1
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 PMCID: PMC11095640 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Zhou L, Zhang W, Zhao C, Yang W. Self-Cross-Linkable Maleic Anhydride Terpolymer Coating with Inherent High Antimicrobial Activity and Low Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47810-47821. [PMID: 37782773 DOI: 10.1021/acsami.3c11364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developing coating materials with low cytotoxicity and high antimicrobial activity has been recognized as an effective way to prevent medical device-associated infections. In this study, a maleic anhydride terpolymer (PPTM) is synthesized and covalently attached to silicone rubber (SR) surface. The formed coating can be further cross-linked (SPM) through the self-condensation of pendent siloxane groups of terpolymer. No crack or delamination of SPM was observed after 500 cycles of bending and 7 day immersion in deionized water. The sliding friction force of a catheter was reduced by 50% after coating with SPM. The SPM coating without adding any extra antibacterial reagents can kill 99.99% of Staphylococcus aureus and Escherichia coli and also significantly reduce bacterial coverage, while the coating displayed no antimicrobial activity when maleic anhydride groups of SPM were aminated or hydrolyzed. The results of the repeated disinfection tests showed that the SR coated with SPM could maintain 87.3% bactericidal activity within 5 cycles. Furthermore, the SPM coating only imparted slight toxic effect (>85% viability) on L929 cells after 36 h of coculture, which is superior to the coating of aminated SPM conjugated with the antimicrobial peptide E6. The terpolymer containing maleic anhydride units have great potential as a flexible and durable coating against implant infections.
Collapse
Affiliation(s)
- Ling Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Jin H, Wang X, Yang H, He G, Li X, Guo X, Li L. Preparation, Characterization, and Performance of a Modified Polyacrylamide-Sericite Gel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2524. [PMID: 36984404 PMCID: PMC10057945 DOI: 10.3390/ma16062524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
In this study, a modified chemical plugging agent is prepared with the aim to reduce the well moisture content and improve the efficiency of oilfield development. In comparison to other chemical plugging agents, the composite gels plugging agents have excellent blocking capacity and erosion resistance. In this study, optimal conditions for the preparation of plugging agents were explored. The results showed that the performance of polyacrylamide-sericite (PAM-sericite) gel improved at a polymerization temperature of 60 °C, a crosslinker concentration of 0.5%, an initiator concentration of 0.75%, an acrylamide concentration of 10.0%, and a sericite concentration of 10.0%. The characterization of PAM-sericite gel showed a certain fold-like shape with a smoother surface, indicating that the doped sericite makes the plugging agent more compact and firm. It was also found that the blocking ratio of the plugging agent can potentially reach 99.5% after the addition of sericite. Moreover, failure stress of the skeleton structure and the water swelling degree were increased by 63.5% and 51.2%, respectively. Additionally, long-term stability, temperature resistance, pressure resistance and pressure stability also showed improvement to varying degrees. It was concluded that this gel has better stability against different kinds of salt solutions and is not affected by particle size.
Collapse
Affiliation(s)
- Haibo Jin
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Research Institute of Petroleum Engineering, Beijing 102206, China
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 102206, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Xu Wang
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haizhong Yang
- Sinopec Shengli Oil Field Gudong Oil Production Plant, Dongying 257237, China
| | - Guangxiang He
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Xiaogang Li
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Xiaoyan Guo
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Lizhu Li
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
4
|
Chittari SS, Obermeyer AC, Knight AS. Investigating Fundamental Principles of Nonequilibrium Assembly Using Temperature-Sensitive Copolymers. J Am Chem Soc 2023; 145:6554-6561. [PMID: 36913711 DOI: 10.1021/jacs.3c00883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Both natural biomaterials and synthetic materials benefit from complex energy landscapes that provide the foundation for structure-function relationships and environmental sensitivity. Understanding these nonequilibrium dynamics is important for the development of design principles to harness this behavior. Using a model system of poly(ethylene glycol) methacrylate-based thermoresponsive lower critical solution temperature (LCST) copolymers, we explored the impact of composition and stimulus path on nonequilibrium thermal hysteretic behavior. Through turbidimetry analysis of nonsuperimposable heat-cool cycles, we observe that LCST copolymers show clear hysteresis that varies as a function of pendent side chain length and hydrophobicity. Hysteresis is further impacted by the temperature ramp rate, as insoluble states can be kinetically trapped under optimized temperature protocols. This systematic study brings to light fundamental principles that can enable the harnessing of out-of-equilibrium effects in synthetic soft materials.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Linn JD, Liberman L, Neal CAP, Calabrese MA. Role of chain architecture in the solution phase assembly and thermoreversibility of aqueous PNIPAM/silyl methacrylate copolymers. Polym Chem 2022; 13:3840-3855. [PMID: 37193094 PMCID: PMC10181847 DOI: 10.1039/d2py00254j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly(N-isopropyl acrylamide-co-3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM-co-TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermo-reversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM-co-TMA), and a 'blocky-functionalized' copolymer where TMA is localized to one portion of the chain, P(NIPAM-b-NIPAM-co-TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2% mol), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5% mol); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM-co-TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Christopher A P Neal
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
|
7
|
|
8
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
9
|
Gosecki M, Ziemczonek P, Maczugowska P, Czaderna-Lekka A, Kozanecki M, Gosecka M. The influence of 2-acrylamidephenylboronic acid on the phase behaviour of its copolymers with N-isopropylacrylamide in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d1py00397f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we report the synthesis and phase behaviour of statistical p(N-isopropylacrylamide-co-2-acrylamidephenylboronic acid), P(NIPAM-co-2-AAPBA) copolymers.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| | - Piotr Ziemczonek
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| | - Paulina Maczugowska
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Anna Czaderna-Lekka
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Marcin Kozanecki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Monika Gosecka
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| |
Collapse
|
10
|
Synthesis of three-dimensional hydrogels based on poly(glycidyl methacrylate-alt-maleic anhydride): Characterization and study of furosemide drug release. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Liu X, Hou Y, Zhang Y, Zhang W. Thermoresponsive Polymers of Poly(2-( N-alkylacrylamide)ethyl acetate)s. Polymers (Basel) 2020; 12:E2464. [PMID: 33114303 PMCID: PMC7690893 DOI: 10.3390/polym12112464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Thermoresponsive poly(2-(N-alkylacrylamide) ethyl acetate)s with different N-alkyl groups, including poly(2-(N-methylacrylamide) ethyl acetate) (PNMAAEA), poly(2-(N-ethylacrylamide) ethyl acetate) (PNEAAEA), and poly(2-(N-propylacrylamide) ethyl acetate) (PNPAAEA), as well as poly(N-acetoxylethylacrylamide) (PNAEAA), were synthesized by solution RAFT polymerization. Unexpectedly, it was found that there are induction periods in the RAFT polymerization of these monomers, and the induction time correlates with the length of the N-alkyl groups in the monomers and follows the order of NAEAA < NMAAEA < NEAAEA < NPAAEA. The solubility of poly(2-(N-alkylacrylamide) ethyl acetate)s in water is also firmly dependent on the length of the N-alkyl groups. PNPAAEA including the largest N-propyl group is insoluble in water, whereas PNMAAEA and PNEAAEA are thermoresponsive in water and undergo the reversible soluble-to-insoluble transition at a critical solution temperature. The cloud point temperature (Tcp) of the thermoresponsive polymers is in the order of PNEAAEA < PNAEAA < PNMAAEA. The parameters affecting the Tcp of thermoresponsive polymers, e.g., degree of polymerization (DP), polymer concentration, salt, urea, and phenol, are investigated. Thermoresponsive PNMAAEA-b-PNEAAEA block copolymer and PNMAAEA-co-PNEAAEA random copolymers with different PNMAAEA and/or PNEAAEA fractions are synthesized, and their thermoresponse is checked.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Yuwen Hou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yimin Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
| |
Collapse
|
12
|
Wang F, Cong H, Xing J, Wang S, Shen Y, Yu B. Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta 2020; 221:121493. [PMID: 33076098 DOI: 10.1016/j.talanta.2020.121493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
The non-specific adsorption of protein has caused many problems in the application of materials. In this paper, a tri-block copolymer PEO-PNIPAAm-PSPMAP with double effects were obtained via atom transfer radical copolymerization (ATRP). The double-effect copolymer is covalently bonded to the hydrophobic material through a photosensitizer to achieve surface modification and applied to analytical chemistry. Sufficient hydratable groups (for instance, ether bonds, amide groups, and sulfonic acid groups) in the copolymer provides a basis for the anti-protein adsorption. At the same time, the interaction of the hydrophilic group and isopropyl group with temperature changes provides the possibility of elastic self-cleaning of the material, which is instrumental in extending the circulate lifetime of materials. Therefore, it is an environmentally friendly coating material. Besides, the effective antifouling performance and elastic self-cleaning function of the coating have been confirmed by the dynamic adsorption experiment of a fluorescent protein. The coating is used in capillary electrophoresis (CE), and its excellent protein separation spectrum verifies the practicality of the coating.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Centre for Bio Nanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Banerjee P, Jana S, Mandal TK. Coulomb interaction-driven UCST in poly(ionic liquid) random copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Temperature-Responsive Poly( N-Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2683-2694. [PMID: 32130018 DOI: 10.1021/acs.langmuir.9b03892] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Smart polymers with extraordinary characteristics are studied in drug-delivery applications. In the current study, temperature-responsive hybrid core-shell nanoparticles were synthesized by precipitation polymerization of N-isopropylacrylamide and vinyl-modified silica nanoparticles. These temperature-responsive hybrid core-shells were prepared with different cross-linking densities by using 2, 4, and 8 mol % of N,N-methylene bisacrylamide (MBA). Hydrolysis of the silica cores of the hybrid core-shells resulted in hollow poly(N-isopropylacrylamide) (PNIPAM) nanogels. Functionalization of silica nanoparticles with vinyl-containing silane modifier of 3-(trimethoxysilyl) propyl methacrylate (MPS) in two different contents was proven by Fourier transform infrared spectroscopy. Preparation of the hybrid PNIPAM nanogels and etching of the silica cores were studied using thermogravimetric analysis and also electron microscopy imaging. Sensitivity of the PNIPAM nanogel samples to temperature was studied using ultraviolet-visible (UV-vis) spectroscopy. In addition, dynamic light scattering was used for investigation of the squeezing and expansion of the hybrid and hollow samples against variation of temperature. The UV-vis spectroscopy results display higher absorption intensities in higher contents of MPS modifier and MBA cross-linker. The swelling content of the nanogels with hollow cavities was higher than that of the hybrid samples. The hybrid nanogels with 2 and 8 wt % silica content and different cross-linking densities and also their hollow nanoparticles were used for loading and release of doxorubicin (DOX). The release characteristics of the DOX-loaded nanogels were studied at different temperatures using UV-vis spectroscopy. The DOX release was higher at temperatures lower than the gel collapse temperature of the PNIPAM network. Although the nanogels with hollow cavities displayed higher loading capacities, the release percentage was higher for the hybrid PNIPAM nanogels, which was confirmed by the experimental release profiles and mathematical models. The most appropriate fitting of the DOX release data from the PNIPAM nanogel samples was observed for the Korsmeyer-Peppas model. Cytotoxicity studies on HeLa cell line showed that drug-loaded hollow samples showed higher toxicity due to loading of a higher amount of DOX.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
| | - Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, 51368 Tabriz, Iran
| |
Collapse
|
15
|
Keogh R, Blackman LD, Foster JC, Varlas S, O'Reilly RK. The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Macromol Rapid Commun 2020; 41:e1900599. [DOI: 10.1002/marc.201900599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Robert Keogh
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
- Department of ChemistryUniversity of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | - Lewis D. Blackman
- Department of ChemistryUniversity of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | - Jeffrey C. Foster
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| | - Spyridon Varlas
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| | - Rachel K. O'Reilly
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| |
Collapse
|
16
|
Tang L, Nie J, Zhu X. A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing. Polym Chem 2020. [DOI: 10.1039/d0py00142b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, a high performance LED photoinitiator, 1,3-bis(1-methyl-1H-pyrrol-2-yl)prop-2-en-1-one (BMO), without a benzene ring was synthesized through a one-step aldehyde–ketone condensation reaction.
Collapse
Affiliation(s)
- Liqun Tang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoqun Zhu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
17
|
Fedorczyk M, Krzywicka A, Cieciórski P, Romański J, Megiel E. A Novel Strategy for the Synthesis of Amphiphilic and Thermoresponsive Poly(N-isopropylacrylamide)- b-Polystyrene Block Copolymers via ATRP. Polymers (Basel) 2019; 11:E1484. [PMID: 31514392 PMCID: PMC6780390 DOI: 10.3390/polym11091484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
A new synthetic approach is presented for the preparation of Poly(N-isopropylacrylamide-block-styrene) PNIPAM-b-PS via an Atom Transfer Radical Polymerization (ATRP) technique. The proposed method is based on application of 2-chloro-N-(2-hydroxyethyl)propanamide (NCPAE) as a bifunctional initiator, which enables ATRP of two monomers, differing in activity and polarity, into two stages. The synthesized copolymer molecules contain two well-defined polymer chains connected by a linker, which is a derivative of the proposed initiator. Using NCPAE led to PNIPAMs with well-planned molecular weight, low polydispersities (PDI=1.1÷1.3) and hydroxyl functionality. Activation of such blocks for initiation of styrene polymerization was performed using α-bromoisobutyryl bromide. After such a modification, the synthesized homopolymers acted as macroinitiators in ARGET ATRP and a well-defined polystyrene block, as the next one in the polymer chain was successfully formed. Both of the synthesized macromolecules, PNIPAM and PNIPAM-b-PS, exhibit a thermoresponsive behavior with explicit lower critical solution temperatures (LCST) in their aqueous solutions. The synthesized homopolymers and subsequently derived block copolymers were characterized using Size-Exclusion Chromatography, Differential Scanning Calorimetry, Dynamic Light Scattering, and NMR spectroscopy.
Collapse
Affiliation(s)
- Magdalena Fedorczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Anna Krzywicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Piotr Cieciórski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Jan Romański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Elżbieta Megiel
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
18
|
Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Alam M, Alandis NM, Ahmad N, Alam MA, Sharmin E. Jatropha seed oil derived poly(esteramide-urethane)/ fumed silica nanocomposite coatings for corrosion protection. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractJatropha oil [JO] based poly (esteramide-urethane) coatings embedded with fumed silica nanoparticles were prepared. JO was converted to N,N-bis(2-hydroxy ethyl) JO fatty amide (HEJA) and was further modified by a tetrafunctional carboxylic acid(trans 1,2 diaminocyclo-hexane-N,N,N’,N’,-tetraacetic acid) to form poly (diamino cyclohexane esteramide) (PDCEA). PDCEA was then treated with toluene 2,4-diisocynate and fumed silica to prepare poly(diamino cyclohexane urethane esteramide) (PUDCEA) nanocomposite. The formation of PDCEA and PUDCEA nanocomposites was confirmed by FTIR, 1H &13C NMR spectroscopic techniques. The thermal behavior and morphology of PUDCEA nanocomposite coatings were investigated by TGA/DTG, DSC, SEM, EDX spectroscopy. PUDCEA nanocomposites were applied on carbon steel and their coatings were produced at room temperature. The properties of these nanocomposite coatings were investigated by standard analytical methods. The PUDCEA-3 nanocomposite showed good anticorrosion and physico-mechanical performance. These naocomposite coatings can be employed safely upto 200oC.
Collapse
Affiliation(s)
- Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Naser M Alandis
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Mohammad Asif Alam
- Center of Excellence for Research in Engineering Materials(CEREM), King Saud University, P. O. Box 800, Riyadh11421, Saudi Arabia
| | - Eram Sharmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, P.O. Box 715, Makkah Al-Mukarramah21955, Saudi Arabia
| |
Collapse
|
20
|
Swapna VP, Jose T, George SC, Thomas S, Stephen R. Pervaporation separation of an azeotropic mixture of a tetrahydrofuran–water system with nanostructured polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol). J Appl Polym Sci 2018. [DOI: 10.1002/app.47060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Valiya Parambath Swapna
- Department of Chemistry, St. Joseph's College (Autonomous) Devagiri, Calicut Kerala 673 008 India
| | - Thomasukutty Jose
- Centre for Nano Science and TechnologyDepartment of Basic Sciences, Amal Jyothi College of Engineering Kanjirapally Kerala 686 518 India
| | - Soney C. George
- Centre for Nano Science and TechnologyDepartment of Basic Sciences, Amal Jyothi College of Engineering Kanjirapally Kerala 686 518 India
| | - Sabu Thomas
- School of Chemical Sciences and International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi University Kottayam Kerala 686 560 India
| | - Ranimol Stephen
- Department of Chemistry, St. Joseph's College (Autonomous) Devagiri, Calicut Kerala 673 008 India
| |
Collapse
|
21
|
Eggers S, Eckert T, Abetz V. Double thermoresponsive block-random copolymers with adjustable phase transition temperatures: From block-like to gradient-like behavior. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Steffen Eggers
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
| | - Tilman Eckert
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
| | - Volker Abetz
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Straße 1; Geesthacht 21502 Germany
| |
Collapse
|
22
|
Chung JJ, Sum BST, Li S, Stevens MM, Georgiou TK, Jones JR. Effect of Comonomers on Physical Properties and Cell Attachment to Silica-Methacrylate/Acrylate Hybrids for Bone Substitution. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Justin J. Chung
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Brian S. T. Sum
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Siwei Li
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials; Imperial College London; London SW7 2AZ UK
- Department of Bioengineering; Imperial College London; London SW7 2AZ UK
- Institute of Biomedical Engineering; Imperial College London; London SW7 2AZ UK
| | | | - Julian R. Jones
- Department of Materials; Imperial College London; London SW7 2AZ UK
| |
Collapse
|
23
|
Osváth Z, Tóth T, Iván B. Sustained Drug Release by Thermoresponsive Sol-Gel Hybrid Hydrogels of Poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl)Propyl Methacrylate) Copolymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| | - Tamás Tóth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| |
Collapse
|
24
|
Chen S, Wang K, Zhang W. A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 2017. [DOI: 10.1039/c7py00274b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thermoresponsive polymer of the tertiary amide-based polyacrylamide, PNASME, was synthesized and its tunable thermoresponse was investigated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|