1
|
Michael A, Onisiforou A, Georgiou P, Koumas M, Powels C, Mammadov E, Georgiou AN, Zanos P. (2R,6R)-hydroxynorketamine prevents opioid abstinence-related negative affect and stress-induced reinstatement in mice. Br J Pharmacol 2025. [PMID: 40155780 DOI: 10.1111/bph.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Opioid use disorder (OUD) is a pressing public health concern marked by frequent relapse during periods of abstinence, perpetuated by negative affective states. Classical antidepressants or the currently prescribed opioid pharmacotherapies have limited efficacy to reverse the negative affect or prevent relapse. EXPERIMENTAL APPROACH Using mouse models, we investigated the effects of ketamine's metabolite (2R,6R)-hydroxynorketamine (HNK) on reversing conditioning to sub-effective doses of morphine in stress-susceptible mice, preventing conditioned-place aversion and alleviating acute somatic abstinence symptoms in opioid-dependent mice. Additionally, we evaluated its effects on anhedonia, anxiety-like behaviours and cognitive impairment during protracted opioid abstinence, while mechanistic studies examined cortical EEG oscillations and synaptic plasticity markers. KEY RESULTS (2R,6R)-HNK reversed conditioning to sub-effective doses of morphine in stress-susceptible mice and prevented conditioned-place aversion and acute somatic abstinence symptoms in opioid-dependent mice. In addition, (2R,6R)-HNK reversed anhedonia, anxiety-like behaviours and cognitive impairment emerging during protracted opioid abstinence plausibly via a restoration of impaired cortical high-frequency EEG oscillations, through a GluN2A-NMDA receptor-dependent mechanism. Notably, (2R,6R)-HNK facilitated the extinction of opioid conditioning, prevented stress-induced reinstatement of opioid-seeking behaviours and reduced the propensity for enhanced morphine self-consumption in mice previously exposed to opioids. CONCLUSIONS AND IMPLICATIONS These findings emphasize the therapeutic potential of (2R,6R)-HNK, which is currently in Phase II clinical trials, in addressing stress-related opioid responses. Reducing the time and cost required for development of new medications for the treatment of OUDs via drug repurposing is critical due to the opioid crisis we currently face.
Collapse
Affiliation(s)
- Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chris Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elmar Mammadov
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Andrea N Georgiou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
2
|
de la Salle S, Phillips JL, Blier P, Knott V. Acute subanesthetic ketamine-induced effects on the mismatch negativity and their relationship to early and sustained treatment response in major depressive disorder. J Psychopharmacol 2025:2698811251319456. [PMID: 40012166 DOI: 10.1177/02698811251319456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
BACKGROUND A sub-anesthetic dose of ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, produces robust antidepressant effects in treatment-resistant major depressive disorder (MDD). The mismatch negativity (MMN) is reliant on glutamatergic neurotransmission and reduced by NMDAR antagonists. The MMN may characterise the neural mechanisms underlying ketamine's effects. AIMS This study examined the acute effects of ketamine and midazolam on the MMN and its relationship to early and sustained decreases in depressive symptoms. METHODS Treatment-resistant MDD patients (N = 24), enrolled in a multi-phase clinical ketamine trial, received two intravenous infusions within an initial double-blind crossover phase: ketamine (0.5 mg/kg) and midazolam (30 μg/kg). Three recordings were carried out per session (pre-, immediately post- and 2 h post-infusion). Peak MMN amplitude (μV), latency (ms), theta event-related oscillations (EROs), theta phase locking factor (PLF) and source-localised MMN generator activity were assessed. Relationships between changes in MMN indices and early (Phase 1: double-blind, cross-over phase) and sustained (Phases 2, 3: open-label repeated and maintenance phases, respectively) changes in depressive symptoms (Montgomery-Åsberg Depression Rating Scale score) were examined. RESULTS Ketamine reduced frontal MMN amplitudes, theta ERO immediately post- and 2 h post-infusion and source-localised peak MMN frontal generator activity. Select baseline and ketamine-induced MMN decreases correlated and predicted greater early (left frontal MMN decreases in amplitude and theta ERO, baseline left PLF) and sustained (baseline left PLF, right inferior temporal activity) symptom reductions. CONCLUSIONS Acute NMDARs blockade reduced frontal MMN, with larger MMN reductions predicting greater symptom improvement. The MMN may serve as a non-invasive biomarker predicting antidepressant response to glutamatergic agents.
Collapse
Affiliation(s)
- Sara de la Salle
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer L Phillips
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Agnorelli C, Cinti A, Barillà G, Lomi F, Scoccia A, Benelli A, Neri F, Smeralda CL, Cuomo A, Santarnecchi E, Tatti E, Godfrey K, Tarantino F, Fagiolini A, Rossi S. Neurophysiological correlates of ketamine-induced dissociative state in bipolar disorder: insights from real-world clinical settings. Mol Psychiatry 2025:10.1038/s41380-025-02889-2. [PMID: 39809847 DOI: 10.1038/s41380-025-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine's effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers. A cohort of 30 BD (F = 12) inpatients with TRD undergoing ketamine treatment was included in the study. EEG recordings were performed during one of the ketamine infusions with doses ranging from 0.5 to 1 mg/kg, and subjective effects were evaluated using the Clinician-Administered Dissociative States Scale (CADSS). Both rhythmic and arrhythmic features were extrapolated from the EEG signal. Patients who exhibited a clinical response to ketamine treatment within one week were classified as early responders (ER), whereas those who responded later were categorized as late responders (LR). Ketamine reduced low-frequency spectral power density while increasing gamma oscillatory power. Additionally, ketamine flattened the slope of the power spectra, indicating altered scale-free dynamics. Ketamine also increased brain signal entropy, particularly in high-frequency bands. Notably, LR exhibited greater EEG changes compared to ER, suggesting endophenotypic differences in treatment sensitivity. These findings provide valuable insights into the neurophysiological effects of ketamine in BD depression, highlighting the utility of EEG biomarkers for assessing ketamine's therapeutic mechanisms in real-world clinical settings. Understanding the neural correlates of ketamine response may contribute to personalized treatment approaches and improved management of mood disorders.
Collapse
Affiliation(s)
- Claudio Agnorelli
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy.
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.
| | - Alessandra Cinti
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giovanni Barillà
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Francesco Lomi
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Adriano Scoccia
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alberto Benelli
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carmelo Luca Smeralda
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Neurology, Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, USA
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Francesca Tarantino
- Unit of Anesthesia and Neurological Intensive Care, Department of Neurological and Motor Sciences, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Shamsi F, Azadinia F, Vafaee F. Association of resting-state EEG with suicidality in depressed patients: a systematic review. BMC Psychiatry 2025; 25:24. [PMID: 39773698 PMCID: PMC11707925 DOI: 10.1186/s12888-024-06464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The incidence of suicide is high among adolescents and young adults, especially those suffering from psychiatric diseases. Because of the reported association between depression and suicidality, exploring suicide risk factors in depressed patients is crucial for the identification of those at high risk and preventing suicide. In recent decades, electroencephalography parameters have been considered for identifying biomarkers of suicide ideation and attempts in depressed patients. This study aimed to review the available literature on resting-state EEG for suicidality in depressed patients. METHOD A systematic search was performed in five electronic databases, including APA PsycINFO, Embase, Medline (via PubMed), Scopus, and Web of Science. Papers with full text available in English in which resting-state EEG was evaluated in depressed patients with suicide ideation or suicide attempts compared to a control group of healthy subjects or non-suicidal depressed patients were included. The risk of bias was assessed by using the Newcastle-Ottawa scale. RESULTS A total of 4665 references were retrieved from five electronic databases from which eleven studies were included in this systematic review. A meta-analysis was not performed due to the substantial heterogeneity of the studies. Five of the eleven reviewed papers were classified as high-quality, and six had moderate quality. CONCLUSIONS According to the included studies in this review, the EEG signals of depressed patients with suicide ideation or suicide attempts may be different from patients with low risk of suicidality or healthy subjects. Connectivity measures sound more promising parameters than the power spectral analysis and EEG asymmetry. PROTOCOL REGISTRATION The protocol of this review was registered in PROSPERO (No. CRD42024502056).
Collapse
Affiliation(s)
- Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Azadinia
- Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Schwartzmann B, Chatterjee R, Vaghei Y, Quilty LC, Allen TA, Arnott SR, Atluri S, Blier P, Dhami P, Foster JA, Frey BN, Kloiber S, Lam RW, Milev R, Müller DJ, Soares CN, Stengel C, Parikh SV, Turecki G, Uher R, Rotzinger S, Kennedy SH, Farzan F. Modulation of neural oscillations in escitalopram treatment: a Canadian biomarker integration network in depression study. Transl Psychiatry 2024; 14:432. [PMID: 39396045 PMCID: PMC11470922 DOI: 10.1038/s41398-024-03110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
Current pharmacological agents for depression have limited efficacy in achieving remission. Developing and validating new medications is challenging due to limited biological targets. This study aimed to link electrophysiological data and symptom improvement to better understand mechanisms underlying treatment response. Longitudinal changes in neural oscillations were assessed using resting-state electroencephalography (EEG) data from two Canadian Biomarker Integration Network in Depression studies, involving pharmacological and cognitive behavioral therapy (CBT) trials. Patients in the pharmacological trial received eight weeks of escitalopram, with treatment response defined as ≥ 50% decrease in Montgomery-Åsberg Depression Rating Scale (MADRS). Early (baseline to week 2) and late (baseline to week 8) changes in neural oscillation were investigated using relative power spectral measures. An association was found between an initial increase in theta and symptom improvement after 2 weeks. Additionally, late increases in delta and theta, along with a decrease in alpha, were linked to a reduction in MADRS after 8 weeks. These late changes were specifically observed in responders. To assess specificity, we extended our analysis to the independent CBT cohort. Responders exhibited an increase in delta and a decrease in alpha after 2 weeks. Furthermore, a late (baseline to week 16) decrease in alpha was associated with symptom improvement following CBT. Results suggest a common late decrease in alpha across both treatments, while modulatory effects in theta may be specific to escitalopram treatment. This study offers insights into electrophysiological markers indicating a favorable response to antidepressants, enhancing our comprehension of treatment response mechanisms in depression.
Collapse
Affiliation(s)
- Benjamin Schwartzmann
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Raaj Chatterjee
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Yasaman Vaghei
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Lena C Quilty
- University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Timothy A Allen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Sravya Atluri
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pierre Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Prabhjot Dhami
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Medical Center, Dallas, Texas, USA
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Stefan Kloiber
- University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roumen Milev
- Department of Psychiatry, Providence Care, Queen's University, Kingston, Ontario, Canada
| | - Daniel J Müller
- University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Claudio N Soares
- Department of Psychiatry, Providence Care, Queen's University, Kingston, Ontario, Canada
| | - Chloe Stengel
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
| | - Sagar V Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan Rotzinger
- University of Toronto, Toronto, Ontario, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Sidney H Kennedy
- University of Toronto, Toronto, Ontario, Canada
- Unity Health Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada.
- University of Toronto, Toronto, Ontario, Canada.
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Le GH, Wong S, Badulescu S, Au H, Di Vincenzo JD, Gill H, Phan L, Rhee TG, Ho R, Teopiz KM, Kwan ATH, Rosenblat JD, Mansur RB, McIntyre RS. Spectral signatures of psilocybin, lysergic acid diethylamide (LSD) and ketamine in healthy volunteers and persons with major depressive disorder and treatment-resistant depression: A systematic review. J Affect Disord 2024; 355:342-354. [PMID: 38570038 DOI: 10.1016/j.jad.2024.03.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Electrophysiologic measures provide an opportunity to inform mechanistic models and possibly biomarker prediction of response. Serotonergic psychedelics (SPs) (i.e., psilocybin, lysergic acid diethylamide (LSD)) and ketamine represent new investigational and established treatments in mood disorders respectively. There is a need to better characterize the mechanism of action of these agents. METHODS We conducted a systematic review investigating the spectral signatures of psilocybin, LSD, and ketamine in persons with major depressive disorder (MDD), treatment-resistant depression (TRD), and healthy controls. RESULTS Ketamine and SPs are associated with increased theta power in persons with depression. Ketamine and SPs are also associated with decreased spectral power in the alpha, beta and delta bands in healthy controls and persons with depression. When administered with SPs, theta power was increased in persons with MDD when administered with SPs. Ketamine is associated with increased gamma band power in both healthy controls and persons with MDD. LIMITATIONS The studies included in our review were heterogeneous in their patient population, exposure, dosing of treatment and devices used to evaluate EEG and MEG signatures. Our results were extracted entirely from persons who were either healthy volunteers or persons with MDD or TRD. CONCLUSIONS Extant literature evaluating EEG and MEG spectral signatures indicate that ketamine and SPs have reproducible effects in keeping with disease models of network connectivity. Future research vistas should evaluate whether observed spectral signatures can guide further discovery of therapeutics within the psychedelic and dissociative classes of agents, and its prediction capability in persons treated for depression.
Collapse
Affiliation(s)
- Gia Han Le
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Sabrina Wong
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Sebastian Badulescu
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Hezekiah Au
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Joshua D Di Vincenzo
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| | - Hartej Gill
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lee Phan
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, Farmington, CT, USA.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Joshua D Rosenblat
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Rodrigo B Mansur
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Roger S McIntyre
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Petzi M, Singh S, Trappenberg T, Nunes A. Mechanisms of Sustained Increases in γ Power Post-Ketamine in a Computational Model of the Hippocampal CA3: Implications for Ketamine's Antidepressant Mechanism of Action. Brain Sci 2023; 13:1562. [PMID: 38002522 PMCID: PMC10670117 DOI: 10.3390/brainsci13111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Subanaesthetic doses of ketamine increase γ oscillation power in neural activity measured using electroencephalography (EEG), and this effect lasts several hours after ketamine administration. The mechanisms underlying this effect are unknown. Using a computational model of the hippocampal cornu ammonis 3 (CA3) network, which is known to reproduce ketamine's acute effects on γ power, we simulated the plasticity of glutamatergic synapses in pyramidal cells to test which of the following hypotheses would best explain this sustained γ power: the direct inhibition hypothesis, which proposes that increased γ power post-ketamine administration may be caused by the potentiation of recurrent collateral synapses, and the disinhibition hypothesis, which proposes that potentiation affects synapses from both recurrent and external inputs. Our results suggest that the strengthening of external connections to pyramidal cells is able to account for the sustained γ power increase observed post-ketamine by increasing the overall activity of and synchrony between pyramidal cells. The strengthening of recurrent pyramidal weights, however, would cause an additional phase shifted voltage increase that ultimately reduces γ power due to partial cancellation. Our results therefore favor the disinhibition hypothesis for explaining sustained γ oscillations after ketamine administration.
Collapse
Affiliation(s)
- Maximilian Petzi
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.P.); (T.T.)
| | - Selena Singh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4L6, Canada;
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.P.); (T.T.)
| | - Abraham Nunes
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.P.); (T.T.)
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 4K3, Canada
| |
Collapse
|
8
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
9
|
Wu G, Xu H. A synopsis of multitarget therapeutic effects of anesthetics on depression. Eur J Pharmacol 2023; 957:176032. [PMID: 37660970 DOI: 10.1016/j.ejphar.2023.176032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Depression is a profound mental disorder that dampens the mood and undermines volition, which exhibited an increased incidence over the years. Although drug-based interventions remain the primary approach for depression treatment, the available medications still can't satisfy the patients. In recent years, the newly discovered therapeutic targets such as N-methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, and tyrosine kinase B (TrkB) have brought new breakthroughs in the development of antidepressant drugs. Moreover, it has come to light that certain anesthetics possess pharmacological mechanisms intricately linked to the aforementioned therapeutic targets for depression. At present, numerous preclinical and clinical studies have explored the therapeutic effects of anesthetic drugs such as ketamine, isoflurane, N2O, and propofol, on depression. These investigations suggested that these drugs can swiftly ameliorate patients' depression symptoms and engender long-term effects. In this paper, we provide a comprehensive review of the research progress and potential molecular mechanisms of various anesthetic drugs for depression treatment. By shedding light on this subject, we aim to facilitate the development and clinical implementation of new antidepressant drugs based on anesthetic medications.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongwei Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
10
|
Murphy N, Tamman AJF, Lijffijt M, Amarneh D, Iqbal S, Swann A, Averill LA, O'Brien B, Mathew SJ. Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: a randomized control trial. Neuropsychopharmacology 2023; 48:1586-1593. [PMID: 37076582 PMCID: PMC10516885 DOI: 10.1038/s41386-023-01586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Ketamine is an effective intervention for treatment-resistant depression (TRD), including late-in-life (LL-TRD). The proposed mechanism of antidepressant effects of ketamine is a glutamatergic surge, which can be measured by electroencephalogram (EEG) gamma oscillations. Yet, non-linear EEG biomarkers of ketamine effects such as neural complexity are needed to capture broader systemic effects, represent the level of organization of synaptic communication, and elucidate mechanisms of action for treatment responders. In a secondary analysis of a randomized control trial, we investigated two EEG neural complexity markers (Lempel-Ziv complexity [LZC] and multiscale entropy [MSE]) of rapid (baseline to 240 min) and post-rapid ketamine (24 h and 7 days) effects after one 40-min infusion of IV ketamine or midazolam (active control) in 33 military veterans with LL-TRD. We also studied the relationship between complexity and Montgomery-Åsberg Depression Rating Scale score change at 7 days post-infusion. We found that LZC and MSE both increased 30 min post-infusion, with effects not localized to a single timescale for MSE. Post-rapid effects of reduced complexity with ketamine were observed for MSE. No relationship was observed between complexity and reduction in depressive symptoms. Our findings support the hypothesis that a single sub-anesthetic ketamine infusion has time-varying effects on system-wide contributions to the evoked glutamatergic surge in LL-TRD. Further, changes to complexity were observable outside the time-window previously shown for effects on gamma oscillations. These preliminary results have clinical implications in providing a functional marker of ketamine that is non-linear, amplitude-independent, and represents larger dynamic properties, providing strong advantages over linear measures in highlighting ketamine's effects.
Collapse
Affiliation(s)
- Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.
| | - Marijn Lijffijt
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dania Amarneh
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
| | - Sidra Iqbal
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan Swann
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Lynnette A Averill
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany O'Brien
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Sanjay J Mathew
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
11
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Gilbert JR, Wusinich C, Zarate CA. A Predictive Coding Framework for Understanding Major Depression. Front Hum Neurosci 2022; 16:787495. [PMID: 35308621 PMCID: PMC8927302 DOI: 10.3389/fnhum.2022.787495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Predictive coding models of brain processing propose that top-down cortical signals promote efficient neural signaling by carrying predictions about incoming sensory information. These "priors" serve to constrain bottom-up signal propagation where prediction errors are carried via feedforward mechanisms. Depression, traditionally viewed as a disorder characterized by negative cognitive biases, is associated with disrupted reward prediction error encoding and signaling. Accumulating evidence also suggests that depression is characterized by impaired local and long-range prediction signaling across multiple sensory domains. This review highlights the electrophysiological and neuroimaging evidence for disrupted predictive processing in depression. The discussion is framed around the manner in which disrupted generative predictions about the sensorium could lead to depressive symptomatology, including anhedonia and negative bias. In particular, the review focuses on studies of sensory deviance detection and reward processing, highlighting research evidence for both disrupted generative predictions and prediction error signaling in depression. The role of the monoaminergic and glutamatergic systems in predictive coding processes is also discussed. This review provides a novel framework for understanding depression using predictive coding principles and establishes a foundational roadmap for potential future research.
Collapse
Affiliation(s)
- Jessica R. Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|