1
|
Kim N, Oh W, Knust KN, Zazyki Galetto F, Su X. Molecularly Selective Polymer Interfaces for Electrochemical Separations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16685-16700. [PMID: 37955994 DOI: 10.1021/acs.langmuir.3c02389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The molecular design of polymer interfaces has been key for advancing electrochemical separation processes. Precise control of molecular interactions at electrochemical interfaces has enabled the removal or recovery of charged species with enhanced selectivity, capacity, and stability. In this Perspective, we provide an overview of recent developments in polymer interfaces applied to liquid-phase electrochemical separations, with a focus on their role as electrosorbents as well as membranes in electrodialysis systems. In particular, we delve into both the single-site and macromolecular design of redox polymers and their use in heterogeneous electrochemical separation platforms. We highlight the significance of incorporating both redox-active and non-redox-active moieties to tune binding toward ever more challenging separations, including structurally similar species and even isomers. Furthermore, we discuss recent advances in the development of selective ion-exchange membranes for electrodialysis and the critical need to control the physicochemical properties of the polymer. Finally, we share perspectives on the challenges and opportunities in electrochemical separations, ranging from the need for a comprehensive understanding of binding mechanisms to the continued innovation of electrochemical architectures for polymer electrodes.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wangsuk Oh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle N Knust
- Department of Chemistry, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Fábio Zazyki Galetto
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianopolis SC 88040-900, Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Moreno S, Hübner H, Effenberg C, Boye S, Ramuglia A, Schmitt D, Voit B, Weidinger IM, Gallei M, Appelhans D. Redox- and pH-Responsive Polymersomes with Ferrocene Moieties Exhibiting Peroxidase-like, Chemoenzymatic Activity and H 2O 2-Responsive Release Behavior. Biomacromolecules 2022; 23:4655-4667. [PMID: 36215725 DOI: 10.1021/acs.biomac.2c00901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with β-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Hanna Hübner
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany
| | - Christiane Effenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Anthony Ramuglia
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Deborah Schmitt
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Inez M Weidinger
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany.,Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, Saarbrücken 66123, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| |
Collapse
|
3
|
Auernhammer J, Langhans M, Schäfer JL, Keil T, Meckel T, Biesalski M, Stark RW. Nanomechanical subsurface characterisation of cellulosic fibres. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
The mechanical properties of single fibres are highly important in the paper production process to produce and adjust properties for the favoured fields of application. The description of mechanical properties is usually characterised via linearized assumptions and is not resolved locally or spatially in three dimensions. In tensile tests or nanoindentation experiments on cellulosic fibres, only mechanical parameter for the whole fibre, such as elastic modulus or hardness, is usually obtained. To obtain a more detailed mechanical picture of the fibre, it is crucial to determine mechanical properties in depth. To this end, we discuss an atomic force microscopy-based approach to examine stepwise the local stiffness as a function of indentation depth via static force-distance curves. To our knowledge, we are the first authors to apply this method cellulosic fibres. The method was applied to linter fibres (extracted from a finished paper sheet) as well as to natural raw cotton fibres to better understand the influence of the pulp treatment process in paper production on the mechanical properties. Both types of fibres were characterised in dry and wet conditions with respect to alterations in their mechanical properties. The used stepwise analysis method of the force-distance curves allowed subsurface imaging of the fibres. It could be revealed how the walls in the fibre structure protects the fibre against mechanical loading. Via a combined 3D display of the mapped topography and the fitted elastic moduli in z-direction, a spatially resolved mechanical map of the fibre interior near the surface could be established. Additionally, we labelled the fibres with different carbohydrate binding modules tagged with fluorescent proteins to compare the AFM results with fluorescence confocal laser scanning microscopy imaging. Nanomechanical subsurface imaging in combination with fluorescent protein labelling is thus a tool to better understand the mechanical behaviour of cellulosic fibres, which have a complex, hierarchical structure.
Graphical abstract
Collapse
|
4
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
5
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Hou X, Pan Y, Miraftab R, Huang Z, Xiao H. Redox- and Enzyme-Responsive Macrospheres Gatekept by Polysaccharides for Controlled Release of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11163-11170. [PMID: 34546756 DOI: 10.1021/acs.jafc.1c01304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive materials afford researchers an opportunity to synthesize controlled-release carriers with various potential applications, especially for reducing the abuse of chemical reagents in farmland soil. To enhance the efficiency of agrochemical utilization, redox- and enzyme-responsive macrospheres were prepared by self-assembling β-cyclodextrin-modified zeolite and ferrocenecarboxylic acid (FcA)-grafted carboxymethyl cellulose (CMC). Scanning electron microscopy and Brunauer-Emmett-Teller analysis revealed that pores of zeolite were sealed by the surface coupling of FcA-modified CMC via the formation of an inclusion complex. Salicylic acid (SA) was loaded as a model agrochemical. The release of SA from macrospheres could be triggered in the presence of hydrogen peroxide (oxidant) and cellulase (enzyme); and the corresponding release percentages, 85.2 and 80.4%, were much higher than those of the control sample without responsive groups in water (12.6%) after 12 h. A release kinetic study showed that cellulase could promote carrier dissolution more effectively than the oxidant. The results demonstrate that the dual-responsive macrospheres are promising as a smart and effective carrier for the controlled release of agrochemicals.
Collapse
Affiliation(s)
- Xiaobang Hou
- Power Technology Center, State Grid Shandong Electric Power Research Institute, 2000 Wangyue Road, Jinan 250000, Shandong, China
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochem. Resource Proc. & Process Intensification Tech., School of Chemistry and Chemical Engineering Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Roshanak Miraftab
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Zhihong Huang
- Sheng Qing Environmental Protection Technology Co., Ltd, Kunming, Yunnan 650093, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| |
Collapse
|
7
|
Liu X, Li M, Zhang H, Chen L, Fu S. An injectable thermo-responsive hydrogel based cellulose-brush derivative for the sustained release of doxorubicin. CELLULOSE 2021; 28:1587-1597. [DOI: 10.1007/s10570-020-03612-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2025]
|
8
|
Preparation of Fluorine-Free Superhydrophobic Paper with Dual-Response of Temperature and pH. COATINGS 2020. [DOI: 10.3390/coatings10121167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although various superhydrophobic materials have been manufactured and effectively used for oil–water separation, it is still highly desirable to explore materials which are eco-friendly, low-cost, and multifunctional. In this paper, a stable copolymer solution was prepared from the fluorine-free superhydrophobic copolymer with dual-responsiveness of temperature and pH. The functional superhydrophobic paper was prepared by immersing paper in copolymer solution by the dip-coating method. The surface element and structure analysis of the prepared superhydrophobic paper shows that the dual-responsive copolymer adheres successfully to the surface of the paper without destroying the fiber structure of the paper. At pH ≥ 7 and T > 25 °C, the paper has a good superhydrophobic performance, while under the conditions of pH < 7 and T < 25 °C, the paper comes into a hydrophilic state. Therefore, the dual-responsive superhydrophobic paper is more likely to adapt to the complicated oil-water separation environment than the single-response.
Collapse
|
9
|
Linker Regulation: Synthesis and Electrochemical Properties of Ferrocene-Decorated Cellulose. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01562-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Herzog N, Hübner H, Rüttiger C, Gallei M, Andrieu-Brunsen A. Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4015-4024. [PMID: 32267702 PMCID: PMC7360126 DOI: 10.1021/acs.langmuir.0c00245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive mesoporous silica films were prepared by evaporation-induced self-assembly through the physical entrapment of a functional metalloblock copolymer structuring agent, which simultaneously served to functionalize the mesopore. After end-functionalization with a silane group, the applied functional metalloblock copolymers were covalently integrated into the silica mesopore wall. In addition, they were partly degraded after the formation of the mesoporous film, which enabled the precise design of accessible mesopores. These polymer-silica hybrid materials exhibited remarkable and gating ionic permselectivity and offer the potential for highly precise pore filling design and combination with high-throughput printing techniques. This in situ functionalization strategy of mesoporous silica using responsive metalloblock copolymers has the potential to improve how we approach the design of complex architectures at the nanoscale for tailored transport. This functionalization strategy paves the way for a variety of technologies based on molecular transport in nanoscale pores, including separation, sensing, catalysis, and energy conversion.
Collapse
Affiliation(s)
- Nicole Herzog
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Chair
in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Christian Rüttiger
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Markus Gallei
- Chair
in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
11
|
Luo Q, Zhang R, Zhang J, Xia J. Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qi Luo
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Rui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jing Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
12
|
Stimuli-responsive cellulose paper materials. Carbohydr Polym 2019; 210:350-363. [DOI: 10.1016/j.carbpol.2019.01.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
|
13
|
POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation. COATINGS 2018. [DOI: 10.3390/coatings8120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of cellulose-based materials and functional polymers is a promising approach for the preparation of porous, biotemplated ceramic materials. Within this study, cellulose substrates were functionalized with a surface-attached initiator followed by polymerization of (3methacryloxypropyl)heptaisobutyl-T8-silsesquioxane (MAPOSS) by means of surface-initiated atom transfer radical polymerization (ATRP). Successful functionalization was proven by infrared (IR) spectroscopy as well as by contact angle (CA) measurements. Thermal analysis of the polymer-modified cellulose substrates in different atmospheres (nitrogen and air) up to 600 °C led to porous carbon materials featuring the pristine fibre-like structure of the cellulose material as shown by scanning electron microscopy (SEM). Interestingly, spherical, silicon-containing domains were present at the surface of the cellulose-templated carbon fibres after further ceramisation at 1600 °C, as investigated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements.
Collapse
|
14
|
Winter T, Su X, Hatton TA, Gallei M. Ferrocene-Containing Inverse Opals by Melt-Shear Organization of Core/Shell Particles. Macromol Rapid Commun 2018; 39:e1800428. [DOI: 10.1002/marc.201800428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara Winter
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Xiao Su
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - T. Alan Hatton
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
15
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
16
|
Rüttiger C, Hübner H, Schöttner S, Winter T, Cherkashinin G, Kuttich B, Stühn B, Gallei M. Metallopolymer-Based Block Copolymers for the Preparation of Porous and Redox-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4018-4030. [PMID: 29313330 DOI: 10.1021/acsami.7b18014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.
Collapse
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Tamara Winter
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Gennady Cherkashinin
- Surface Science Group, Institute of Materials Science, Technische Universität Darmstadt , Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
17
|
Gallei M. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
18
|
Schöttner S, Hossain R, Rüttiger C, Gallei M. Ferrocene-Modified Block Copolymers for the Preparation of Smart Porous Membranes. Polymers (Basel) 2017; 9:E491. [PMID: 30965794 PMCID: PMC6418580 DOI: 10.3390/polym9100491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022] Open
Abstract
The design of artificially generated channels featuring distinct remote-switchable functionalities is of critical importance for separation, transport control, and water filtration applications. Here, we focus on the preparation of block copolymers (BCPs) consisting of polystyrene-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) having molar masses in the range of 91 to 124 kg mol-1 with a PHEMA content of 13 to 21 mol %. The BCPs can be conveniently functionalized with redox-active ferrocene moieties by a postmodification protocol for the hydrophilic PHEMA segments. Up to 66 mol % of the hydroxyl functionalities can be efficiently modified with the reversibly redox-responsive units. For the first time, the ferrocene-containing BCPs are shown to form nanoporous integral asymmetric membranes by self-assembly and application of the non-solvent-induced phase separation (SNIPS) process. Open porous structures are evidenced by scanning electron microscopy (SEM) and water flux measurements, while efficient redox-switching capabilities are investigated after chemical oxidation of the ferrocene moieties. As a result, the porous membranes reveal a tremendously increased polarity after oxidation as reflected by contact angle measurements. Additionally, the initial water flux of the ferrocene-containing membranes decreased after oxidizing the ferrocene moieties because of oxidation-induced pore swelling of the membrane.
Collapse
Affiliation(s)
- Sebastian Schöttner
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Rimjhim Hossain
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Christian Rüttiger
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Markus Gallei
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
19
|
Surface-initiated atom transfer radical polymerization of electrochemically responsive cobalt-methacrylates. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Schmidt BVKJ, Kugele D, von Irmer J, Steinkoenig J, Mutlu H, Rüttiger C, Hawker CJ, Gallei M, Barner-Kowollik C. Dual-Gated Supramolecular Star Polymers in Aqueous Solution. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bernhard V. K. J. Schmidt
- Department
of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Materials
Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Dennis Kugele
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse
18, 76131 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jonas von Irmer
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jan Steinkoenig
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse
18, 76131 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse
18, 76131 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Rüttiger
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Craig J. Hawker
- Materials
Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse
18, 76131 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School of
Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
21
|
Dubois C, Herzog N, Rüttiger C, Geißler A, Grange E, Kunz U, Kleebe HJ, Biesalski M, Meckel T, Gutmann T, Gallei M, Andrieu-Brunsen A. Fluid Flow Programming in Paper-Derived Silica-Polymer Hybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:332-339. [PMID: 27982597 DOI: 10.1021/acs.langmuir.6b03839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In paper-based devices, capillary fluid flow is based on length-scale selective functional control within a hierarchical porous system. The fluid flow can be tuned by altering the paper preparation process, which controls parameters such as the paper grammage. Interestingly, the fiber morphology and nanoporosity are often neglected. In this work, porous voids are incorporated into paper by the combination of dense or mesoporous ceramic silica coatings with hierarchically porous cotton linter paper. Varying the silica coating leads to significant changes in the fluid flow characteristics, up to the complete water exclusion without any further fiber surface hydrophobization, providing new approaches to control fluid flow. Additionally, functionalization with redox-responsive polymers leads to reversible, dynamic gating of fluid flow in these hybrid paper materials, demonstrating the potential of length scale specific, dynamic, and external transport control.
Collapse
Affiliation(s)
- Christelle Dubois
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Nicole Herzog
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Andreas Geißler
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Eléonor Grange
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Ulrike Kunz
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Hans-Joachim Kleebe
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Markus Biesalski
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Tobias Meckel
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Torsten Gutmann
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, ‡Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, and §Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| |
Collapse
|
22
|
Scheid D, von der Lühe M, Gallei M. Synthesis of Breathing Metallopolymer Hollow Spheres for Redox-Controlled Release. Macromol Rapid Commun 2016; 37:1573-1580. [PMID: 27491362 DOI: 10.1002/marc.201600338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/01/2016] [Indexed: 12/23/2022]
Abstract
A convenient synthetic approach for the preparation of uniform metallopolymer-containing hollow spheres based on 2-(methacryloyloxy)ethyl ferrocenecarboxylate (FcMA) as monomer by sequential starved feed emulsion polymerization is described. Core/shell particles consisting of a noncrosslinked poly(methyl methacrylate) core and a slightly crosslinked ferrocene-containing shell allows for the simple dissolution of core material and, thus, monodisperse metallopolymer hollow spheres are obtained. Since PFcMA is incorporated in the particle shell, herein investigated hollow spheres can be addressed by external triggers, i.e., solvent variation and redox chemistry in order to change the particle swelling capability. PFcMA-containing core/shell particles and hollow spheres are characterized by transmission electron microscope (TEM), scanning electron microscopy, cryogenic TEM, thermogravimetric analysis, and dynamic light scattering in terms of size, size distribution, hollow sphere character, redox-responsiveness, and composition. Moreover, the general suitability of prepared stimulus-responsive nanocapsules for the use in catch-release systems is demonstrated by loading the nanocapsules with malachite green as model payload followed by release studies.
Collapse
Affiliation(s)
- Daniel Scheid
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Moritz von der Lühe
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldstr. 10, 07743, Jena, Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
23
|
|
24
|
Rüttiger C, Appold M, Didzoleit H, Eils A, Dietz C, Stark RW, Stühn B, Gallei M. Structure Formation of Metallopolymer-Grafted Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Michael Appold
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Haiko Didzoleit
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Adjana Eils
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Christian Dietz
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Robert W. Stark
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Bernd Stühn
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|