1
|
Tu Y, Wen G, Selianitis D, Pispas S. Dense Monolayer Network Structures of Double Hydrophilic Hyperbranched Copolymers at the Air/Water Interface. Macromol Rapid Commun 2024; 45:e2300548. [PMID: 37972570 DOI: 10.1002/marc.202300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Influences of subphase pH and temperature on the interfacial aggregation behavior of two double hydrophilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-(2-diisopropylamino)ethyl methacrylate] (P(OEGMA-co-DIPAEMA)) at the air/water interface are studied by the Langmuir film balance technique. Morphologies of their Langmuir-Blodgett (LB) films are characterized by atomic force microscopy (AFM). At the interface, P(OEGMA-co-DIPAEMA) copolymers tend to form a dense network structure of circular micelles composed of branching agent-connected carbon backbone cores and mixed shells of OEGMA and DIPAEMA segments (pendant groups). This network structure containing many honeycomb-like holes with diameters of 6-8 nm is identified for the first time and clearly observed in the enlarged AFM images of their LB films. Under acidic conditions, surface pressure versus molecular area isotherms of the two copolymers in the low-pressure region show larger mean molecular area than those under neutral and alkaline conditions due to the lack of impediment from DIPAEMA segments. Upon further compression, each isotherm exhibits a wide pseudo-plateau, which corresponds to OEGMA segments being pressed into the subphase. Furthermore, the isotherms under neutral and alkaline conditions exhibit the lower critical solution temperature behavior of OEGMA segments, and the critical temperature is lower when the hyperbranched copolymer contains higher OEGMA content.
Collapse
Affiliation(s)
- Yongliang Tu
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
2
|
Im GB, Kim YG, Jo IS, Yoo TY, Kim SW, Park HS, Hyeon T, Yi GR, Bhang SH. Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128411. [PMID: 35149489 DOI: 10.1016/j.jhazmat.2022.128411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Several studies have examined the effects of micro- and nanoplastics on microbes, cells, and the environment. However, only a few studies have examined their effects-especially, those of their reduced cohesiveness-on cell viability and physiology. We synthesized surfactant-free amine-functionalized polystyrene (PS) nanoparticles (NPs) and PS-NPs with decreased crosslinking density (DPS-NPs) without changing other factors, such as size, shape, and zeta potential and examined their effects on cell viability and physiology. PS- and DPS-NPs exhibited reactive oxygen species (ROS) scavenging activity by upregulating GPX3 expression and downregulating HSP70 (ROS-related gene) and XBP1 (endoplasmic reticulum stress-related gene) expression in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Additionally, they led to upregulation of MFN2 (mitochondrial fusion related gene) expression and downregulation of FIS1 (mitochondrial fission related gene) expression, indicating enhanced mitochondrial fusion in hBM-MSCs. Cell-cycle analysis revealed that PS- and DPS-NPs increased the proportion of cells in the S phase, indicating that they promoted cell proliferation and, specifically, the adipogenic differentiation of hBM-MSCs. However, the cytotoxicity of DPS-NPs against hBM-MSCs was higher than that of PS-NPs after long-term treatment under adipogenic conditions.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Seong Jo
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. PROGRESS IN MATERIALS SCIENCE 2021; 115:100702. [DOI: 10.1016/j.pmatsci.2020.100702] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
González-Sálamo J, Ortega-Zamora C, Carrillo R, Hernández-Borges J. Application of stimuli-responsive materials for extraction purposes. J Chromatogr A 2020; 1636:461764. [PMID: 33316565 DOI: 10.1016/j.chroma.2020.461764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive materials, frequently designated as "smart/intelligent materials", can modify their structure or properties by either a biological, physical, or chemical stimulus which, if properly controlled, could be used for specific applications. Such materials have been studied and exploited in several fields, like electronics, photonics, controlled drugs administration, imaging and medical diagnosis, among others, as well as in Analytical Chemistry where they have been used as chromatographic stationary phases, as part of sensors and for extraction purposes. This review article pretends to provide an overview of the most recent applications of these materials (mostly polymeric materials) in sample preparation for extraction purposes, as well as to provide a general vision of the current state-of-the-art of this field, their potential use and future applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología IPNA-CSIC. Avda. Astrofísico Fco. Sánchez, 3. 38206 San Cristóbal de La Laguna, España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
5
|
Cuneo T, Gao H. Recent advances on synthesis and biomaterials applications of hyperbranched polymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1640. [DOI: 10.1002/wnan.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| |
Collapse
|
6
|
Zhou Q, Lei M, Wu Y, Zhou X, Wang H, Sun Y, Sheng X, Tong Y. Magnetic solid phase extraction of bisphenol A, phenol and hydroquinone from water samples by magnetic and thermo dual-responsive core-shell nanomaterial. CHEMOSPHERE 2020; 238:124621. [PMID: 31454740 DOI: 10.1016/j.chemosphere.2019.124621] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/20/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Present study prepared a new magnetic and thermo dual-responsive core-shell nanomaterial (Fe@SiO2@poly(N-isopropylacrymide-co-methacrylic acid, Fe@SiO2@PNIPAM-co-MAA), which was characterized by transmission electron microscopy and X-ray diffraction techniques. The new nanomaterials integrated with the magnetism of nanoscale zero valent iron material and thermo-response of the copolymers, and were utilized to investigate the adsorption capacity for typical phenols such as bisphenol A, phenol and hydroquinone from water samples, and the results showed that the magnetic and thermo dual-responsive core-shell nanomaterial exhibited good adsorption ability to typical phenols. Based on these, a sensitive method was developed for the determination of bisphenol A, phenol and hydroquinone using as-prepared magnetic nanoparticles as the magnetic solid phase extraction sorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, linear linearity was obtained over the range of 0.1-500 μg L-1 with the correlation coefficients (r2) above 0.996. The detection limits of three analytes were in the range of 0.019-0.031 μg L-1, and the precisions were all less than 4.8% (n = 6). The developed method was evaluated with real water samples and excellent spiked recoveries in the range of 94.0-105.4% were achieved. These results indicated that the proposed method was a robust analytical tool and a useful alternative for routine analysis of such pollutants.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Man Lei
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xianqi Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Hongyuan Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
7
|
Zhang J, Xu J, Wen L, Zhang F, Zhang L. The self-assembly behavior of polymer brushes induced by the orientational ordering of rod backbones: a dissipative particle dynamics study. Phys Chem Chem Phys 2020; 22:5229-5241. [DOI: 10.1039/d0cp00235f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work proposed the “rod–coil competitive mechanism” for the self-assembly of polymer brushes with rod–coil backbones.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Jianchang Xu
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Liyang Wen
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Fusheng Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
8
|
Totani M, Liu L, Matsuno H, Tanaka K. Design of a star-like hyperbranched polymer having hydrophilic arms for anti-biofouling coating. J Mater Chem B 2019; 7:1045-1049. [PMID: 32254771 DOI: 10.1039/c8tb03104e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A star-like hyperbranched polymer having hydrophilic poly(ethyleneoxide acrylate) arms (HB-PEO9A) was prepared by a core-first method based on atom transfer radical polymerization. The PEO9A layer coated on a solid substrate was dissolved by water, and effectively inhibited protein adsorption and cell adhesion.
Collapse
Affiliation(s)
- Masayasu Totani
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
9
|
Bhat SI, Ahmadi Y, Ahmad S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01969] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahidul Islam Bhat
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Younes Ahmadi
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
10
|
|
11
|
Sudo Y, Kawai R, Sakai H, Kikuchi R, Nabae Y, Hayakawa T, Kakimoto MA. Star-Shaped Thermoresponsive Polymers with Various Functional Groups for Cell Sheet Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:653-662. [PMID: 29257892 DOI: 10.1021/acs.langmuir.7b04213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study demonstrates the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)-immobilized Petri dishes by drop-casting a star-shaped copolymer of hyperbranched polystyrene (HBPS) possessing PNIPAM arms (HBPS-g-PNIPAM) functionalized with polar groups. HBPS was synthesized via reversible addition-fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP), and HBPS polymers with different terminal structures were prepared by changing the monomer structure. HBPS-g-PNIPAM was synthesized by the grafting of PNIPAM from each terminal of HBPS. To tune the cell adhesion and detachment properties, polar functional groups such as carboxylic acid and dimethylamino groups were introduced to HBPS-g-PNIPAM. Based on surface characterization using scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements, the advantage of the hyperbranched structure for the PNIPAM immobilization was evident in terms of the uniformity, stability, and thermoresponsiveness. Successful cell sheet harvesting was demonstrated on dishes coated with HBPS-g-PNIPAM. In addition, the cell adhesion and detachment properties could be tuned by the introduction of polar functional groups.
Collapse
Affiliation(s)
- Yu Sudo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryuki Kawai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hideaki Sakai
- Zellech Inc. , Studio3 10F, KFC-Bldg., 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015, Japan
| | - Ryohei Kikuchi
- Ookayama Materials Analysis Division, Technical Department, Tokyo Institute of Technology , 2-12-1 S7-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masa-Aki Kakimoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
12
|
Stöbener DD, Uckert M, Cuellar-Camacho JL, Hoppensack A, Weinhart M. Ultrathin Poly(glycidyl ether) Coatings on Polystyrene for Temperature-Triggered Human Dermal Fibroblast Sheet Fabrication. ACS Biomater Sci Eng 2017; 3:2155-2165. [DOI: 10.1021/acsbiomaterials.7b00270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel David Stöbener
- Institute of Chemistry and
Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Melanie Uckert
- Institute of Chemistry and
Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - José Luis Cuellar-Camacho
- Institute of Chemistry and
Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Anke Hoppensack
- Institute of Chemistry and
Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and
Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|