1
|
Xue T, Wei Y, Yu C, Zhou Z, Zhang F. RAFT polymerization of MMA in channels of different mesoporous materials. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
2
|
Pardehkhorram R, Andrieu-Brunsen A. Pushing the limits of nanopore transport performance by polymer functionalization. Chem Commun (Camb) 2022; 58:5188-5204. [PMID: 35394003 DOI: 10.1039/d2cc01164f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inspired by the design and performance of biological pores, polymer functionalization of nanopores has emerged as an evolving field to advance transport performance within the last few years. This feature article outlines developments in nanopore functionalization and the resulting transport performance including gating based on electrostatic interaction, wettability and ligand binding, gradual transport controlled by polymerization as well as functionalization-based asymmetric nanopore and nanoporous material design going towards the transport direction. Pushing the limits of nanopore transport performance and thus reducing the performance gap between biological and technological pores is strongly related to advances in polymerization chemistry and their translation into nanopore functionalization. Thereby, the effect of the spatial confinement has to be considered for polymer functionalization as well as for transport regulation, and mechanistic understanding is strongly increased by combining experiment and theory. A full mechanistic understanding together with highly precise nanopore structure design and polymer functionalization is not only expected to improve existing application of nanoporous materials but also opens the door to new technologies. The latter might include out of equilibrium devices, ionic circuits, or machine learning based sensors.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
3
|
Zhang Z, Sèbe G, Hou Y, Wang J, Huang J, Zhou G. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization. J Appl Polym Sci 2021. [DOI: 10.1002/app.51458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen Zhang
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
| | - Gilles Sèbe
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | - Yelin Hou
- Laboratoire de Chimie des Polymères Organiques University of Bordeaux, CNRS, Bordeaux INP Pessac France
| | | | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing, and “the Belt and Road” International Joint Research Laboratory of Sustainable Materials Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi China
| | - Guofu Zhou
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics South China Normal University Guangzhou China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd. Shenzhen China
| |
Collapse
|
4
|
Cai B, Li S, Jiang W, Zhou Y. pH-Controlled Stereoregular Polymerization of Poly(methyl methacrylate) in Vesicle Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12746-12752. [PMID: 34672599 DOI: 10.1021/acs.langmuir.1c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a pH-controlled stereoregular polymerization of methyl methacrylate (MMA) inside the membrane of H20-COOH hyperbranched polymer vesicles using a common radical polymerization process. The vesicle size decreases from 745 to 214 nm with an increase of solution pH from 2.60 to 7.26, and the isotacticity of the obtained polymethyl methacrylates (PMMAs) is accordingly elevated from 9 to 35%. The obtained isotactic-rich PMMAs show a lower glass transition temperature depending on the isotacticity than the commercial random PMMAs. A mechanism study according to the in situ Fourier transform infrared measurements indicates that the control of polymer isotacticity results from the monomer conformation confined effect inside the thin vesicle membranes. The present study provides a new method to realize the preparation of isotactic polymers with the characteristics of facile synthesis, pH controllability, and a green polymerization process in aqueous solution as well as under mild reaction conditions of ambient temperature and pressure.
Collapse
Affiliation(s)
- Beike Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Borsari M, Braidi N, Buffagni M, Ghelfi F, Parenti F, Porcelli N, Serafini G, Isse AA, Bonifaci L, Cavalca G, Longo A, Morandini I, Pettenuzzo N. Copper-catalyzed ARGET ATRP of styrene from ethyl α-haloisobutyrate in EtOAc/EtOH, using ascorbic acid/Na2CO3 as reducing system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Aliyeva N, Canak TC, Serhatlı İE. Synthesis and characterization of boron‐acrylate/Santa Barbara Amorphous‐15 polymer composite. J Appl Polym Sci 2021. [DOI: 10.1002/app.50445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nargiz Aliyeva
- Department of Polymer Science and Technology, Institute of Science and Technology İstanbul Technical University İstanbul Turkey
| | - Tuba Cakir Canak
- Department of Chemistry İstanbul Technical University İstanbul Turkey
| | | |
Collapse
|
7
|
Bernat R, Maksym P, Tarnacka M, Szelwicka A, Bielas R, Wojtyniak M, Balin K, Hachuła B, Chrobok A, Paluch M, Kamiński K. Hard confinement systems as effective nanoreactors for in situ photo-RAFT: towards control over molecular weight distribution and morphology. Polym Chem 2021. [DOI: 10.1039/d0py01651a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein an alternative strategy to tune polymer dispersity and morphology was developed for photoiniferter-mediated RAFT giving well-defined ionic and non-ionic nanomaterials.
Collapse
|
8
|
Wang K, Shen L, Zhou G. Controlled individual and partial polyethylene nanofibers with high Tm2 prepared by PPM-supported Cp 2TiCl 2 catalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01378e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled individual and partial nanofibrous polyethylenes with high second melting point (Tm2) were obtained through ethylene-confined polymerization using a porous polymer microsphere (PPM)-supported Cp2TiCl2 catalyst.
Collapse
Affiliation(s)
- Kui Wang
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Lu Shen
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics (DICP)
- Chinese Academy of Sciences (CAS)
- Dalian
- China
| |
Collapse
|
9
|
Xiao Y, Dai X, Wang K, Zhou G. High Melting Point of Linear, Spiral Polyethylene Nanofibers and Polyethylene Microspheres Obtained Through Confined Polymerization by a PPM-Supported Ziegler-Natta Catalyst. ChemistryOpen 2020; 9:1173-1180. [PMID: 33209565 PMCID: PMC7658954 DOI: 10.1002/open.202000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
In this work, different types of polyethylene (linear, spiral nanofibers and microspheres) were obtained via confined polymerization by a PPM-supported Ziegler-Natta catalyst. Firstly, the Ziegler-Natta catalyst was chemical bonded inside the porous polymer microspheres (PPMs) supports with different pore diameter and supports size through chemical reaction. Then slightly and highly confined polymerization occurred in the PPM-supported Ziegler-Natta catalysts. SEM results illustrated that the slightly confined polymerization was easy to obtain linear and spiral nanofibers, and the nanofibers were observed in polyethylene catalyzed by PPMs-1#/cat and PPMs-2#/cat with low pore diameter (about 23 nm). Furthermore, the highly confined polymerization produced polyethylene microspheres, which obtained through other PPM-supported Ziegler-Natta catalysts with high pore diameter. In addition, high second melting point (Tm2: up to 143.3 °C) is a unique property of the polyethylene obtained by the PPM-supported Ziegler-Natta catalyst after removing the residue through physical treatment. The high Tm2 was ascribed to low surface free energy (σe), which was owing to the entanglement of polyethylene polymerized in the PPMs supports with interconnected multi-modal pore structure.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Advanced Power Transmission TechnologyGlobal Energy Interconnection Research InstituteNo.18 Binhe AvenueChangping DistrictBeijing102209P. R. China
| | - Xiying Dai
- State Key Laboratory of Advanced Power Transmission TechnologyGlobal Energy Interconnection Research InstituteNo.18 Binhe AvenueChangping DistrictBeijing102209P. R. China
| | - Kui Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry (CIAC)Chinese Academy of Sciences (CAS)No. 5625 Renmin Rd.ChangchunJilin130022P. R. China
| | - Guangyuan Zhou
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry (CIAC)Chinese Academy of Sciences (CAS)No. 5625 Renmin Rd.ChangchunJilin130022P. R. China
| |
Collapse
|
10
|
Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Chen S, Zhao W. Adsorption of Pb 2+ from Aqueous Solutions Using Novel Functionalized Corncobs via Atom Transfer Radical Polymerization. Polymers (Basel) 2019; 11:E1715. [PMID: 31635082 PMCID: PMC6835509 DOI: 10.3390/polym11101715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
The present study developed novel functionalized corncobs introducing brushes with dense and active carboxyl groups (-COOH), named MC-g-PAA, for the highly efficient adsorption of Pb2+ from aqueous solutions. MC-g-PAA were synthesized via atom transfer radical polymerization (ATRP) and characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The amount of Pb2+ adsorbed on MC-g-PAA by hydrolysis with t-BuOK was 2.28 times greater than that with NaOH, attributed to the larger steric effect of t-BuOK, which reduced the hydrolysis of the bromo-ester groups. The influence of different parameters including the solid/liquid ratio, working solution pH, sorption temperature, and initial concentration and sorption time on the adsorption of Pb2+ were investigated in detail in batch experiments. Thermodynamic studies have shown that the adsorption process was spontaneous, endothermic, and accompanied by an increase in randomness. A better fit for the isotherm data was obtained using the Langmuir model than for the other four models and the maximum amount ( q max ) of Pb2+ adsorbed on MC-g-PAA was 342.47 mg/g, which is 21.11 times greater when compared with that of pristine corncobs (16.22 mg/g). The adsorption of Pb2+ on MC-g-PAA was very fast and followed the pseudo-second-order kinetic equation with a correlation coefficient of 0.99999. This monolayer adsorption process was dominated by chemical adsorption, and may proceed according to complexation and electrostatic interactions between Pb2+ and the carboxylate groups. This study indicated that MC-g-PAA could be successfully used as an adsorbent for the removal of Pb2+ from aqueous solutions due to its excellent efficiency.
Collapse
Affiliation(s)
- Shanglong Chen
- School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China.
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou 221018, China.
| | - Wei Zhao
- School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China.
| |
Collapse
|
12
|
Yan CN, Xu L, Liu QD, Zhang W, Jia R, Liu CZ, Wang SS, Wang LP, Li G. Surface-Induced ARGET ATRP for Silicon Nanoparticles with Fluorescent Polymer Brushes. Polymers (Basel) 2019; 11:E1228. [PMID: 31340523 PMCID: PMC6680766 DOI: 10.3390/polym11071228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
Well-defined polymer brushes attached to nanoparticles offer an elegant opportunity for surface modification because of their excellent mechanical stability, functional versatility, high graft density as well as controllability of surface properties. This study aimed to prepare hybrid materials with good dispersion in different solvents, and to endow this material with certain fluorescence characteristics. Well-defined diblock copolymers poly (styrene)-b-poly (hydroxyethyl methyl acrylate)-co-poly (hydroxyethyl methyl acrylate- rhodamine B) grafted silica nanoparticles (SNPs-g-PS-b-PHEMA-co-PHEMA-RhB) hybrid materials were synthesized via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The SNPs surfaces were modified by 3-aminopropyltriethoxysilane (KH-550) firstly, then the initiators 2-Bromoisobutyryl bromide (BIBB) was attached to SNPs surfaces through the esterification of acyl bromide groups and amidogen groups. The synthetic initiators (SNPs-Br) were further used for the SI-ARGET ATRP of styrene (St), hydroxyethyl methyl acrylate (HEMA) and hydroxyethyl methyl acrylate-rhodamine B (HEMA-RhB). The results indicated that the SI-ARGET ATRP initiator had been immobilized onto SNPs surfaces, the Br atom have located at the end of the main polymer chains, and the polymerization process possessed the characteristic of controlled/"living" polymerization. The SNPs-g-PS-b-PHEMA-co-PHEMA-RhB hybrid materials show good fluorescence performance and good dispersion in water and EtOH but aggregated in THF. This study demonstrates that the SI-ARGET ATRP provided a unique way to tune the polymer brushes structure on silica nanoparticles surface and further broaden the application of SI-ARGET ATRP.
Collapse
Affiliation(s)
- Chun-Na Yan
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qing-Di Liu
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Wei Zhang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rui Jia
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Cheng-Zhi Liu
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shuang-Shuang Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guang Li
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
13
|
Synthesis of a Novel Mesoporous Inorganic–Organic Hybrid and Its Application in Epoxy Resins. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01160-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Yan CN, Liu Q, Xu L, Bai LP, Wang LP, Li G. Photoinduced Metal-Free Surface Initiated ATRP from Hollow Spheres Surface. Polymers (Basel) 2019; 11:E599. [PMID: 30960585 PMCID: PMC6523302 DOI: 10.3390/polym11040599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Well-defined amphiphilic diblock copolymer poly (methyl methacrylate)-b-poly (N-isopropylacrylamide) grafted hollow spheres (HS-g-PMMA-b-PNIPAM) hybrid materials were synthesized via metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiators α-Bromoisobutyryl bromide (BIBB) were attached onto hollow sphere surfaces through esterification of acyl bromide groups and hydroxyl groups. The synthetic ATRP initiators (HS-Br) were further used for the metal-free SI-ATRP of methyl methacrylate (MMA) and N-isopropyl acrylamide (NIPAM) using 10-phenylphenothiazine (PTH) as the photocatalyst. The molecular weight of the polymers, structure, morphology, and thermal stability of the hybrid materials were characterized via gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), ¹H-nuclear magnetic resonance spectroscopy (¹H NMR), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), respectively. The results indicated that the ATRP initiator had been immobilized onto HS surfaces successfully followed by metal-free SI-ATRP of MMA and NIPAM, the Br atom had located at the end of the main PMMA polymer chain, and the polymerization process possessed the characteristic of controlled/"living" polymerization. The thermal stability of the hybrid materials was increased significantly compared to the pure PMMA and PNIPAM.
Collapse
Affiliation(s)
- Chun-Na Yan
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Qian Liu
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Li-Ping Bai
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guang Li
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
15
|
Tom JC, Brilmayer R, Schmidt J, Andrieu-Brunsen A. Optimisation of Surface-Initiated Photoiniferter-Mediated Polymerisation under Confinement, and the Formation of Block Copolymers in Mesoporous Films. Polymers (Basel) 2017; 9:E539. [PMID: 30965846 PMCID: PMC6418678 DOI: 10.3390/polym9100539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Nature as the ultimate inspiration can direct, gate, and selectively transport species across channels to fulfil a specific targeted function. Harnessing such precision over local structure and functionality at the nanoscale is expected to lead to indispensable developments in synthetic channels for application in catalysis, filtration and sensing, and in drug delivery. By combining mesoporous materials with localised charge-switchable poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, precisely controlling pore filling and exploring the possibility of incorporating two different responsive polymers, we hope to approach the precision control of natural systems in the absence of an external force. Here, we report a simple one-step approach to prepare a mesoporous silica thin film with ~8 nm pores functionalised with a photoiniferter by combining sol⁻gel chemistry and evaporation-induced self-assembly (EISA). We show that surface-initiated photoiniferter-mediated polymerisation (SI-PIMP) allows the incorporation of a high polymer content up to geometrical pore blocking by the simple application of UV light in the presence of a monomer and solvent, proceeding in a controlled manner in pore sizes below 10 nm, with the potential to tune the material properties through the formation of surface-grafted block copolymers.
Collapse
Affiliation(s)
- Jessica C Tom
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| | - Robert Brilmayer
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| | - Johannes Schmidt
- Technische Universität Berlin, Fakultät II, Institut für Chemie, Hardenbergstr. 40, 10623 Berlin, Germany.
| | - Annette Andrieu-Brunsen
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|