17:44-49. [PMID: 31975960 DOI: 10.1176/appi.focus.20180029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcranial direct current stimulation (tDCS) is emerging as a potential treatment for a host of neuropsychiatric disorders. Data appear to indicate that tDCS applied over frontal or prefrontal brain regions may reduce symptoms of major depression, yet results have been mixed. Early studies showed promise, but recent work failed to replicate earlier results. The decision whether to use tDCS is further affected by the complex regulatory environment; no tDCS devices are cleared by the U.S. Food and Drug Administration for clinical use. Older systems have grandfathered regulatory approval for treating mood, anxiety, and insomnia, although they have not demonstrated efficacy in rigorous trials. Furthermore, as the field of noninvasive brain stimulation advances, various side effects and contraindications are increasingly recognized. Over the last few years, research and consumer use of tDCS have outpaced education, thus providing little guidance for clinicians and trainees about how to understand tDCS. Therefore, this focused review includes those items psychiatric clinicians and trainees most need to understand tDCS, including basic electrical and neurophysiological principles, a brief review of efficacy data in major depressive disorder, and suggested guidelines about how to manage patients using tDCS.
Collapse
Affiliation(s)
- Amin Zandvakili
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island (Zandvakili, Berlow, Philip); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence (Zandvakili, Berlow, Carpenter, Philip); Butler Hospital, Neuromodulation Research Facility, Providence (Carpenter)
| | - Yosef Alfred Berlow
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island (Zandvakili, Berlow, Philip); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence (Zandvakili, Berlow, Carpenter, Philip); Butler Hospital, Neuromodulation Research Facility, Providence (Carpenter)
| | - Linda Leigh Carpenter
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island (Zandvakili, Berlow, Philip); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence (Zandvakili, Berlow, Carpenter, Philip); Butler Hospital, Neuromodulation Research Facility, Providence (Carpenter)
| | - Noah Stephen Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island (Zandvakili, Berlow, Philip); Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence (Zandvakili, Berlow, Carpenter, Philip); Butler Hospital, Neuromodulation Research Facility, Providence (Carpenter)
| |
Collapse
|
31
|
Sharafi E, Taghva A, Arbabi M, Dadarkhah A, Ghaderi J. Transcranial Direct Current Stimulation for Treatment-Resistant Major Depression: A Double-Blind Randomized Sham-Controlled Trial. Clin EEG Neurosci 2019; 50:375-382. [PMID: 31304775 DOI: 10.1177/1550059419863209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current study, we tried to evaluate the effect of transcranial direct current stimulation (tDCS) on treatment-resistant major depression. We carried out a double-blind randomized sham-controlled trial was conducted in University Hospitals. Individuals with less than 50% decrease in the intensity of depression after 8 weeks of treatment with selective serotonin reuptake inhibitors were recruited. Thirty patients (16 women) with a mean (SD) age of 47.2 (12.0) years were randomly allocated to 2 groups. For the active group we administered 2-mA stimulation 20 minutes for each session, with 30 seconds ramp-up from 0 and 30 seconds ramp-down. For the sham group we administered 30 seconds ramp-up to 2 mA, 10 seconds stimulation, 30 seconds ramp-down, and 20 minutes no current. The anode was fixed on the center of F3, and the cathode on F4, over the dorsolateral prefrontal cortex. We assessed the Hamilton Depression Rating Scale at the baseline (mean difference = 1.0, P = .630), at the last session of tDCS, and at 1-month postintervention. There were statistically significant differences in the mean Hamilton scores after the intervention, and 1 month later in favor of active group; P < .001, and P = .003, respectively. Mixed analysis of variance showed a significant difference in the mean scores for active group P = .010 and pattern of change during the study P < .001 in favor of active intervention. We concluded that tDCS is an efficient therapy for patients with resistant major depression, and the benefits would remain at least for 1 month.
Collapse
Affiliation(s)
- Elham Sharafi
- 1 Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arsia Taghva
- 2 Department of Psychiatry, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Arbabi
- 1 Department of Psychiatry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Afsaneh Dadarkhah
- 3 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Jamshid Ghaderi
- 4 Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Islamic Republic of Iran
| |
Collapse
|
32
|
Berlow YA, Zandvakili A, Carpenter LL, Philip NS. Transcranial direct current stimulation for unipolar depression and risk of treatment emergent mania: An updated meta-analysis. Brain Stimul 2019; 12:1066-1068. [PMID: 30926260 DOI: 10.1016/j.brs.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yosef A Berlow
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; VA RR&D Center for Neurorestoration and Neurotechnology, USA
| | - Amin Zandvakili
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; VA RR&D Center for Neurorestoration and Neurotechnology, USA
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; Butler Hospital, Neuromodulation Research Facility, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; VA RR&D Center for Neurorestoration and Neurotechnology, USA.
| |
Collapse
|
33
|
Fonteneau C, Mondino M, Arns M, Baeken C, Bikson M, Brunoni AR, Burke MJ, Neuvonen T, Padberg F, Pascual-Leone A, Poulet E, Ruffini G, Santarnecchi E, Sauvaget A, Schellhorn K, Suaud-Chagny MF, Palm U, Brunelin J. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul 2019; 12:668-673. [PMID: 30639235 DOI: 10.1016/j.brs.2018.12.977] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique increasingly used to modulate neural activity in the living brain. In order to establish the neurophysiological, cognitive or clinical effects of tDCS, most studies compare the effects of active tDCS to those observed with a sham tDCS intervention. In most cases, sham tDCS consists in delivering an active stimulation for a few seconds to mimic the sensations observed with active tDCS and keep participants blind to the intervention. However, to date, sham-controlled tDCS studies yield inconsistent results, which might arise in part from sham inconsistencies. Indeed, a multiplicity of sham stimulation protocols is being used in the tDCS research field and might have different biological effects beyond the intended transient sensations. Here, we seek to enlighten the scientific community to this possible confounding factor in order to increase reproducibility of neurophysiological, cognitive and clinical tDCS studies.
Collapse
Affiliation(s)
- Clara Fonteneau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Marine Mondino
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Martijn Arns
- neuroCare Group GmbH, Munich, Germany; Research Institute Brainclinics, Nijmegen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York City, NY, USA
| | - Andre R Brunoni
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany; Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Matthew J Burke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Giulio Ruffini
- Neuroelectrics Corporation, 210 Broadway, 02139, Cambridge, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anne Sauvaget
- CHU de Nantes, Psychiatric Neuromodulation Unit, Addictology and Liaison-Psychiatry Department, Nantes, France; Laboratory "Movement, Interactions, Performance" (E.A. 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | | | - Marie-Françoise Suaud-Chagny
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Jérome Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France.
| |
Collapse
|
34
|
Transcranial Direct Current Stimulation (tDCS): A Promising Treatment for Major Depressive Disorder? Brain Sci 2018; 8:brainsci8050081. [PMID: 29734768 PMCID: PMC5977072 DOI: 10.3390/brainsci8050081] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) opens new perspectives in the treatment of major depressive disorder (MDD), because of its ability to modulate cortical excitability and induce long-lasting effects. The aim of this review is to summarize the current status of knowledge regarding tDCS application in MDD. Methods: In this review, we searched for articles published in PubMed/MEDLINE from the earliest available date to February 2018 that explored clinical and cognitive effects of tDCS in MDD. Results: Despite differences in design and stimulation parameters, the examined studies indicated beneficial effects of tDCS for MDD. These preliminary results, the non-invasiveness of tDCS, and its good tolerability support the need for further research on this technique. Conclusions: tDCS constitutes a promising therapeutic alternative for patients with MDD, but its place in the therapeutic armamentarium remains to be determined.
Collapse
|