1
|
Rusen E, Mocanu A, Brincoveanu O, Toader G, Gavrila R, Diacon A, Stavarache C. One Reaction: Two Types of Mechanism-SARA-ATRP and SET-LRP-for MMA Polymerization in the Presence of PVC. ACS OMEGA 2024; 9:42455-42469. [PMID: 39431099 PMCID: PMC11483388 DOI: 10.1021/acsomega.4c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
This study presents for the first time the polymerization of methyl methacrylate (MMA) in the presence of poly(vinyl chloride) (PVC) that takes place by both SARA-ATRP and SET-LRP mechanisms. The two types of polymerizations that occur in the system are PMMA grafting to the PVC backbone and the formation of a new PMMA polymer, both occurring in the presence of a Cu0wire. The polymerizations were controlled as confirmed by the molecular weight evolution, polymerization kinetics, and variations in the dispersity value. The MMA polymerization in the presence of PVC at 60 and 70 °C leads to the formation of two polymer species characterized by an increase in the molecular weight with the conversion and a narrowing of the dispersity value with the reaction progress. To increase the degree of control over the polymerization, the same reaction was performed at room temperature, which allowed us to highlight the presence of the SARA-ATRP and SET-LRP mechanisms via subsequent polymer chain extensions. The results demonstrated that PMMA grafting on PVC polymers follows a SARA-ATRP mechanism, while the formation of a PMMA homopolymer entails a SET-LRP process. The influence of solvent nature on the polymerization reaction was studied by performing the grafting of N-isopropylacrylamide (NIPAM) onto the surface of PVC particles in aqueous media in the presence and in the absence of CuCl2. The polymerization reactions and the obtained materials were studied by gel permeation chromatography (GPC), 1H NMR, DMA, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Edina Rusen
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
| | - Alexandra Mocanu
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
| | - Oana Brincoveanu
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
- Research
Institute of the University of Bucharest, ICUB Bucharest, Soseaua Panduri, nr. 90, Sector
5, Bucurȩti 050663, Romania
| | - Gabriela Toader
- Military
Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., Bucharest 050141, Romania
| | - Raluca Gavrila
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
| | - Aurel Diacon
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
- Military
Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., Bucharest 050141, Romania
| | - Cristina Stavarache
- Advanced
Polymer Materials Group, University Politehnica
of Bucharest, 1−7 Gh. Polizu Street, Bucharest 011061, Romania
- “C.
D. Nenitzescu” Institute of Organic and Supramolecular Chemistry202-B
Spl. Independentei, Bucharest 060023, Romania
| |
Collapse
|
2
|
De Bon F, Fantin M, Pereira VA, Lourenço Bernardino TJ, Serra AC, Matyjaszewski K, Coelho JFJ. Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current. Angew Chem Int Ed Engl 2024; 63:e202406484. [PMID: 38647172 DOI: 10.1002/anie.202406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131, Padova, Italy
| | - Vanessa A Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Teresa J Lourenço Bernardino
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, 15213, Pittsburgh, PA, USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
3
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
4
|
Guo T, He B, Mu R, Li J, Sun C, Wang R, Zhang G, Sheng W, Yu B, Li B. Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by ppm of Cu II/Tris(2-pyridylmethyl)amine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2664-2671. [PMID: 38253013 DOI: 10.1021/acs.langmuir.3c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Atom transfer radical polymerization (ATRP) is one of the most widely used methods for modifying surfaces with functional polymer films and has received considerable attention in recent years. Here, we report an electrochemically mediated surface-initiated ATRP to graft polymer brushes onto solid substrates catalyzed by ppm amounts of CuII/TPMA in water/MeOH solution. We systematically investigated the type and concentrations of copper/ligand and applied potentials correlated to the polymerization kinetics and polymer brush thickness. Gradient polymer brushes and various types of polymer brushes are prepared. Block copolymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-sulfopropyl methacrylate potassium salt (PSPMA) (poly(HEMA-b-SPMA)) with ultralow ppm eATRP indicates the remarkable preservation of chain end functionality and a pronounced "living" characteristic feature of ppm-level eATRP in aqueous solution for surface polymerization.
Collapse
Affiliation(s)
- Tingting Guo
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Baoluo He
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| |
Collapse
|
5
|
Ding T, Liu R, Yan X, Zhang Z, Xiong F, Li X, Wu Z. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int J Biol Macromol 2023; 241:124458. [PMID: 37076067 DOI: 10.1016/j.ijbiomac.2023.124458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
It is a promising idea to graft zwitterionic polymers onto lignin and prepare lignin-grafted-poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (Lignin-g-PDMAPS) thermosensitive polymer with the upper critical solution temperature (UCST). In this paper, an electrochemically mediated atom transfer radical polymerization (eATRP) method was used to prepare Lignin-g-PDMAPS. The structure and property of the Lignin-g-PDMAPS polymer were characterized by the fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC). Furthermore, the effect of catalyst structure, applied potential, amount of Lignin-Br, Lignin-g-PDMAPS concentration, NaCl concentration on UCST of Lignin-g-PDMAPS were investigated. It was worth noting that polymerization was well controlled when the ligand was tris (2-aminoethyl) amine (Me6TREN), applied potential was -0.38 V and the amount of Lignin-Br was 100 mg. And the UCST of the Lignin-g-PDMAPS aqueous solution (1 mg/ml) was 51.47 °C, the molecular weight was 8987 g/mol, and the particle size was 318 nm. It was also found that the UCST increased and the particle size decreased with the Lignin-g-PDMAPS polymer concentration increased, and the UCST decreased and the particle size increased with the NaCl concentration increases. This work investigated UCST-thermoresponsive polymer which possessed lignin main chain combining the zwitterionic side chain, and provided a new way for development of lignin based UCST-thermoresponsive materials and medical carrier materials, in addition to expand the scope of eATRP.
Collapse
Affiliation(s)
- Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuoyu Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Yan L, Xu L. Fluorescent nano‐particles prepared by
eATRP
combined with self‐assembly imprinting technology. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Liu Yan
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| |
Collapse
|
7
|
Münch AS, Simon F, Merlitz H, Uhlmann P. Investigation of an oleophobic-hydrophilic polymer brush with switchable wettability for easy-to-clean coatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Flejszar M, Ślusarczyk K, Chmielarz P, Smenda J, Wolski K, Wytrwal-Sarna M, Oszajca M. SI-ATRP on the lab bench: A facile recipe for oxygen-tolerant PDMAEMA brushes synthesis using microliter volumes of reagents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
De Bon F, Lorandi F, Coelho JFJ, Serra AC, Matyjaszewski K, Isse AA. Dual electrochemical and chemical control in atom transfer radical polymerization with copper electrodes. Chem Sci 2022; 13:6008-6018. [PMID: 35685801 PMCID: PMC9132085 DOI: 10.1039/d2sc01982e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 01/02/2023] Open
Abstract
In Atom Transfer Radical Polymerization (ATRP), Cu0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the CuI activator through a comproportionation reaction, respectively. Cu0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP (eATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in eATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage. The use of a Cu cathode in eATRP allows exploiting the synergistic effect between electrochemical and chemical stimuli to halt or accelerate polymerizations, reduce energy consumption and achieve control in challenging systems.![]()
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Francesca Lorandi
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy .,Department of Chemistry, Carnegie Mellon University 4400 Fifth Ave 15213 Pittsburgh PA USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | | | - Abdirisak A Isse
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
10
|
Surmacz K, Błoniarz P, Chmielarz P. Coffee Beverage: A New Strategy for the Synthesis of Polymethacrylates via ATRP. Molecules 2022; 27:molecules27030840. [PMID: 35164104 PMCID: PMC8840111 DOI: 10.3390/molecules27030840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee, the most popular beverage in the 21st century society, was tested as a reaction environment for activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) without an additional reducing agent. Two blends were selected: pure Arabica beans and a proportional blend of Arabica and Robusta beans. The use of the solution received from the mixture with Robusta obtained a high molecular weight polymer product in a short time while maintaining a controlled structure of the synthesized product. Various monomers with hydrophilic characteristics, i.e., 2-(dimethylamino)ethyl methacrylate (DMAEMA), oligo(ethylene glycol) methyl ether methacrylate (OEGMA500), and glycidyl methacrylate (GMA), were polymerized. The proposed concept was carried out at different concentrations of coffee grounds, followed by the determination of the molar concentration of caffeine in applied beverages using DPV and HPLC techniques.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland;
| | - Paweł Błoniarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
- Correspondence:
| |
Collapse
|
11
|
Mohammed M, Jones B, Wilson P. Current-controlled ‘plug-and-play’ electrochemical atom transfer radical polymerization of acrylamides in water. Polym Chem 2022. [DOI: 10.1039/d2py00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous electrochemical atom transfer radical polymerisation (eATRP) can be challenging due to deleterious side reactions leading to the loss of the ω-chain end, increased rates of activation (k¬act) leading to...
Collapse
|
12
|
|
13
|
Zaborniak I, Macior A, Chmielarz P. Smart, Naturally-Derived Macromolecules for Controlled Drug Release. Molecules 2021; 26:molecules26071918. [PMID: 33805508 PMCID: PMC8037046 DOI: 10.3390/molecules26071918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
A series of troxerutin-based macromolecules with ten poly(acrylic acid) (PAA) or poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) homopolymer side chains were synthesized by a supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) approach. The prepared precisely-defined structures with low dispersity (Mw/Mn < 1.09 for PAA-based, and Mw/Mn < 1.71 for PDMAEMA-based macromolecules) exhibited pH-responsive behavior depending on the length of the polymer grafts. The properties of the received polyelectrolytes were investigated by dynamic light scattering (DLS) measurement to determine the hydrodynamic diameter and zeta potential upon pH changes. Additionally, PDMAEMA-based polymers showed thermoresponsive properties and exhibited phase transfer at a lower critical solution temperature (LCST). Thanks to polyelectrolyte characteristics, the prepared polymers were investigated as smart materials for controlled release of quercetin. The influence of the length of the polymer grafts for the quercetin release profile was examined by UV–VIS spectroscopy. The results suggest the strong correlation between the length of the polymer chains and the efficiency of active substance release, thus, the adjustment of the composition of the macromolecules characterized by branched architecture can precisely control the properties of smart delivery systems.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Angelika Macior
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| |
Collapse
|
14
|
Isse AA, Gennaro A. Electrochemistry for Atom Transfer Radical Polymerization. CHEM REC 2021; 21:2203-2222. [PMID: 33750023 DOI: 10.1002/tcr.202100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022]
Abstract
Atom Transfer Radical Polymerization (ATRP) is the most powerful and most employed technology of Controlled Radical Polymerization (CRP) to produce polymers with well-defined architecture, that is, composition, topology, and functionality. Several hundreds of papers are published every year on ATRP processes, mainly based on empiric experimental procedures. Electrochemistry powerfully entered in the field of ATRP about 10 years ago, providing important contributions both to the further development of the process and to a better understanding of its mechanism. Five main issues took advantage of electrochemistry and/or its synergism with ATRP: i) understanding the mechanism of ATRP activation; ii) determination of thermodynamic parameters; iii) determination of activation and deactivation rate constants; iv) the SARA ATRP vs SET-LRP dispute: the role of Cu0 ; v) electrochemically-mediated ATRP.
Collapse
Affiliation(s)
- Abdirisak Ahmed Isse
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| |
Collapse
|
15
|
Zaborniak I, Macior A, Chmielarz P, Caceres Najarro M, Iruthayaraj J. Lignin-based thermoresponsive macromolecules via vitamin-induced metal-free ATRP. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Hu W, Xu L. Investigation of eATRP for a Carboxylic‐Acid‐Functionalized Ionic Liquid Monomer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weiling Hu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
17
|
Liu Q, Liu J, Yang H, Wang X, Kong J, Zhang X. Highly sensitive lung cancer DNA detection via GO enhancing eATRP signal amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Aklujkar PS, Rao AR. Developments in the Components of Metal‐Free Photoinitiated Organocatalyzed‐Atom Transfer Radical Polymerization (O‐ATRP). ChemistrySelect 2020. [DOI: 10.1002/slct.202004194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pritish. S. Aklujkar
- Department of Polymer and Surface Engineering Institute of Chemical Technology, Matunga East Mumbai 400019 India
| | - Adarsh. R. Rao
- Department of Polymer and Surface Engineering Institute of Chemical Technology, Matunga East Mumbai 400019 India
| |
Collapse
|
19
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
20
|
|
21
|
Zhang Y, Yan J, Avellan A, Gao X, Matyjaszewski K, Tilton RD, Lowry GV. Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for in Vivo Agrochemical Delivery. ACS NANO 2020; 14:10954-10965. [PMID: 32628009 DOI: 10.1021/acsnano.0c03140] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Climate change is increasing the severity and length of heat waves. Heat stress limits crop productivity and can make plants more sensitive to other biotic and abiotic stresses. New methods for managing heat stress are needed. Herein, we have developed ∼30 nm diameter poly(acrylic acid)-block-poly(N-isopropylacrylamide) (PAA-b-PNIPAm) star polymers with varying block ratios for temperature-programmed release of a model antimicrobial agent (crystal violet, CV) at plant-relevant pH. Hyperspectral-Enhanced Dark field Microscopy was used to investigate star polymer-leaf interactions and route of entrance. The majority of loaded star polymers entered plant leaves through cuticular and epidermis penetration when applied with the adjuvant Silwet L-77. Up to 43 wt % of star polymers (20 μL at 200 mg L-1 polymer concentration) applied onto tomato (Solanum lycopersicum) leaves translocated to other plant compartments (younger and older shoots, stem, and root) over 3 days. Without Silwet L-77, the star polymers penetrated the cuticle, but mainly accumulated at the epidermis cell layer. The degree of the star polymer temperature responsiveness for CV release in vitro in the range of 20 to 40 °C depends on pH and the ratio of the PAA to PNIPAm blocks. Temperature-responsive release of CV was also observed in vivo in tomato leaves. These results underline the potential for PAA-b-PNIPAm star polymers to provide efficient and temperature-programmed delivery of cationic agrochemicals into plants for protection against heat stress.
Collapse
|
22
|
Flejszar M, Chmielarz P, Wolski K, Grześ G, Zapotoczny S. Polymer Brushes via Surface-Initiated Electrochemically Mediated ATRP: Role of a Sacrificial Initiator in Polymerization of Acrylates on Silicon Substrates. MATERIALS 2020; 13:ma13163559. [PMID: 32806681 PMCID: PMC7475859 DOI: 10.3390/ma13163559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
Abstract
Silicon wafers as semiconductors are essential components of integrated circuits in electronic devices. For this reason, modification of the silicon surface is an important factor in the manufacturing of new hybrid materials applied in micro- and nanoelectronics. Herein, copolymer brushes of hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) and hydrophobic poly(tert-butyl acrylate) (PtBA) were grafted from silicon wafers via simplified electrochemically mediated atom transfer radical polymerization (seATRP) according to a surface-initiated approach. The syntheses of PHEA-b-PtBA copolymers were carried out with diminished catalytic complex concentration (successively 25 and 6 ppm of Cu). In order to optimize the reaction condition, the effect of the addition of a supporting electrolyte was investigated. A controlled increase in PHEA brush thickness was confirmed by atomic force microscopy (AFM). Various other parameters including contact angles and free surface energy (FSE) for the modified silicon wafer were presented. Furthermore, the effect of the presence of a sacrificial initiator in solution on the thickness of the grafted brushes was reported. Successfully fabricated inorganic–organic hybrid nanomaterials show potential application in biomedicine and microelectronics devices, e.g., biosensors.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| |
Collapse
|
23
|
Szczepaniak G, Łagodzińska M, Dadashi-Silab S, Gorczyński A, Matyjaszewski K. Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. Chem Sci 2020; 11:8809-8816. [PMID: 34123134 PMCID: PMC8163335 DOI: 10.1039/d0sc03179h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N-isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights (M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP (Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Matylda Łagodzińska
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Department of Chemistry, University of Oxford South Parks Road Oxford OX13QZ UK
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
24
|
Surmacz K, Chmielarz P. Low Ppm Atom Transfer Radical Polymerization in (Mini)Emulsion Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1717. [PMID: 32268579 PMCID: PMC7178667 DOI: 10.3390/ma13071717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
In the last decade, unceasing interest in atom transfer radical polymerization (ATRP) has been noted, especially in aqueous dispersion systems. Emulsion or miniemulsion is a preferred environment for industrial polymerization due to easier heat dissipation and lower production costs associated with the use of water as a dispersant. The main purpose of this review is to summarize ATRP methods used in emulsion media with different variants of initiating systems. A comparison of a dual over single catalytic approache by interfacial and ion pair catalysis is presented. In addition, future development directions for these methods are suggested for better use in biomedical and electronics industries.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
25
|
De Bon F, Marenzi S, Isse AA, Durante C, Gennaro A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of
N
,
N
‐Dimethylacrylamide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Sofia Marenzi
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
26
|
Chang YL, Wei TC, Liu YL. Electrochemical activation of polymer chains mediated with radical transfer reactions. Chem Commun (Camb) 2020; 56:2626-2629. [PMID: 32016254 DOI: 10.1039/c9cc09768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work demonstrates a general and effective approach to activate inert polymer chains for further reactions through electrochemically driven radical generation and radical transfer reactions. The generated radical-containing polymer chains show capacity for further polymer reactions and preparation of polymer hybrids.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
27
|
Flejszar M, Chmielarz P. Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods-Current Status and Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E999. [PMID: 32102217 PMCID: PMC7078635 DOI: 10.3390/ma13040999] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Surface modification of poly(ether ether ketone) (PEEK) aimed at applying it as a bone implant material aroused the unflagging interest of the research community. In view of the development of implantology and the growing demand for new biomaterials, increasing biocompatibility and improving osseointegration are becoming the primary goals of PEEK surface modifications. The main aim of this review is to summarize the use of polymerization methods and various monomers applied for surface modification of PEEK to increase its bioactivity, which is a critical factor for successful applications of biomedical materials. In addition, the future directions of PEEK surface modifications are suggested, pointing to low-ppm surface-initiated atom transfer radical polymerization (SI-ATRP) as a method with unexplored capacity for flat surface modifications.
Collapse
Affiliation(s)
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| |
Collapse
|
28
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Zheng X, Liu Q, Li M, Feng W, Yang H, Kong J. Dual atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Bioelectrochemistry 2020; 133:107462. [PMID: 32058273 DOI: 10.1016/j.bioelechem.2020.107462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Atom transfer radical polymerization as a form of controlled/living radical polymerization is particularly attractive. In this work, dual atom transfer radical polymerization (ATRP) is reported for ultrasensitive DNA detection. Firstly, a peptide nucleic acid (PNA) modified with a thiol group was self-assembled on an electrode surface to capture target DNA (TDNA). The initiator of the first ATRP (ATRP-1), α-bromoisobutyric acid (BIBA), was linked to forming PNA/DNA heteroduplexes via coordination of Zr4+. The polymer chain formed by the monomer of ATRP-1 (2-(2-bromoisobutyryloxy) ethyl methacrylate, BIEM) was also one of initiators of the second ATRP (eATRP-2). The other initiator of eATRP-2 was additional BIBA. ATRP-1 involves activator regeneration by electron transfer (ARGET) ATRP, regulated via excess reducing agent. eATRP-2 is electrochemically mediated ATRP which can control the polymerization via an appropriate applied potential. Compared with one ATRP, more monomers of eATRP-2 modified with ferrocene are attached to electrode surface. Under optimal conditions, this dual ATRP strategy provides a low limit of detection (25 aM, ~150 molecules) with satisfactory selectivity and stability. Importantly, this strategy presents a useful prospect for the field of biomolecule detection.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Manman Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
30
|
Zaborniak I, Chmielarz P, Matyjaszewski K. Synthesis of Riboflavin‐Based Macromolecules through Low ppm ATRP in Aqueous Media. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Paweł Chmielarz
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
31
|
Flejszar M, Chmielarz P. Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic-Inorganic Hybrid Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3030. [PMID: 31540468 PMCID: PMC6766320 DOI: 10.3390/ma12183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool that allows for the synthesis of organic-inorganic hybrid nanomaterials with high potential applications in many disciplines. This review presents synthetic achievements and modifications of nanoparticles via SI-ATRP described in literature last decade. The work mainly focuses on the research development of silica, gold and iron polymer-grafted nanoparticles as well as nature-based materials like nanocellulose. Moreover, typical single examples of nanoparticles modification, i.e., ZnO, are presented. The organic-inorganic hybrid systems received according to the reversible deactivation radical polymerization (RDRP) approach with drastically reduced catalyst complex concentration indicate a wide range of applications of materials including biomedicine and microelectronic devices.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
32
|
Michieletto A, Lorandi F, De Bon F, Isse AA, Gennaro A. Biocompatible polymers via aqueous electrochemically mediated atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University, 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Francesco De Bon
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| |
Collapse
|
33
|
Towards scale-up of electrochemically-mediated atom transfer radical polymerization: Use of a stainless-steel reactor as both cathode and reaction vessel. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Satoh K, Ishizuka K, Hamada T, Handa M, Abe T, Ozawa S, Miyajima M, Kamigaito M. Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kenta Ishizuka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsuyoshi Hamada
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Handa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomohiro Abe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Satoshi Ozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Miyajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
35
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
36
|
Kupfervermittelte radikalische Polymerisation mit reversibler Deaktivierung in wässrigen Medien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Jones GR, Anastasaki A, Whitfield R, Engelis N, Liarou E, Haddleton DM. Copper‐Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew Chem Int Ed Engl 2018; 57:10468-10482. [DOI: 10.1002/anie.201802091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Glen R. Jones
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Athina Anastasaki
- Materials Research LaboratoryUniversity of California Santa Barbara California 93106 USA
| | - Richard Whitfield
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Nikolaos Engelis
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Evelina Liarou
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - David M. Haddleton
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
38
|
Wang Y, Fantin M, Matyjaszewski K. Synergy between Electrochemical ATRP and RAFT for Polymerization at Low Copper Loading. Macromol Rapid Commun 2018; 39:e1800221. [DOI: 10.1002/marc.201800221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Wang
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
39
|
Qi M, Dong Q, Wang D, Byers JA. Electrochemically Switchable Ring-Opening Polymerization of Lactide and Cyclohexene Oxide. J Am Chem Soc 2018; 140:5686-5690. [DOI: 10.1021/jacs.8b02171] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miao Qi
- Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Qi Dong
- Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Dunwei Wang
- Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Jeffery A. Byers
- Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
40
|
Amphiphilic comb-like pentablock copolymers of Pluronic L64 and poly(ethylene glycol)methyl ether methacrylate: synthesis by ATRP, self-assembly, and clouding behavior. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0610-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
42
|
Lin C, Luo W, Chen J, Zhou Q. Rice husk grafted PMAA by ATRP in aqueous phase and its adsorption for Ce 3+. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Chmielarz P, Pacześniak T, Rydel-Ciszek K, Zaborniak I, Biedka P, Sobkowiak A. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP. Beilstein J Org Chem 2017; 13:2466-2472. [PMID: 29234473 PMCID: PMC5704770 DOI: 10.3762/bjoc.13.243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/25/2017] [Indexed: 11/23/2022] Open
Abstract
The flavonoid-based macroinitiator was received for the first time by the transesterification reaction of quercetin with 2-bromoisobutyryl bromide. In accordance with the "grafting from" strategy, a naturally-occurring star-like polymer with a polar 3,3',4',5,6-pentahydroxyflavone core and hydrophobic poly(tert-butyl acrylate) (PtBA) side arms was synthesized via a simplified electrochemically mediated ATRP (seATRP), utilizing only 78 ppm by weight (wt) of a catalytic CuII complex. To demonstrate the possibility of temporal control, seATRP was carried out utilizing a multiple-step potential electrolysis. The rate of the polymerizations was well-controlled by applying optimal potential values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer arms. This appears to be the first report using on-demand seATRP for the synthesis of QC-(PtBA-Br)5pseudo-star polymers. The naturally-derived macromolecules showed narrow MWDs (Đ = 1.08-1.11). 1H NMR spectral results confirm the formation of quercetin-based polymers. These new flavonoid-based polymer materials may find applications as antifouling coatings and drug delivery systems.
Collapse
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Tomasz Pacześniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Paulina Biedka
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
44
|
Wang Y, Fantin M, Park S, Gottlieb E, Fu L, Matyjaszewski K. Electrochemically Mediated Reversible Addition-Fragmentation Chain-Transfer Polymerization. Macromolecules 2017; 50:7872-7879. [PMID: 29977098 PMCID: PMC6028042 DOI: 10.1021/acs.macromol.7b02005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An electrochemically mediated reversible addition-fragmentation chain-transfer polymerization (eRAFT) of (meth)acrylates was successfully carried out via electroreduction of either benzoyl peroxide (BPO) or 4-bromobenzenediazonium tetrafluoroborate (BrPhN2+) which formed aryl radicals, acting as initiators for RAFT polymerization. Direct electroreduction of chain transfer agents was unsuccessful since it resulted in the formation of carbanions by a two-electron transfer process. Reduction of BrPhN2+ under a fixed potential showed acceptable control, but limited conversion due to the generation of a passivating organic layer grafted on the working electrode surface. However, using fixed current conditions, easier to implement than fixed potential conditions, conversions > 80% were achieved. Well-defined homopolymers and block copolymers with a broad range of targeted degrees of polymerization were prepared.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Eric Gottlieb
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
45
|
Carmo dos Santos NA, Lorandi F, Badetti E, Wurst K, Isse AA, Gennaro A, Licini G, Zonta C. Tuning the reactivity and efficiency of copper catalysts for atom transfer radical polymerization by synthetic modification of tris(2-methylpyridyl)amine. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry; Rzeszow University of Technology; Al. Powstańców Warszawy 6 35-959 Rzeszow Poland
| |
Collapse
|
47
|
Swift T, Hoskins R, Telford R, Plenderleith R, Pownall D, Rimmer S. Analysis using size exclusion chromatography of poly(N-isopropyl acrylamide) using methanol as an eluent. J Chromatogr A 2017; 1508:16-23. [PMID: 28602503 PMCID: PMC5486375 DOI: 10.1016/j.chroma.2017.05.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Size Exclusion Chromatography is traditionally carried out in either aqueous or non-polar solvents. A system to present molar mass distributions of polymers using methanol as a mobile phase is presented. This is shown to be a suitable system for determining the molar mass distributions poly(N-isopropylacrylamide)s (PNIPAM); a polymer class that is often difficult to analyze by size exclusion chromatography. DOSY NMR was used to provide intrinsic viscosity data that was used in conjunction with a viscometric detector to provide absolute calibration. Then the utility of the system was shown by providing the absolute molar mass distributions of dispersed highly branched PNIPAM with biologically functional end groups.
Collapse
Affiliation(s)
- Thomas Swift
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| | - Richard Hoskins
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| | - Richard Plenderleith
- Polymer and Biomaterials Laboratories, Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
| | - David Pownall
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| |
Collapse
|
48
|
Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJ, Sobkowiak A, Matyjaszewski K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.02.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Chmielarz P. Synthesis of inositol-based star polymers through low ppm ATRP methods. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry; Rzeszow University of Technology; Al. Powstańców Warszawy 6 35-959 Rzeszow Poland
| |
Collapse
|
50
|
Chmielarz P, Krys P, Wang Z, Wang Y, Matyjaszewski K. Synthesis of Well‐Defined Polymer Brushes from Silicon Wafers
via
Surface‐Initiated
se
ATRP. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry Faculty of Chemistry Rzeszow University of Technology Al. Powstanńców Warszawy 6 35‐959 Rzeszow Poland
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Pawel Krys
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zongyu Wang
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Yi Wang
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|