1
|
Jin X, Huang J, Zhang H, Wang M, Xie D, Jia W. Innovative paper-based SERS substrate for rapid detection and degradation of pesticides: Mechanistic insights and environmental applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125881. [PMID: 40020491 DOI: 10.1016/j.saa.2025.125881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/12/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Pesticide residues in agricultural products and environmental water pose significant threats to human health and ecosystems. The urgent need for rapid detection and degradation of complex samples containing multiple pesticides has driven advancements in detection methods. Surface-Enhanced Raman Spectroscopy (SERS), a powerful molecular detection technique, has attracted considerable attention in food safety, environmental monitoring, and biological analysis due to its unparalleled sensitivity, non-destructive characterization capabilities, and high specificity. In this study, we presented a SERS detection substrate based on filter paper incorporating Ag nanoparticles (AgNPs) and ZnO nanoparticles (ZnONPs). This innovative SERS substrate enables sensitive and recyclable detection of deltamethrin and atrazine pesticides. The detection limits for bromopropylate and atrazine were 38.87 μg/L and 39.35 μg/L, respectively. The method's detection limits meet the groundwater quality standards for allowable limits in agricultural water use. Notably, the paper-based SERS substrate achieved rapid degradation of pollutants within 10 min under UV light exposure, demonstrating its efficacy. Even after five consecutive uses, the substrate maintained its capability to detect various pesticides within mixed samples. This study explores the application of paper-based SERS detection technology in the investigation of pesticide degradation mechanisms and kinetics, discussing the effects of environmental conditions such as pH and temperature on the experimental results. The experimental findings support the theoretical research. Additionally, density functional theory (DFT) models were used to study the hydrolysis evolution mechanisms of two pesticides under different pH conditions. Our study highlights that paper-based SERS detection technology is an effective method for studying the degradation mechanisms of pesticides. This innovative approach advances the understanding of pesticide degradation processes and opens avenues for further exploration.
Collapse
Affiliation(s)
- Xiangying Jin
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China
| | - Jinqiong Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China
| | - Haixin Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China
| | - Meiqi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530029 China.
| | - Wenchao Jia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655 China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530029 China.
| |
Collapse
|
2
|
Arulsoosairaj DA, Kanagaraj Muthu-Pandian C, Sengottayan SN. Phycogenic nanoparticles efficiently catalyse pesticide degradation through a novel metabolic pathway utilizing solar light. CHEMOSPHERE 2024; 369:143877. [PMID: 39631688 DOI: 10.1016/j.chemosphere.2024.143877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Cypermethrin (Cy) is a widely used insecticide, leading to significant environmental contamination in homes and agricultural areas. Effective methods to minimize or eliminate insecticidal residues are essential. Seaweeds, traditionally used in agriculture as soil conditioners, offer a promising solution for remediating pesticide-contaminated soils through biogenic nanoparticle synthesis. In this study, we synthesized biogenic silver nanoparticles (UL-AgNPs) from the green seaweed Ulva lactuca Lin (Ulvaceae) to degrade Cypermethrin. The UL-AgNPs were characterized using UV-Visible spectroscopy, Scanning Electron Microscopy equipped with Energy dispersive X-ray spectroscopy, Fourier Transform Infra-red spectroscopy, X-ray diffraction, Dynamic light scattering and zeta potential analysis, confirming their presence, size (81.29 nm), structure and stability. Response surface methodology (RSM) was used to assess the catalytic concentration of photocatalyst for degradation of pesticide including variables, Cy concentration and destined exposure time duration. The degradation efficiency of UL-AgNPs was evaluated, with the highest degradation (91.2%) achieved at pH 7 after 12 h using 16.6 mg L-1 of UL-AgNPs, following pseudo-first order kinetics with a rate of 2.7 h-1. GC-MS and UV-Visible spectroscopy revealed a novel degradation pathway, where Cypermethrin was broken down into compounds like Tetradecane, Dodecane, and Tetracosanoic acid through ester cleavage and benzene ring breakdown. The study also demonstrated the reusability of UL-AgNPs for four cycles, highlighting their potential for sustainable environmental management by reducing the long-term hazards of Cypermethrin.
Collapse
Affiliation(s)
- Deva-Andrews Arulsoosairaj
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Chanthini Kanagaraj Muthu-Pandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Senthil-Nathan Sengottayan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| |
Collapse
|
3
|
Chiani E, Ghasemi S, Azizi SN. Highly Efficient Photocatalytic Degradation of Imidacloprid Based on Iron Metal-Organic Frameworks of Mesoporous NH 2-MIL-88b/Graphite Carbon Nitride Nanocomposites by Visible Light Driven in Aqueous Media. ACS OMEGA 2024; 9:26983-27001. [PMID: 38947846 PMCID: PMC11209690 DOI: 10.1021/acsomega.3c10281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Pesticides that protect crops from insects and other pests are some of the main causes of water pollution. Imidacloprid (IMC) is the most widely used insecticide in the world and should be removed from the environment. This work aims to prepare mesoporous nanocomposites to increase the photodegradation efficiency of IMC. To improve the surface properties and enhance the photocatalytic activity, mesoporous nanocomposites with different weight ratios of graphite carbon nitride (CN = 125, 250, and 500 mg) were prepared by the solvothermal method. Mesoporous NH2-MIL-88b(Fe)/graphite carbon nitride (CN = 250 mg, NH2-MCN-2) nanocomposites showed the best photocatalytic performance. To save the time and cost of the experiments, central composite design (CCD) and response surface methodology (RSM) were used and the results were obtained as the initial concentration of IMC (20 mg L-1), amount of photocatalyst (0.76 g L-1), pH = 5, and degradation time ∼46 min. The maximum photocatalytic degradation efficiency estimated by the model was obtained at 96.31%, which is very close to the actual value of 95.47%. The mesoporous NH2-MCN-2 nanocomposite showed excellent stability and suitable reusability with a maximum degradation of 84.5% after five cycles. Results obtained from kinetic studies indicated a rate constant value of 0.08 min-1, and isotherm models showed that equilibrium data are more consistent with the Langmuir model in photocatalytic degradation. Electrochemical experiments showed significant improvement in the electron transfer rate and photocatalytic activity of the mesoporous NH2-MCN-2 nanocomposite. Different trapping agents were used to investigate the effective active species in IMC photodegradation, and it was determined that the hole (h+) and OH radical (•OH) play the main role. The possible mechanism for IMC photocatalytic degradation was suggested by Mott-Schottky (M-S) electrochemical impedance.
Collapse
Affiliation(s)
- Elham Chiani
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| | - Shahram Ghasemi
- Faculty
of Chemistry, University of Mazandaran, Babolsar 4741695447, Iran
| | - Seyed Naser Azizi
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| |
Collapse
|
4
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
5
|
Adam MSS, Sikander S, Qamar MT, Iqbal S, Khalil A, Taha AM, Abdel-Rahman OS, Elkaeed EB. Photocatalytic removal of imidacloprid containing frequently applied insecticide in agriculture industry using Co3O4 modified MoO3 composites. Front Chem 2023; 11:1125835. [PMID: 36998573 PMCID: PMC10043367 DOI: 10.3389/fchem.2023.1125835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Water pollution caused by the frequent utilization of pesticides in the agriculture industry is one of the major environmental concerns that require proper attention. In this context, the photocatalytic removal of pesticides from contaminated water in the presence of metallic oxide photocatalysts is quite in approach. In the present study, Orthorhombic MoO3 has been modified with varying amount of cobalt oxide through wet impregnation for the removal of imidacloprid and imidacloprid-containing commercially available insecticide. The solid-state absorption response and band gap evaluation of synthesized composites revealed a significant extension of absorption cross-section and absorption edge in the visible region of the light spectrum than pristine MoO3. The indirect band gap energy varied from ∼2.88 eV (MoO3) to ∼2.15 eV (10% Co3O4-MoO3). The role of Co3O4 in minimizing the photo-excitons’ recombination in MoO3 was studied using photoluminescence spectroscopy. The orthorhombic shape of MoO3 was confirmed through X-ray diffraction analysis and scanning electron microscopy. Moreover, the presence of distinct absorption edges and diffraction peaks corresponding to Co3O4 and MoO3 in absorption spectra and XRD patterns, respectively verified the composite nature of 10% Co3O4-MoO3. The photocatalytic study under natural sunlight irradiation showed higher photocatalytic removal (∼98%) of imidacloprid with relatively higher rate by 10% Co3O4-MoO3 composite among all contestants. Furthermore, the photocatalytic removal (∼93%) of commercially applied insecticide, i.e., Greeda was also explored.
Collapse
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
- *Correspondence: Mohamed Shaker S. Adam, ; Shahid Iqbal,
| | - Sumbleen Sikander
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - M. Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Mohamed Shaker S. Adam, ; Shahid Iqbal,
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Amel Musa Taha
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Obadah S. Abdel-Rahman
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Zhang Y, Zhou B, Chen H, Yuan R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159048. [PMID: 36162567 DOI: 10.1016/j.scitotenv.2022.159048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pollutants (OPs), which are compounds containing carbon‑phosphorus bonds or phosphate derivatives containing organic groups, have received much attention from researchers because of their persistence in the aqueous environment for long periods of time and the threat they pose to human health. Heterogeneous photocatalysis has been widely applied to the removal of OPs from aqueous solutions due to its better removal effect and environmental friendliness. In this review, the removal of OPs from aqueous matrices by heterogeneous photocatalysis was presented. Herein, the application and the heterogeneous photocatalysis mechanism of OPs were described in detail, and the effects of catalyst types on degradation effect are discussed categorically. In particular, the heterojunction type photocatalyst has the most excellent effect. After that, the photocatalytic degradation pathways of several OPs were summarized, focusing on the organophosphorus pesticides and organophosphorus flame retardants, such as methyl parathion, dichlorvos, dimethoate and chlorpyrifos. The toxicity changes during degradation were evaluated, indicating that the photocatalytic process could effectively reduce the toxicity of OPs. Additionally, the effects of common water matrices on heterogeneous photocatalytic degradation of OPs were also presented. Finally, the challenges and perspectives of heterogeneous photocatalysis removal of OPs are summarized and presented.
Collapse
Affiliation(s)
- Yujie Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Zhou H, Qiu Y, Yang C, Zang J, Song Z, Yang T, Li J, Fan Y, Dang F, Wang W. Efficient Degradation of Congo Red in Water by UV-Vis Driven CoMoO 4/PDS Photo-Fenton System. Molecules 2022; 27:molecules27248642. [PMID: 36557777 PMCID: PMC9784357 DOI: 10.3390/molecules27248642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calcination, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and UV-Vis DRS. The results showed that the morphology of the CoMoO4 nanolumps consisted of stacked nanosheets. XRD indicated the monoclinic structures with C2/m (C32h, #12) space group, which belong to α-CoMoO4, and both Co2+ and Mo6+ ions occupy distorted octahedral sites. The pH of the isoelectric point (pHIEP) of CMO-8 at pH = 4.88 and the band gap of CoMoO4 was 1.92 eV. The catalytic activity of CoMoO4 was evaluated by photo-Fenton degradation of Congo red (CR). The catalytic performance was affected by calcination temperature, catalyst dosage, PDS dosage, and pH. Under the best conditions (0.8 g/L CMO-8, PDS 1 mL), the degradation efficiency of CR was 96.972%. The excellent catalytic activity of CoMoO4 was attributed to the synergistic effect of photo catalysis and CoMoO4-activated PDS degradation. The capture experiments and the ESR showed that superoxide radical (·O2-), singlet oxygen (1O2), hole (h+), sulfate (SO4-·), and hydroxyl (·OH-) were the main free radicals leading to the degradation of CR. The results can provide valuable information and support for the design and application of high-efficiency transition metal oxide catalysts.
Collapse
Affiliation(s)
- Huimin Zhou
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Yang Qiu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Chuanxi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
- Correspondence: (C.Y.); (W.W.); Tel.: +86-0532-85071262 (C.Y. & W.W.)
| | - Jinqiu Zang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Zihan Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Tingzheng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Jinzhi Li
- Middle School of Gantian, Chenzhou 424400, China
| | - Yuqi Fan
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Feng Dang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, Jinan 250061, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
- Correspondence: (C.Y.); (W.W.); Tel.: +86-0532-85071262 (C.Y. & W.W.)
| |
Collapse
|
8
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Recent advances in photochemical-based nanomaterial processes for mitigation of emerging contaminants from aqueous solutions. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Kajitvichyanukul P, Nguyen VH, Boonupara T, Phan Thi LA, Watcharenwong A, Sumitsawan S, Udomkun P. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review. ENVIRONMENTAL RESEARCH 2022; 212:113336. [PMID: 35580668 DOI: 10.1016/j.envres.2022.113336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pesticides have been frequently used in agricultural fields. Due to the expeditious utilization of pesticides, their excessive usage has negative impacts on the natural environment and human health. This review discusses the successful implications of nanotechnology-based photocatalysis for the removal of environmental pesticide contaminants. Notably, various nanomaterials, including TiO2, ZnO, Fe2O3, nanoscale zero-valent iron, nanocomposite-based materials, have been proposed and have played a progressively essential role in wastewater treatment. In addition, a detailed review of the crucial reaction condition factors, including water matrix, pH, light source, temperature, flow rate (retention time), initial concentration of pesticides, a dosage of photocatalyst, and radical scavengers, is also highlighted. Additionally, the degradation pathway of pesticide mineralization is also elucidated. Finally, the challenges of technologies and the future of nanotechnology-based photocatalysis toward the photo-degradation of pesticides are thoroughly discussed. It is expected that those innovative extraordinary photocatalysts will significantly enhance the performance of pesticides degradation in the coming years.
Collapse
Affiliation(s)
- Puangrat Kajitvichyanukul
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu, India
| | - Thirasant Boonupara
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Apichon Watcharenwong
- School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand; Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sulak Sumitsawan
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Patchimaporn Udomkun
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Moradeeya PG, Kumar MA, Sharma A, Basha S. Conductive polymer layered semiconductor for degradation of triclopyr acid and 2,4-dichlorophenoxyacetic acid from aqueous stream using coalesce adsorption-photocatalysis technique. CHEMOSPHERE 2022; 298:134360. [PMID: 35318015 DOI: 10.1016/j.chemosphere.2022.134360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Polyaniline supported titanium dioxide nanoparticles (PTs) were fabricated using chemical oxidative aniline polymerization in the presence of titanium dioxide with ammonium peroxydisulfate as an oxidant. The synthesized PTs were thoroughly characterized for their morphological and functional features. PTs were employed for the photodegradation of acidic herbicides; 2,4-dichlorophenoxyacetic acid (2,4-D) and triclopyr acid (TCP). PT's surface modifications were imparted and their herbicide removal efficiencies were compared. The best operating conditions for adsorption/photocatalysis were 0.5 g/L photocatalyst, 10 mg/L concentration of individual herbicides resulted in 90.72% removal of TCP at pH 4 and 99.91% removal of 2,4-D at pH 5. Adsorption kinetics of herbicides, onto PT-1 showed the equilibrium attainment within 30 min and experimental data obeyed pseudo-second order model for TCP and 2,4-D removal which was governed by chemisorption. Analysis of TCP and 2,4-D adsorption indicated that the removal followed Sips model for TCP removal while Redlich-Peterson model explained the removal of 2,4-D by PT-1. Rate constants indicated that the amount of TiO2 in the PTs played an important role in removing the herbicides and PT-1 material excellent remarkable activity for three cycles of photodegradation. Thus, this work reports the polymerization of aniline onto TiO2 and their utility as photocatalyst for the expulsion of 2,4-D and TCP from water.
Collapse
Affiliation(s)
- Pareshkumar G Moradeeya
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India; Hyderabad Zonal Centre, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Archana Sharma
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Shaik Basha
- Hyderabad Zonal Centre, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
12
|
Chen ML, Lu TH, Li SS, Wen L, Xu Z, Cheng YH. Photocatalytic degradation of imidacloprid by optimized Bi 2WO 6/NH 2-MIL-88B(Fe) composite under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19583-19593. [PMID: 34719759 DOI: 10.1007/s11356-021-17187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
Imidacloprid as a widely used neonicotinoid insecticide can cause harmful pesticide residue inevitably. Metal-organic frameworks (MOFs) were innovatively composited to improve the light absorption and degradation performance of Bi2WO6 semiconductor, which expanded the photodegradation application in solving environmental problems. Based on the synergistic effect of Bi2WO6 and NH2-MIL-88B(Fe), a Bi2WO6/NH2-MIL-88B(Fe) (BNM) heterojunction photocatalyst with high-performance of photocatalytic degradation activities was successfully synthesized. The optimized BNM catalyst had a good degradation rate under visible light, which was mainly caused by generation of the active ·OH. Transient photocurrent response and electrochemical impedance tests verified that 1:2 BNM exhibits a highest charge separation and a lowest carrier recombination rate which were favorable to the photocatalytic activity. Cycle experiments show that the composite photocatalyst had good reusability and stability which were very important for potential industry applications.
Collapse
Affiliation(s)
- Mao-Long Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| | - Tian-Hui Lu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Shan-Shan Li
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Wen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
13
|
Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2063-2083. [PMID: 35221834 PMCID: PMC8857745 DOI: 10.1007/s10311-022-01398-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
The accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors. Advantages include less corrosion of zinc oxide, less charge recombination and more visible light absorption, up to 53%.
Collapse
Affiliation(s)
- Sapana Jadoun
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Héctor D. Mansilla
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
14
|
Rasheed T, Rizwan K, Bilal M, Sher F, Iqbal HMN. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices-a review. CHEMOSPHERE 2021; 282:131056. [PMID: 34111632 DOI: 10.1016/j.chemosphere.2021.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Pesticides are among the top-priority contaminants, which significantly contribute to environmental deterioration. Conventional techniques are not efficient enough to remove pollutants from environmental matrices. The development of functional materials has emerged as promising candidates to remove and degrade pesticides and related hazardous compounds. Furthermore, the nanohybrid materials with unique structural and functional characteristics, such as better material anchorage, mass transfer, electron-hole separation, and charged interaction make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we present the current progress in the development of functional materials for the abatement of toxic pesticides. The physicochemical characteristics and pesticide-removal functionalities of various metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and carbon-based materials are critically discussed with suitable examples. Finally, the industrial-scale applications of the functional materials, concluding remarks, and future directions in this important arena are given.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry, and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| |
Collapse
|