1
|
Frone AN, Panaitescu DM, Gabor AR, Nicolae CA, Ghiurea M, Bradu C. Poly(3-hydroxybutyrate) Modified with Thermoplastic Polyurethane and Microfibrillated Cellulose: Hydrolytic Degradation and Thermal and Mechanical Properties. Polymers (Basel) 2024; 16:3606. [PMID: 39771457 PMCID: PMC11678418 DOI: 10.3390/polym16243606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability. The addition of PU in PHB composites led to a decrease in the storage modulus, which did not exceed 20% at room temperature. The hydrolytic degradation in an alkaline environment at 50 °C for 28 days decreased the thermal stability of the composites by 58-65 °C, while the lower mass loss and morphological features showed that the PU modifier delayed the degradation of the PHB composites. The improved thermal stability, melt processability, and lower cost, along with higher flexibility and the possibility of controlling the hydrolytic degradation by the PU content, make the PHB/PU/MC composites obtained by the masterbatch method promising materials for medical and engineering applications.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Marius Ghiurea
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
2
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
3
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Lu Q, Zhou Y, Sui Q, Zhou Y. Mechanism and characterization of microplastic aging process: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:100. [PMID: 36935734 PMCID: PMC10010843 DOI: 10.1007/s11783-023-1700-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.
Collapse
Affiliation(s)
- Qinwei Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
5
|
Wright TA, Rahman MS, Bennett C, Johnson MR, Fischesser H, Ram N, Tyler A, Page RC, Konkolewicz D. Hydrolytically Stable Maleimide-End-Functionalized Polymers for Site-Specific Protein Conjugation. Bioconjug Chem 2021; 32:2447-2456. [PMID: 34730954 PMCID: PMC9099401 DOI: 10.1021/acs.bioconjchem.1c00487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific conjugation to cysteines of proteins often uses ester groups to link maleimide or alkene groups to polymers. However, the ester group is susceptible to hydrolysis, potentially losing the benefits gained through bioconjugation. Here, we present a simple conjugation strategy that utilizes the amide bond stability of traditional 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling while introducing site specificity. Hydrolytically stable maleimide-end-functionalized polymers for site-specific conjugation to free cysteines of proteins were synthesized using reversible addition-fragmentation chain-transfer (RAFT) polymerization. The alpha terminus of the polymers was amidated with a furan-protected aminoethyl maleimide using carbodiimide-based chemistry. Finally, the maleimide was exposed by a retro Diels-Alder reaction to yield the maleimide group, allowing for thiol-maleimide click chemistry for bioconjugation. A thermophilic cellulase from Fervidobacterium nodosum (FnCel5a) was conjugated using various strategies, including random 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling, site-specific hydroxyethyl maleimide (HEMI) end-functionalized coupling, hydroxyethyl acrylate (HEA) end-functionalized coupling, and amidoethyl maleimide (AEMI) end-functionalized coupling. Only the polymers conjugated by EDC and AEMI remained conjugated a week after attachment. This indicates that hydrolytically stable amide-based maleimides are an important bioconjugation strategy for conjugates that require long-term stability, while esters are better suited for systems that require debonding of polymers over time.
Collapse
Affiliation(s)
- Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Camaryn Bennett
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Madolynn R Johnson
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Henry Fischesser
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Natasha Ram
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Ave, Tampa, Florida 33620, United States
| | - Amoni Tyler
- Department of Agricultural and Life Sciences, Central State University, 1400 Brush Row Road, Wilberforce, Ohio 45384, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Olkhov AA, Tyubaeva PM, Vetcher AA, Karpova SG, Kurnosov AS, Rogovina SZ, Iordanskii AL, Berlin AA. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers (Basel) 2021; 13:polym13060941. [PMID: 33803794 PMCID: PMC8003206 DOI: 10.3390/polym13060941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrathin electrospun fibers of pristine biopolyesters, poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA), as well as their blends, have been obtained and then explored after exposure to hydrolytic (phosphate buffer) and oxidative (ozone) media. All the fibers were obtained from a co-solvent, chloroform, by solution-mode electrospinning. The structure, morphology, and segmental dynamic behavior of the fibers have been determined by optical microscopy, SEM, ESR, and others. The isotherms of water absorption have been obtained and the deviation from linearity (the Henry low) was analyzed by the simplified model. For PHB-PLA fibers, the loss weight increments as the reaction on hydrolysis are symbate to water absorption capacity. It was shown that the ozonolysis of blend fibrils has a two-stage character which is typical for O3 consumption, namely, the pendant group's oxidation and the autodegradation of polymer molecules with chain rupturing. The first stage of ozonolysis has a quasi-zero-order reaction. A subsequent second reaction stage comprising the back-bone destruction has a reaction order that differs from the zero order. The fibrous blend PLA/PHB ratio affects the rate of hydrolysis and ozonolysis so that the fibers with prevalent content of PLA display poor resistance to degradation in aqueous and gaseous media.
Collapse
Affiliation(s)
- Anatoly A. Olkhov
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Polina M. Tyubaeva
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence:
| | - Svetlana G. Karpova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexander S. Kurnosov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Svetlana Z. Rogovina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexander A. Berlin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| |
Collapse
|
7
|
Musioł M, Jurczyk S, Sobota M, Klim M, Sikorska W, Zięba M, Janeczek H, Rydz J, Kurcok P, Johnston B, Radecka I. (Bio)Degradable Polymeric Materials for Sustainable Future-Part 3: Degradation Studies of the PHA/Wood Flour-Based Composites and Preliminary Tests of Antimicrobial Activity. MATERIALS 2020; 13:ma13092200. [PMID: 32403315 PMCID: PMC7254317 DOI: 10.3390/ma13092200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.
Collapse
Affiliation(s)
- Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
- Correspondence: ; Tel.: +48-322-716-077
| | - Sebastian Jurczyk
- Łukasieiwcz Research Network – Institute for Engineering of Polymer Materials and Dyes, 55, M. Sklodowska-Curie St., 87-100 Toruń, Poland;
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Magdalena Klim
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, 4 Jagiellońska St., 41-200 Sosnowiec, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Brian Johnston
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (B.J.); (I.R.)
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (B.J.); (I.R.)
| |
Collapse
|
8
|
Hegyesi N, Hodosi E, Polyák P, Faludi G, Balogh-Weiser D, Pukánszky B. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids Surf B Biointerfaces 2020; 186:110678. [DOI: 10.1016/j.colsurfb.2019.110678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
9
|
Studies on the alcoholysis of poly(3-hydroxybutyrate) and the synthesis of PHB-b-PLA block copolymer for the preparation of PLA/PHB-b-PLA blends. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-017-1432-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Methanolysis of microbial polyester poly(3-hydroxybutyrate) catalyzed by Brønsted-Lewis acidic ionic liquids as a new method towards sustainable development. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|