1
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Gielisch MW, Thiem DGE, Ritz U, Bösing C, Al-Nawas B, Kämmerer PW. Assessing cytotoxicity: a comparative analysis of biodegradable and conventional 3D-printing materials post-steam sterilization for surgical guides. Biomed Mater 2024; 20:015001. [PMID: 39540667 DOI: 10.1088/1748-605x/ad8c8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Introduction.Ecological concerns and the depletion of petroleum resources have driven the exploration of biodegradable 3D-printing materials derived from bio-renewable sources, such as polylactic acid (PLA) and polyhydroxyalkanoates (PHA). This study aimed to compare the potential cytotoxic effects of a biodegradable PLA/PHA blend filament, a conventional photopolymer (MED610), and a combination of MED610 with a support material (SUP705) before and after steam sterilization in vitro, with a focus on their application in the production of surgical guides.Materials and Methods.PLA/PHA, MED610, and SUP705 (both in their pure and steam-sterilized forms;n= 6 per group) were assessed for their cytotoxic effects on human fibroblasts using the neutral red uptake assay. Positive controls included zinc diethyldithiocarbamate and zinc dibutyldithiocarbamate, while high-density polyethylene served as a negative control. A stock solution of the extraction medium was used as the vehicle control (VC).Results.Significant differences in cell viability were observed between pure PLA/PHA (1.2 ± 0.24) and MED610 (0.94 ± 0.08) (p= 0.005). However, both materials exhibited non-cytotoxicity, with cell viability exceeding 70% compared to VCs. SUP705 (0.58 ± 0.42) demonstrated significantly reduced cell viability compared to PLA/PHA (p= 0.001) and MED610 (p= 0.007). After steam sterilization, no significant difference in cell viability was noted between MED610 (1.0 ± 0.08) and PLA/PHA (1.2 ± 0.25) (p= 0.111). While both materials remained non-cytotoxic after sterilization, SUP705 (0.60 ± 0.45) exhibited cytotoxic effects compared to MED610 (p= 0.006) and PLA/PHA (p< 0.001). Steam sterilization did not induce significant cytotoxic effects in the investigated materials (p= 0.123).Conclusion.Pure and steam-sterilized PLA/PHA and MED610 were not cytotoxic, supporting their potential use in the production of surgical guides. However, the observed cytotoxicity of SUP705 suggests caution in scenarios requiring sterile conditions, as the removal of support material from complex printed parts may be challenging. The consideration of PLA/PHA is recommended in such settings to ensure biocompatibility.
Collapse
Affiliation(s)
- Matthias W Gielisch
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Bösing
- Bösing Dental GmbH & CO. KG, Franz-Kirsten-Straße 1, 55411 Bingen, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
3
|
Al G, Aydemir D, Altuntaş E. The effects of PHB-g-MA types on the mechanical, thermal, morphological, structural, and rheological properties of polyhydroxybutyrate biopolymers. Int J Biol Macromol 2024; 264:130745. [PMID: 38462104 DOI: 10.1016/j.ijbiomac.2024.130745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study investigates the grafting of polyhydroxybutyrate (PHB) chains with maleic anhydride (MA) in concentrations ranging from 5 % to 10 % by weight. This process was conducted during microwave treatment and using a reactive extruder, employing benzoyl peroxide (BPO) as the initiator. The impact of these methods on PHB's overall properties was thoroughly investigated. In the study, PHB-g-MA was incorporated into neat PHB via the extrusion process at a 5 % loading rate. Notably, the mechanical properties exhibited an increase in the presence of PHB-g-MA, likely due to morphological improvements in the neat PHB, as indicated by morphological characterization. X-ray diffraction results indicated crystallinity percentages increase with the addition of MA. Differential scanning calorimetry revealed minimal variation in melting and crystallization temperatures when PHB-g-MA was included. Both storage and loss moduli were enhanced by the incorporation of PHB-g-MA, and the blends exhibited consistent tan delta values. Regarding rheological properties, the storage and loss moduli of PHB blends containing PHB-g-MA blends were observed to rise with rising frequency values. Based on these results, the microwave process was identified as the most effective method for grafting.
Collapse
Affiliation(s)
- Gulyaz Al
- Vocational School of Technical Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkiye; Faculty of Forestry, Department of Forest Industrial Engineering, Bartin University, Bartin, Turkiye.
| | - Deniz Aydemir
- Faculty of Forestry, Department of Forest Industrial Engineering, Bartin University, Bartin, Turkiye.
| | - Ertugrul Altuntaş
- Faculty of Forestry, Department of Forest Industrial Engineering, Sutcu Imam University, Kahramanmaraş, Turkey.
| |
Collapse
|
4
|
Lyshtva P, Voronova V, Barbir J, Leal Filho W, Kröger SD, Witt G, Miksch L, Sabowski R, Gutow L, Frank C, Emmerstorfer-Augustin A, Agustin-Salazar S, Cerruti P, Santagata G, Stagnaro P, D'Arrigo C, Vignolo M, Krång AS, Strömberg E, Lehtinen L, Annunen V. Degradation of a poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) compound in different environments. Heliyon 2024; 10:e24770. [PMID: 38322905 PMCID: PMC10844030 DOI: 10.1016/j.heliyon.2024.e24770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biodegradable bio-based material, which is designed for a vast range of applications, depending on its composite. This study aims to assess the degradability of a PHBV-based compound under different conditions. The research group followed different methodological approaches and assessed visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterisation, along with thermal behaviour. The Ph-Stat (enzymatic degradation) test and total dry solids (TDS)/total volatile solids (TVS) measurements were carried out. Finally, the team experimentally evaluated the amount of methane and carbon dioxide produced, i.e., the degree of biodegradation under aerobic conditions. According to the results, different types of tests have shown differing effects of environmental conditions on material degradation. In conclusion, this paper provides a summary of the investigations regarding the degradation behaviour of the PHBV-based compound under varying environmental factors. The main strengths of the study lie in its multi-faceted approach, combining assessments of PHBV-based compound degradability under different conditions using various analytical tools, such as visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterization, and thermal behavior. These methods collectively contribute to the robustness and reliability of the undertaken work.
Collapse
Affiliation(s)
- Pavlo Lyshtva
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Viktoria Voronova
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Jelena Barbir
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Walter Leal Filho
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Silja Denise Kröger
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Gesine Witt
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Lukas Miksch
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Reinhard Sabowski
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Lars Gutow
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Carina Frank
- Austrian Centre of Industrial Biotechnology, Krenngasse 37/2, A-8010, Graz, Austria
| | | | - Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Paola Stagnaro
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Cristina D'Arrigo
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Maurizio Vignolo
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Anna-Sara Krång
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Emma Strömberg
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Liisa Lehtinen
- Turku University of Applied Sciences, Joukahaisenkatu 3, 20520, Turku, Finland
| | - Ville Annunen
- Turku University of Applied Sciences, Joukahaisenkatu 3, 20520, Turku, Finland
| |
Collapse
|
5
|
Shishatskaya EI, Demidenko AV, Sukovatyi AG, Dudaev AE, Mylnikov AV, Kisterskij KA, Volova TG. Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation. Int J Mol Sci 2023; 24:12969. [PMID: 37629152 PMCID: PMC10455171 DOI: 10.3390/ijms241612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Demidenko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
| | - Alexey E. Dudaev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Mylnikov
- Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia
| | - Konstantin A. Kisterskij
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
6
|
Panaitescu DM, Frone AN, Nicolae CA, Gabor AR, Miu DM, Soare MG, Vasile BS, Lupescu I. Poly(3-hydroxybutyrate) nanocomposites modified with even and odd chain length polyhydroxyalkanoates. Int J Biol Macromol 2023:125324. [PMID: 37307975 DOI: 10.1016/j.ijbiomac.2023.125324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 μm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Dana Maria Miu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Mariana-Gratiela Soare
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Centre for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania; Department of Veterinary Medicine, Spiru Haret University, 256 Bulevardul Basarabia, 030352 Bucharest, Romania
| |
Collapse
|
7
|
Luan Q, Hu H, Jiang X, Lin C, Zhang X, Wang Q, Dong Y, Wang J, Zhu J. Melt polycondensation of poly (butylene oxalate-co-succinate) with great potential in curbing marine plastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131801. [PMID: 37302185 DOI: 10.1016/j.jhazmat.2023.131801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Marine plastic pollution, with annual emissions into the marine over 53 million metric tons, has been a major worldwide concern. Many of so-called "biodegradable" polymers degrade very slowly in seawater. Oxalate have attracted attention because the electron-withdrawing effect of adjacent ester bonds promotes their natural hydrolysis, particularly in the ocean. However, the low boiling point and poor thermal stability of oxalic acids severely limits their applications. The successful synthesis of light-colored poly(butylene oxalate-co-succinate) (PBOS), with weight average molecular weight higher than 1 × 105 g/mol, displays the breakthroughs in the melt polycondensation of oxalic acid-based copolyesters. The copolymerization of oxalic acid retains the crystallization rate of PBS, with minimum half-crystallization times from 16 s (PBO10S) to 48 s (PBO30S). PBO10S-PBO40S exhibit good mechanical properties with elastic modulus of 218-454 MPa, and tensile strength between 12 and 29 MPa, better than packaging materials such as biodegradable PBAT and non-degradable LLDPE. PBOS achieve rapid degradation in the marine environment, with a mass loss 8%- 45% after 35 days. The characterization of structural changes demonstrate that the introduced oxalic acid plays a key role in the process of seawater degradation. This new class of polymers therefore provide highly promising materials for sustainable packaging with unique seawater degradation properties.
Collapse
Affiliation(s)
- Qingyang Luan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
| | - Xiaoyu Jiang
- Cambridge A level Center, Zhenhai High School of Zhejiang, No.32 Gulou East Road, Zhenhai, Ningbo 315200, People's Republic of China
| | - Chen Lin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xiaoqin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yunxiao Dong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
8
|
Feijoo P, Marín A, Samaniego-Aguilar K, Sánchez-Safont E, Lagarón JM, Gámez-Pérez J, Cabedo L. Effect of the Presence of Lignin from Woodflour on the Compostability of PHA-Based Biocomposites: Disintegration, Biodegradation and Microbial Dynamics. Polymers (Basel) 2023; 15:polym15112481. [PMID: 37299280 DOI: 10.3390/polym15112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has gained attention as a possible substitute for conventional polymers that could be integrated into the organic recycling system. Biocomposites with 15% of pure cellulose (TC) and woodflour (WF) were prepared to analyze the role of lignin on their compostability (58 °C) by tracking the mass loss, CO2 evolution, and the microbial population. Realistic dimensions for typical plastic products (400 µm films), as well as their service performance (thermal stability, rheology), were taken into account in this hybrid study. WF showed lower adhesion with the polymer than TC and favored PHBV thermal degradation during processing, also affecting its rheological behavior. Although all materials disintegrated in 45 days and mineralized in less than 60 days, lignin from woodflour was found to slow down the bioassimilation of PHBV/WF by limiting the access of enzymes and water to easier degradable cellulose and polymer matrix. According to the highest and the lowest weight loss rates, TC incorporation allowed for higher mesophilic bacterial and fungal counts, while WF seemed to hinder fungal growth. At the initial steps, fungi and yeasts seem to be key factors in facilitating the later metabolization of the materials by bacteria.
Collapse
Affiliation(s)
- Patricia Feijoo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Kerly Samaniego-Aguilar
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - José M Lagarón
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| |
Collapse
|
9
|
Bartolucci L, Cordiner S, De Maina E, Kumar G, Mele P, Mulone V, Igliński B, Piechota G. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers. Int J Mol Sci 2023; 24:ijms24097696. [PMID: 37175402 PMCID: PMC10178466 DOI: 10.3390/ijms24097696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Plastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance for their sustainable use. In this review, the advantages and limits of different waste management routes-biodegradation, mechanical recycling and thermal degradation processes-are presented for the most common categories of biopolymers on the market, including starch-based bioplastics, PLA and PBAT. The analysis outlines that starch-based bioplastics, unless blended with other biopolymers, exhibit good biodegradation rates and are suitable for disposal by composting, while PLA and PBAT are incompatible with this process and require alternative strategies. The thermal degradation process is very promising for chemical recycling, enabling building blocks and the recovery of valuable chemicals from bioplastic waste, according to the principles of a sustainable and circular economy. Nevertheless, only a few articles have focused on this recycling process, highlighting the need for research to fully exploit the potentiality of this waste management route.
Collapse
Affiliation(s)
- Lorenzo Bartolucci
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Stefano Cordiner
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Emanuele De Maina
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Pietro Mele
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Vincenzo Mulone
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, Legionów 40a/3, 87-100 Toruń, Poland
| |
Collapse
|
10
|
Caputo MR, Fernández M, Aguirresarobe R, Kovalcik A, Sardon H, Candal MV, Müller AJ. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers (Basel) 2023; 15:polym15081817. [PMID: 37111965 PMCID: PMC10143864 DOI: 10.3390/polym15081817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
Collapse
Affiliation(s)
- Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - María Virginia Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
11
|
Cecen B. FDM-based 3D printing of PLA/PHA composite polymers. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
12
|
Injorhor P, Trongsatitkul T, Wittayakun J, Ruksakulpiwat C, Ruksakulpiwat Y. Biodegradable Polylactic Acid-Polyhydroxyalkanoate-Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization. Polymers (Basel) 2023; 15:polym15051261. [PMID: 36904502 PMCID: PMC10007227 DOI: 10.3390/polym15051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.
Collapse
Affiliation(s)
- Preeyaporn Injorhor
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
13
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
14
|
Sinsukudomchai P, Aht-Ong D, Honda K, Napathorn SC. Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. PLoS One 2023; 18:e0282311. [PMID: 36867618 PMCID: PMC9983910 DOI: 10.1371/journal.pone.0282311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Pineapple leaf fibres are an abundant agricultural waste product that contains 26.9% cellulose. The objective of this study was to prepare fully degradable green biocomposites made of polyhydroxybutyrate (PHB) and microcrystalline cellulose from pineapple leaf fibres (PALF-MCC). To improve compatibility with PHB, the PALF-MCC was surface modified using lauroyl chloride as an esterifying agent. The influence of the esterified PALF-MCC laurate content and changes in the film surface morphology on biocomposite properties was studied. The thermal properties obtained by differential scanning calorimetry revealed a decrease in crystallinity for all biocomposites, with 100 wt% PHB displaying the highest values, whereas 100 wt% esterified PALF-MCC laurate showed no crystallinity. The addition of esterified PALF-MCC laurate increased the degradation temperature. The maximum tensile strength and elongation at break were exhibited when adding 5% of PALF-MCC. The results demonstrated that adding esterified PALF-MCC laurate as a filler in the biocomposite film could retain a pleasant value of tensile strength and elastic modulus whereas a slight increase in elongation can help to enhance flexibility. For soil burial testing, PHB/ esterified PALF-MCC laurate films with 5-20% (w/w) PALF-MCC laurate ester had higher degradation than films consisting of 100% PHB or 100% esterified PALF-MCC laurate. PHB and esterified PALF-MCC laurate derived from pineapple agricultural wastes are particularly suitable for the production of relatively low-cost biocomposite films that are 100% compostable in soil.
Collapse
Affiliation(s)
- Pitchanun Sinsukudomchai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
15
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
16
|
Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment. Int J Mol Sci 2022; 23:ijms232214409. [PMID: 36430886 PMCID: PMC9698972 DOI: 10.3390/ijms232214409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.
Collapse
|
17
|
Wan L, Lu L, Zhu T, Liu Z, Du R, Luo Q, Xu Q, Zhang Q, Jia X. Bulk Erosion Degradation Mechanism for Poly(1,8-octanediol- co-citrate) Elastomer: An In Vivo and In Vitro Investigation. Biomacromolecules 2022; 23:4268-4281. [PMID: 36094894 DOI: 10.1021/acs.biomac.2c00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a biodegradable elastomer, poly(1,8-octanediol-co-citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC. Initially, critical factors, including chemical structures, hydrophilic and water-absorbency characteristics, and degradation reaction of POC, are investigated. Then, various degradation-induced changes during in vitro degradation of POC-x (POC with different cross-linking densities) are monitored and discussed. The results show that (1) cross-linking densities exponentially drop with degradation time; (2) mass loss and PBS-absorption ratio grow nonlinearly; (3) the morphology on the cross-section changes from flat to rough at a microscopic level; (4) the cubic samples keep swelling until they collapse into fragments from a macro view; and (5) the mechanical properties experience a sharp drop at the beginning of degradation. Finally, the in vivo degradation behaviors of POC-x are investigated, and the results are similar to those in vitro. The comprehensive assessment suggests that the in vitro and in vivo degradation of POC occurs primarily through bulk erosion. Inflammation responses triggered by the degradation of POC-x are comparable to poly(lactic acid), or even less obvious. In addition, the mechanical evaluation of POC in the simulated application environment is first proposed and conducted in this work for a more appropriate application. The degradation mechanism of POC revealed will greatly promote the further development and application of POC-based materials in the biomedical field.
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Investigation into Thermomechanical Response of Polymer Composite Materials Produced through Additive Manufacturing Technologies. MATERIALS 2022; 15:ma15145069. [PMID: 35888536 PMCID: PMC9316211 DOI: 10.3390/ma15145069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
This paper presents the static mechanical behavior and the dynamic thermomechanical properties of four market-available reinforced and non-reinforced thermoplastics and photopolymer materials used as precursors in different additive manufacturing technologies. This article proposes a characterization approach to further address development of aeronautic secondary structures via 3D-printed composite materials replacing conventional manufactured carbon fiber reinforced polymer (CFRP) composites. Different 3D printing materials, technologies, printing directions, and parameters were investigated. Experimental results showed that carbon-reinforced ONYX_R material exhibits a transition point at 114 °C, a 600 MPa tensile strength, and an average tensile strain of 2.5%, comparable with conventional CFRP composites manufactured via autoclave, making it a suitable candidate for replacing CFRP composites, in the aim of taking advantage of 3D printing technologies. ONYX material exhibits higher stiffness than Acrylonitrile-Butadiene-Styrene Copolymer (ABS), or conventional Nylon 6/6 polyamide, the flexural modulus being 2.5 GPa; nevertheless, the 27 °C determined transition temperature limits its stability at higher temperature. Daylight High Tensile (further called HTS) resin exhibits a tensile strength and strain increase when shifting the printing direction from transversal to longitudinal, while no effect was observed in HighTemp DL400 resin (further called HTP).
Collapse
|
19
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
20
|
Harris M, Mohsin H, Naveed R, Potgieter J, Ishfaq K, Ray S, Guen MJL, Archer R, Arif KM. Partial Biodegradable Blend for Fused Filament Fabrication: In-Process Thermal and Post-Printing Moisture Resistance. Polymers (Basel) 2022; 14:polym14081527. [PMID: 35458281 PMCID: PMC9025397 DOI: 10.3390/polym14081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the extensive research, the moisture-based degradation of the 3D-printed polypropylene and polylactic acid blend is not yet reported. This research is a part of study reported on partial biodegradable blends proposed for large-scale additive manufacturing applications. However, the previous work does not provide information about the stability of the proposed blend system against moisture-based degradation. Therefore, this research presents a combination of excessive physical interlocking and minimum chemical grafting in a partial biodegradable blend to achieve stability against in-process thermal and moisture-based degradation. In this regard, a blend of polylactic acid and polypropylene compatibilized with polyethylene graft maleic anhydride is presented for fused filament fabrication. The research implements, for the first time, an ANOVA for combined thermal and moisture-based degradation. The results are explained using thermochemical and microscopic techniques. Scanning electron microscopy is used for analyzing the printed blend. Fourier transform infrared spectroscopy has allowed studying the intermolecular interactions due to the partial blending and degradation mechanism. Differential scanning calorimetry analyzes the blending (physical interlocking or chemical grafting) and thermochemical effects of the degradation mechanism. The thermogravimetric analysis further validates the physical interlocking and chemical grafting. The novel concept of partial blending with excessive interlocking reports high mechanical stability against moisture-based degradation.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood Digital Lab, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan
- Correspondence: or engr.harris@.uet.edu.pk
| | - Hammad Mohsin
- Department of Polymer Engineering, National Textile University, Faisalabad 37610, Pakistan;
| | - Rakhshanda Naveed
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan; (R.N.); (K.I.)
| | - Johan Potgieter
- Massey Agrifood Digital Lab, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan; (R.N.); (K.I.)
| | - Sudip Ray
- New Zealand Institute for Minerals to Materials Research, Greymouth 7805, New Zealand;
| | | | - Richard Archer
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Khalid Mahmood Arif
- Department of Mechanical and Electrical Engineering, SF&AT, Massey University, Auckland 0632, New Zealand;
| |
Collapse
|
21
|
Asyraf M, Ishak M, Syamsir A, Nurazzi N, Sabaruddin F, Shazleen S, Norrrahim M, Rafidah M, Ilyas R, Rashid MZA, Razman M. Mechanical properties of oil palm fibre-reinforced polymer composites: a review. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 17:33-65. [DOI: 10.1016/j.jmrt.2021.12.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Wu CS, Wu DY, Wang SS. Preparation and Characterization of Polylactic Acid/Bamboo Fiber Composites. ACS APPLIED BIO MATERIALS 2022; 5:1038-1046. [PMID: 35171562 DOI: 10.1021/acsabm.1c01082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of green and renewable materials has attracted increasing attention in recent years. Hence, biocomposite-based packaging materials have been investigated to replace petrochemical materials in several industries, such as the food packaging and electronics packaging industries. The tensile and thermal properties of biocomposite-based packaging materials composed of polylactic acid and plant fiber were mainly investigated in the current literature, but fewer studies on the improvement of water resistance and water vapor/oxygen barrier properties of composite materials were performed. Herein, we describe a composite film comprising TBFP [a mixture of bamboo fiber powder (BFP) and silica aerogel powder] that was combined with modified polylactic acid (MPLA) in a melt-mixing process. The structure, morphology, tensile strength, thermal properties, water absorption properties, water vapor/oxygen barrier effect, cytocompatibility, and biodegradability of the composites were characterized. MPLA and TBFP improved the properties of these composites. Fourier transform infrared and X-ray diffraction spectra have shown interfacial adhesion of MPLA/TBFP, resulting in a tighter structure. Hence, the MPLA/TBFP composite had higher elongation at failure (ε), tensile strength at failure (δ), Young's modulus (E), initial decomposition temperature at 5 wt % loss (T5%), residual yields, oxygen transmission rate, contact angles, lower thermal conductivity (k) values, water vapor transmission rate, and water absorption and biodegradability compared with PLA and PLA/BFP. It indicates that the MPLA/TBFP composites exhibited more favorable tensile strength, water resistance, and water vapor/oxygen barrier than the PLA and PLA/BFP composites. Cell growth analysis showed that the MPLA/TBFP and PLA/BFP composites own good cytocompatibility. Moreover, the biodegradability of the PLA/BFP and MPLA/TBFP composites increased with the filler (BFP or TBFP) concentration. Because of these improvements in their properties, composites can be used as packing materials in many perspectives.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shan-Shue Wang
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| |
Collapse
|
23
|
Kumar V, Sehgal R, Gupta R. Blends and composites of polyhydroxyalkanoates (PHAs) and their applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03341-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Natarajan ABMT, Sivadas VPD, Nair PDPD. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues. Biomed Mater 2021; 16. [PMID: 34265754 DOI: 10.1088/1748-605x/ac14cb] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
Osteochondral tissue engineering (OCTE) involves the simulation of highly complex tissues with disparate biomechanical properties. OCTE is regarded as the best option for treating osteochondral defects, most of the drawbacks of current treatment methodologies can be addressed by this method. In recent years, the conventional scaffolds used in cartilage and bone regeneration are gradually being replaced by 3D printed scaffolds (3DP). In the present study, we devised the strategy of 3D printing for fabricating biphasic and integrated scaffolds that are loaded with bioactive factors for enhancing the osteochondral tissue regeneration. Polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), is used along with bioactive factors (chondroitin sulphate and beta-tricalcium phosphate (βTCP)) for the upper cartilage and lower bone layer respectively. The 3D printed bi-layered scaffolds with varying infill density, to mimic the native tissue, are not previously explored for OCTE. Hence, we tested the simultaneous osteochondrogenic differentiation inducing potential of the aforesaid 3D printed biphasic scaffoldsin vitro, using rabbit adipose derived mesenchymal stem cells (ADMSCs). Further, the biphasic scaffolds were highly cytocompatible, with excellent cell adhesion properties and cellular morphology. Most importantly, these biphasic scaffolds directed the simultaneous differentiation of a single stem cell population in to two cell lineages (simultaneous differentiation of rabbit ADMSCs into chondrocytes and osteoblasts). Further, these scaffolds enhanced the production of ECM and induced robust expression of marker genes that is specific for respective cartilage and bone layers. The 3D printed OCTE scaffold of our study hence can simulate the native osteochondral unit and could be potential futuristic biomimetic scaffold for osteochondral defects. Furtherin vivostudies are warranted.
Collapse
Affiliation(s)
- Amrita Bds MTech Natarajan
- Division of Tissue Engineering and Regeneration Technologies, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Vp Ph D Sivadas
- Division of Tissue Engineering and Regeneration Technologies, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Prabha D Ph D Nair
- Division of Tissue Engineering and Regeneration Technologies, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
26
|
Active polyhydroxybutyrate (PHB)/sugarcane bagasse fiber-based anti-microbial green composite: material characterization and degradation studies. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01972-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
A Review on Filament Materials for Fused Filament Fabrication. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2021. [DOI: 10.3390/jmmp5030069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes that utilize thermoplastic polymers to produce three-dimensional (3D) geometry products. The FFF filament materials have a significant role in determining the properties of the final part produced, such as mechanical properties, thermal conductivity, and electrical conductivity. This article intensively reviews the state-of-the-art materials for FFF filaments. To date, there are many different types of FFF filament materials that have been developed. The filament materials range from pure thermoplastics to composites, bioplastics, and composites of bioplastics. Different types of reinforcements such as particles, fibers, and nanoparticles are incorporated into the composite filaments to improve the FFF build part properties. The performance, limitations, and opportunities of a specific type of FFF filament will be discussed. Additionally, the challenges and requirements for filament production from different materials will be evaluated. In addition, to provide a concise review of fundamental knowledge about the FFF filament, this article will also highlight potential research directions to stimulate future filament development. Finally, the importance and scopes of using bioplastics and their composites for developing eco-friendly filaments will be introduced.
Collapse
|
28
|
Jo J, Kim H, Jeong SY, Park C, Hwang HS, Koo B. Changes in Mechanical Properties of Polyhydroxyalkanoate with Double Silanized Cellulose Nanocrystals Using Different Organosiloxanes. NANOMATERIALS 2021; 11:nano11061542. [PMID: 34208072 PMCID: PMC8230657 DOI: 10.3390/nano11061542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a biodegradable plastic with great potential for tackling plastic waste and marine pollution issues, but its commercial applications have been limited due to its poor processability. In this study, surface-modified cellulose nanocrystals were used to improve the mechanical properties of PHA composites produced via a melt-extrusion process. Double silanization was conducted to obtain hydrophobically treated CNC-based fillers, using tetraethyl orthosilicate (TEOS) and methyltrimethoxysilane (MTMS). The morphology, particle size distributions, and surface characteristics of the silanized CNCs and their compatibility with a PHA polymer matrix differed by the organosiloxane treatment and drying method. It was confirmed that the double silanized CNCs had hydrophobic surface characteristics and narrow particle size distributions, and thereby showed excellent dispersibility in a PHA matrix. Adding hydrophobically treated CNCs to form a PHA composite, the elongation at break of the PHA composites was improved up to 301%, with little reduction of Young's modulus, compared to pure PHA. Seemingly, the double silanized CNCs added played a similar role to a nucleation agent in the PHA composite. It is expected that such high ductility can improve the mechanical properties of PHA composites, making them more suitable for commercial applications.
Collapse
Affiliation(s)
- Jaemin Jo
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Korea;
| | - Hyeyun Kim
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Correspondence: (H.K.); (B.K.); Tel.: +82-04-1598-8478 (H.K.); +82-04-1589-8409 (B.K.)
| | - So-Yeon Jeong
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Korea;
| | - Ha Soo Hwang
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- R&D Center, OomphChem Inc., 1223-24 Cheonan-daero, Cheonan-si 31080, Korea
| | - Bonwook Koo
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Correspondence: (H.K.); (B.K.); Tel.: +82-04-1598-8478 (H.K.); +82-04-1589-8409 (B.K.)
| |
Collapse
|
29
|
Schiavone N, Verney V, Askanian H. High-Density Bio-PE and Pozzolan Based Composites: Formulation and Prototype Design for Control of Low Water Flow. Polymers (Basel) 2021; 13:1908. [PMID: 34201232 PMCID: PMC8229793 DOI: 10.3390/polym13121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
An eco-friendly solution to produce new material for the material extrusion process is to use quarry waste as filler for biopolymer composites. A quarry waste that is still studied little as a filler for polymer composites is pozzolan. In this study, the optimization of the formulations and processing parameters of composites produced with pozzolan and bio-based polyethylene for 3D printing technology was performed. Furthermore, a precision irrigation system in the form of a drip watering cup was designed, printed, and characterized. The results showed that the presence of the pozzolan acted as a reinforcement for the composite material and improved the cohesion between the layers of the 3D printed objects. Furthermore, the optimization of the process conditions made it possible to print pieces of complex geometry and permeable parts for the control of the water flow rates with an order of magnitude in the range from mL/h to mL/day.
Collapse
Affiliation(s)
| | | | - Haroutioun Askanian
- CNRS, Clermont Auvergne INP, ICCF, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (N.S.); (V.V.)
| |
Collapse
|
30
|
Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112216. [PMID: 34225868 DOI: 10.1016/j.msec.2021.112216] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Additive manufacturing (AM) is recently imposing as a fast, reliable, and highly flexible solution to process various materials, that range from metals to polymers, to achieve a broad variety of customized end-goods without involving the injection molding process. The employment of biomaterials is of utmost relevance as the environmental footprint of the process and, consequently, of the end-goods is significantly decreased. Additive manufacturing can provide, in particular, an all-in-one platform to fabricate complex-shaped biobased items such as bone implants or biomedical devices, that would be, otherwise, extremely troublesome and costly to achieve. Polyhydroxyalkanoates (PHAs) is an emerging class of biobased and biodegradable polymeric materials achievable by fermentation from bacteria. There are some promising scientific and technical reports on the manufacturing of several commodities in PHAs by additive manufacturing. However, many challenges must still be faced in order to expand further the use of PHAs. In this framework, the present work reviews and classifies the relevant papers focused on the design and development of PHAs for different 3D printing techniques and overviews the most recent applications of this approach.
Collapse
Affiliation(s)
- Mehrshad Mehrpouya
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Massimiliano Barletta
- Universit'a degli Studi Roma Tre, Dipartimento di Ingegneria, Via Vito Volterra 62, 00146 Roma, Italy
| | - Pascal Laheurte
- Université de Lorraine, Laboratoire LEM3 UMR 7239, Metz F-57045, France
| | - Valérie Langlois
- Univ Paris Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
31
|
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 2021; 11:17151-17196. [PMID: 35479695 PMCID: PMC9033233 DOI: 10.1039/d1ra02390j] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
In spite of the fact that petroleum-based plastics are convenient in terms of fulfilling the performance requirements of many applications, they contribute significantly to a number of ecological and environmental problems. Recently, the public awareness of the negative effects of petroleum-based plastics on the environment has increased. The present utilization of natural resources cannot be sustained forever. Furthermore, oil is often subjected to price fluctuations and will eventually be depleted. The increase in the level of carbon dioxide due to the combustion of fossil fuel is causing global warming. Concerns about preservation of natural resources and climate change are considered worldwide motivations for academic and industrial researchers to reduce the consumption and dependence on fossil fuel. Therefore, bio-based polymers are moving towards becoming the favorable option to be utilized in polymer manufacturing, food packaging, and medical applications. This paper represents an overview of the feasibility of both Poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications. Physical, thermal, rheological, and mechanical properties of both polymers as well as their permeability and migration properties have been reviewed. Moreover, PLA's recyclability, sustainability, and environmental assessment have been also discussed. Finally, applications in which both polymers can replace petroleum-based plastics have been explored and provided.
Collapse
Affiliation(s)
- Ahmed Z Naser
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - I Deiab
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - Basil M Darras
- Department of Mechanical Engineering, American University of Sharjah Sharjah UAE
| |
Collapse
|
32
|
Preparation, characterization, and performance of bio-based polyester composites derived from renewable distillers grains and shellfish. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02471-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Abstract
Abstract
In the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.
Collapse
|
34
|
The effect of natural fillers on the marine biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Sci Rep 2021; 11:911. [PMID: 33441581 PMCID: PMC7806601 DOI: 10.1038/s41598-020-78122-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022] Open
Abstract
Worldwide, improper disposal of plastics is instigating environmental initiatives to combat plastics accumulation of in the environment and the world’s oceans. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites with Miscanthus (Misc) fibres and distillers’ dried grains with solubles (DDGS) were studied to ascertain if natural fibres and proteinaceous fillers can improve polyhydroxyalkanoate marine biodegradability. Using ASTM standard D7991-15, the biodegradation of PHBV, PHBV with Misc (15 and 25 wt%) and PHBV with DDGS (15 and 25 wt%) was performed in a simulated marine environment for the first time, as indicated by a literature survey. PHBV/Misc (85/15) and (75/25) biocomposites showed 15 and 25% more biodegradation compared to PHBV, respectively. Proteinaceous PHBV/DDGS (85/15) and (75/25) biocomposites showed 17 and 40% more biodegradation compared to PHBV, respectively. Furthermore, PHBV/Misc (75/25) and PHBV/DDGS (75/25) biocomposites were marine biodegraded in 412 and 295 days, respectively. In conclusion, proteinaceous fillers (DDGS) biocomposites have better marine biodegradability than miscanthus.
Collapse
|
35
|
Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 2020; 169:414-427. [PMID: 33352152 DOI: 10.1016/j.ijbiomac.2020.12.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
The metamorphosis of biodegradable polymers in biomedical applications is an auspicious myriad of indagation. The utmost challenge in clinical conditions includes trauma, organs failure, soft and hard tissues, infection, cancer and inflammation, congenital disorders which are still not medicated efficiently. To overcome this bone of contention, proliferation in the concatenation of biodegradable materials for clinical applications has emerged as a silver bullet owing to eco-friendly, nontoxicity, exorbitant mechanical properties, cost efficiency, and degradability. Several bioimplants are designed and fabricated in a way to reabsorb or degrade inside the body after performing the specific function rather than eliminating the bioimplants. The objective of this comprehensive is to unfurl the anecdote of emerging biological polymers derived implants including silk, lignin, soy, collagen, gelatin, chitosan, alginate, starch, etc. by explicating the selection, fabrication, properties, and applications. Into the bargain, emphasis on the significant characteristics of current discernment and purview of nanotechnology integrated biopolymeric implants has also been expounded. This robust contrivance shed light on recent inclinations and evolution in tissue regeneration and targeting organs followed by precedency and fly in the ointment concerning biodegradable implants evolved by employing fringe benefits provided by 3D printing technology for building tissues or organs construct for implantation.
Collapse
Affiliation(s)
- Bhasha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India.
| | - Shreya Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| |
Collapse
|
36
|
Fernandes M, Salvador A, Alves MM, Vicente AA. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. COATINGS 2020. [DOI: 10.3390/coatings10100973] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and mechanical properties. Natural fibres are biodegradable, biocompatible, eco-friendly and created from renewable resources. Therefore, they are extensively used in place of expensive and non-renewable synthetic fibres, such as glass fibre, carbon fibre and aramid fibre, in many applications. Additionally, the NFRCs are used in automobile, aerospace, personal protective clothing, sports and medical industries as alternatives to the petroleum-based materials. To that end, in the last few decades numerous studies have been carried out on the natural fibre reinforced composites to address the problems associated with the reinforcement fibres, polymer matrix materials and composite fabrication techniques in particular. There are still some drawbacks to the natural fibre reinforced composites (NFRCs)—for example, poor interfacial adhesion between the fibre and the polymer matrix, and poor mechanical properties of the NFRCs due to the hydrophilic nature of the natural fibres. An up-to-date holistic review facilitates a clear understanding of the behaviour of the composites along with the constituent materials. This article intends to review the research carried out on the natural fibre reinforced composites over the last few decades. Furthermore, up-to-date encyclopaedic information about the properties of the NFRCs, major challenges and potential measures to overcome those challenges along with their prospective applications have been exclusively illustrated in this review work. Natural fibres are created from plant, animal and mineral-based sources. The plant-based cellulosic natural fibres are more economical than those of the animal-based fibres. Besides, these pose no health issues, unlike mineral-based fibres. Hence, in this review, the NFRCs fabricated with the plant-based cellulosic fibres are the main focus.
Collapse
|
38
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Harris M, Potgieter J, Ray S, Archer R, Arif KM. Polylactic acid and high‐density polyethylene blend: Characterization and application in additive manufacturing. J Appl Polym Sci 2020. [DOI: 10.1002/app.49602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Muhammad Harris
- Department of Mechanical and Electrical Engineering SF&AT, Massey University Auckland New Zealand
- University of Engineering and Technology Lahore Pakistan
| | - Johan Potgieter
- School of Food and Advanced Technology, Massey University Palmerston North New Zealand
| | - Sudip Ray
- Department of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Richard Archer
- School of Food and Advanced Technology, Massey University Palmerston North New Zealand
| | - Khalid Mahmood Arif
- Department of Mechanical and Electrical Engineering SF&AT, Massey University Auckland New Zealand
| |
Collapse
|
40
|
Wu CS, Wu DY, Wang SS, Chan LP, Liang CH. Modulation of polylactic acid nanofiber containing corn stalk waste via electrospinning: fabrication, characterization, and cytocompatibility. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung, Taiwan
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shan-Shue Wang
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
41
|
Wasti S, Adhikari S. Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Front Chem 2020; 8:315. [PMID: 32457867 PMCID: PMC7221194 DOI: 10.3389/fchem.2020.00315] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) printing is a revolutionary manufacturing technique that can fabricate a 3D object by depositing materials layer by layer. Different materials such as metals, polymers, and concretes are generally used for 3D printing. In order to make 3D printing sustainable, researchers are working on the use of different bioderived materials for 3D printing. Because of the abundant and sustainable sources, and versatile properties, biomaterials are considered as the potential candidates that have the ability to replace petroleum-based polymers. This review highlights the basic overview of fused deposition modeling (FDM) technique of 3D printing and recent developments that have occurred on FDM printing using biomaterials. Specifically, FDM printing process, final properties, and characteristics of biopolymers, their composites, and polymers containing biofillers are discussed.
Collapse
Affiliation(s)
- Sanjita Wasti
- Department of Biosystems Engineering, Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, United States
| | - Sushil Adhikari
- Department of Biosystems Engineering, Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, United States
| |
Collapse
|
42
|
Paixão WA, Martins LS, Zanini NC, Mulinari DR. Modification and Characterization of Cellulose Fibers from Palm Coated by ZrO2·nH2O Particles for Sorption of Dichromate Ions. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01415-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Puppi D, Pecorini G, Chiellini F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering (Basel) 2019; 6:E108. [PMID: 31795345 PMCID: PMC6955737 DOI: 10.3390/bioengineering6040108] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
The rapidly growing interest on polyhydroxyalkanoates (PHA) processing for biomedical purposes is justified by the unique combinations of characteristics of this class of polymers in terms of biocompatibility, biodegradability, processing properties, and mechanical behavior, as well as by their great potential for sustainable production. This article aims at overviewing the most exploited processing approaches employed in the biomedical area to fabricate devices and other medical products based on PHA for experimental and commercial applications. For this purpose, physical and processing properties of PHA are discussed in relationship to the requirements of conventionally-employed processing techniques (e.g., solvent casting and melt-spinning), as well as more advanced fabrication approaches (i.e., electrospinning and additive manufacturing). Key scientific investigations published in literature regarding different aspects involved in the processing of PHA homo- and copolymers, such as poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), are critically reviewed.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM – Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| | | | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM – Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| |
Collapse
|
44
|
Wu CS. Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: Preparation, characterization, and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109878. [PMID: 31499994 DOI: 10.1016/j.msec.2019.109878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/15/2018] [Accepted: 06/08/2019] [Indexed: 12/30/2022]
Abstract
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites containing fish scales (FSs) were prepared and used in the fabrication of three-dimensional printing filaments. Maleic anhydride (MA)-grafted polyhydroxyalkanoate (PHBV-g-MA) and FS were used to improve the compatibility of FS within a PHBV matrix. Mechanical and morphological characterization indicated that improved adhesion between FS and PHBV-g-MA enhanced the tensile strength of the composite compared with that of PHBV/FS. The PHBV-g-MA/FS composites were also more water-resistant than the PHBV/FS composites. Human foreskin fibroblasts (FBs) were seeded on two series of these composites to assess cytocompatibility. FB proliferation was greater on PHBV/FS composites than on PHBV-g-MA/FS composites. Cell-cycle assays with FBs on PHBV/FS and PHBV-g-MA/FS series composites were unaffected. Moreover, FS enhanced the antioxidant and antimicrobial properties of PHBV-g-MA/FS and PHBV/FS composites, demonstrating the potential of PHBV-g-MA/FS and PHBV/FS composites for biomedical material applications.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County 82101, Taiwan, Republic of China.
| |
Collapse
|
45
|
Abstract
Human bones have unique structures and characteristics, and replacing a natural bone in the case of bone fracture or bone diseases is a very complicated problem. The main goal of this paper was to summarize the recent research on polymer materials as bone substitutes and for bone repair. Bone treatment methods, bone substitute materials as well as their advantages and drawbacks, and manufacturing methods were reviewed. Biopolymers are the most promising materials in the field of artificial bones and using biopolymers with the shape memory effect can improve the integration of an artificial bone into the human body by better mimicking the structure and properties of natural bones, decreasing the invasiveness of surgical procedures by producing deployable implants. It has been shown that the application of the rapid prototyping technology for artificial bones allows the customization of bone substitutes for a patient and the creation of artificial bones with a complex structure.
Collapse
Affiliation(s)
- Anastasiia Kashirina
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| |
Collapse
|
46
|
Harris M, Potgieter J, Archer R, Arif KM. Effect of Material and Process Specific Factors on the Strength of Printed Parts in Fused Filament Fabrication: A Review of Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1664. [PMID: 31121858 PMCID: PMC6566369 DOI: 10.3390/ma12101664] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023]
Abstract
Additive manufacturing (AM) is rapidly evolving as the most comprehensive tool to manufacture products ranging from prototypes to various end-user applications. Fused filament fabrication (FFF) is the most widely used AM technique due to its ability to manufacture complex and relatively high strength parts from many low-cost materials. Generally, the high strength of the printed parts in FFF is attributed to the research in materials and respective process factors (process variables, physical setup, and ambient temperature). However, these factors have not been rigorously reviewed for analyzing their effects on the strength and ductility of different classes of materials. This review systematically elaborates the relationship between materials and the corresponding process factors. The main focus is on the strength and ductility. A hierarchical approach is used to analyze the materials, process parameters, and void control before identifying existing research gaps and future research directions.
Collapse
Affiliation(s)
- Muhammad Harris
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| | - Johan Potgieter
- Massey Agritech Partnership Research Centre, Massey University, Palmerston North 4442, New Zealand.
| | - Richard Archer
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand.
| | - Khalid Mahmood Arif
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| |
Collapse
|
47
|
Wu CS, Wu DY, Wang SS. Antibacterial Properties of Biobased Polyester Composites Achieved through Modification with a Thermally Treated Waste Scallop Shell. ACS APPLIED BIO MATERIALS 2019; 2:2262-2270. [DOI: 10.1021/acsabm.9b00205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Shan-Shue Wang
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| |
Collapse
|
48
|
Wu CS, Liao HT, Tsou CH. Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1628-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Green Preparation of Straw Fiber Reinforced Hydrolyzed Soy Protein Isolate/Urea/Formaldehyde Composites for Biocomposite Flower Pots Application. MATERIALS 2018; 11:ma11091695. [PMID: 30213087 PMCID: PMC6163861 DOI: 10.3390/ma11091695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022]
Abstract
The effects of soil burial on the biodegradation of biocomposite flower pots (BFP) made from straw fiber (SF) and hydrolyzed soy protein isolate/urea/formaldehyde (HSPI/U/F) copolymer resin were studied in detail. The microstructure, crystallinity, functional groups, mechanical, degradation and thermal property of the prepared SF with HSPI/U/F copolymer resin have been studied, and the degradation mechanism was also elucidated. XRD results showed that the bond breakage between SF and HSPI/U/F copolymer resin induced a decrease in relative degradation-resistant crystal structures. FTIR spectra showed that the methylolated HSPI units could form a cross-linking network with U/F and SF. The BFP degradation after soil burial was mainly attributed to the effects of microorganisms. The degradation products were environmentally friendly, because they were degradable and could fertilize the soil. In addition, the U/F adhesives were slightly degraded by the microorganisms due to the HSPI in the pots. The TG and DSC results showed that the molecular motion of the BFP matrix could be restricted by the degradation action and the content of HSPI, resulting in decreased crystallization enthalpy and showing good thermal property. The tensile strength of different reinforced samples was not significantly reduced in comparison to U/F resin, and still kept good mechanical performance. Thus, the prepared SF reinforced HSPI/U/F copolymer resins could have good potential for use in the field of biodegradable flower pots because of their good thermal property, mechanical property, biodegradability, and relatively low cost.
Collapse
|
50
|
Gross IP, Schneider FS, Caro MS, da Conceição TF, Caramori GF, Pires AT. Polylactic acid, maleic anhydride and dicumyl peroxide: NMR study of the free-radical melt reaction product. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|