1
|
Bottega Pergher B, Weinland DH, van Putten RJ, Gruter GJM. The search for rigid, tough polyesters with high T g - renewable aromatic polyesters with high isosorbide content. RSC SUSTAINABILITY 2024; 2:2644-2656. [PMID: 39211506 PMCID: PMC11353682 DOI: 10.1039/d4su00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Renewable polyesters with a good balance between impact strength and elastic modulus (stiffness) are not very common, especially when combined with high glass transition temperature (T g). Achieving such high performance properties would enable the substitution of high performance polymers like ABS and polycarbonate with chemically recyclable polyesters from bio-based or recycled sources. One of the challenges in developing these materials is to select the right composition of the right monomers/comonomer ratios and making these materials with high molecular weight, which can be challenging since some of the most promising rigid diols, such as isosorbide, are unreactive. This study comprises aromatic polyesters from (potentially) renewable monomers, using bio-based isosorbide as a means to increase their T g and to inhibit their crystallization, while using flexible co-diols to improve impact strength. To incorporate a high amount of isosorbide into the targeted polyesters, we used the synthesis method with reactive phenolic solvents previously developed in our group. The selected compositions display high T g's (>90 °C) and high tensile modulus (>1850 MPa). We show that more polar monomers such as the stiffer 2,5-furandicarboxylic acid (FDCA) and diethylene glycol cause high stiffness but decreased impact strength (<5 kJ m-2). Combining terephthalic acid and isosorbide with more flexible diols like 1,4-butanediol, 1,4-cyclohexanedimethanol (CHDM) and 1,3-propanediol provides a better balance, including the combination of high tensile modulus (>1850 MPa) and high impact strength (>10 kJ m-2).
Collapse
Affiliation(s)
- Bruno Bottega Pergher
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Daniel H Weinland
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Gert-Jan M Gruter
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support B.V. Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
2
|
Walkowiak K, Paszkiewicz S. Modifications of Furan-Based Polyesters with the Use of Rigid Diols. Polymers (Basel) 2024; 16:2064. [PMID: 39065381 PMCID: PMC11280799 DOI: 10.3390/polym16142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The replacement of polymers derived from petrochemical resources has been a prominent area of focus in recent decades. Polymers used in engineering materials must exhibit mechanical strength and stiffness while maintaining performance through a broad temperature range. Most of the polyesters used as engineering materials are based on terephthalic acid (TPA) and its derivatives, which provide necessary rigidity to molecular chains due to an aromatic ring. Bio-based alternatives for TPA-based polyesters that are gaining popularity are the polyesters derived from 2,5-furandicarboxylic acid (FDCA). To broaden applicational possibilities, one effective way to achieve specific properties in targeted applications is to adjust the composition and structure of polymers using advanced polymer chemistry techniques. The incorporation of rigid diols such as isosorbide, 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) should result in a greater stiffness of the molecular chains. This review extensively explores the effect of incorporating rigid diols on material properties through a review of research articles as well as patents. Moreover, this review mainly focuses on the polyesters and copolyesters synthesized via two-step melt polycondensation and its alterations due to the industrial importance of this method. Innovative synthesis strategies and the resulting material properties are presented.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| | | |
Collapse
|
3
|
Wang D, Pu X, He Z, Mu Y, Chen Y, Zhou M, Yang L. Bio-Based Copolyester PEIFT: Enhanced Hydrophilicity, Rigidity, and Applications in Nanofibers. Macromol Rapid Commun 2024; 45:e2300715. [PMID: 38539063 DOI: 10.1002/marc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Indexed: 04/12/2024]
Abstract
The raw materials of Poly(ethylene terephthalate) (PET) are derived from petroleum-based resources, which are no sustainable. Therefore, previous researchers introduced biomass-derived 2,5-tetrahydrofurfuryl dimethanol (THFDM) into PET. However, its heat resistance has decreased compared to PET. In this paper, a novel bio-based copolyester, poly(ethylene glycol-co-2,5-tetrahydrofuran dimethanol-co-isosorbide terephthalate) (PEIFT), is prepared by introducing biomass-derived isosorbide (ISB) and THFDM into the PET chains through melting copolymerization process. With the introduction of ISB content, copolyesters' hydrophilicity and rigidity improve. Compared to PET, glass transition temperature (Tg) increases by over 5 °C. In addition, the toughness and spinning performance of PEIFT have also been improved as a result of the addition of THFDM components. The hydrophobicity of PEIFTs electrospinning is greatly improved, with a contact angle exceeding 135°. Finally, due to the good hydrophobicity of PEIFTs nanofibers, they have potential application value in the manufacture of hydrophobic nanofiber and filter films. Given its biomass source and excellent performance, they make it easier to replace materials derived from petroleum.
Collapse
Affiliation(s)
- Dongqi Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinming Pu
- Wankai New Material Co., Ltd., Haining, 314415, P. R. China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Yuesong Mu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liping Yang
- Wankai New Material Co., Ltd., Haining, 314415, P. R. China
| |
Collapse
|
4
|
Bottega Pergher B, Girigan N, Vlasblom S, Weinland DH, Wang B, van Putten RJ, Gruter GJM. Reactive phenolic solvents applied to the synthesis of renewable aromatic polyesters with high isosorbide content. Polym Chem 2023; 14:3225-3238. [PMID: 37441225 PMCID: PMC10334470 DOI: 10.1039/d2py01578a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
High boiling point phenolic reactive solvents like p-cresol could play a key role in improving the synthesis of aromatic polyesters with a high content of secondary diols such as isosorbide. Previously, our group showed that this method significantly improves the synthesis of poly(isosorbide succinate). In this work, terephthalic acid and 2,5-furandicarboxylic acid were used as building blocks for the synthesis of high Tg polyesters with high isosorbide content (>30 mol% of diols) and high molecular weight (Mn > 24 kg mol-1). A number of reactive and non-reactive solvents were tested in this work, and the results clearly point to a significant improvement when using reactive solvents, in terms of molecular weight and polycondensation time, especially for the case of p-cresol. The synthesis method was successfully scaled to 1 kg, showing promise for production at industrial scale. A method to remove these solvents (including end groups) from the polymers, which uses small excesses of isosorbide (1.5-3.0%) in the feed, is also presented.
Collapse
Affiliation(s)
- Bruno Bottega Pergher
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
| | - Narcisa Girigan
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
| | - Sietse Vlasblom
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
| | - Daniel H Weinland
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
| | - Bing Wang
- Avantium Chemicals BV Zekeringstraat 29 1014BV Amsterdam The Netherlands
| | - Robert-Jan van Putten
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
- Avantium Chemicals BV Zekeringstraat 29 1014BV Amsterdam The Netherlands
| | - Gert-Jan M Gruter
- Van't Hoff Institute of Molecular Sciences, University of Amsterdam P.O. Box 94720 1090GS Amsterdam The Netherlands
- Avantium Chemicals BV Zekeringstraat 29 1014BV Amsterdam The Netherlands
| |
Collapse
|
5
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Synthesis of High-T Fluorinated Polyesters Based on 2,5-Furandicarboxylic Acid. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Chen YL, Mu YS, He ZJ, Pu XM, Wang DQ, Zhou M, Yang LP. New bio-based polyester with excellent spinning performance: poly(tetrahydrofuran dimethanol- co-ethylene terephthalate). RSC Adv 2022; 12:29516-29524. [PMID: 36320739 PMCID: PMC9562050 DOI: 10.1039/d2ra04484f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023] Open
Abstract
With the excessive consumption of fossil energy, technologies that transform bio-based resources into materials have received more and more attention from researchers in recent decades. In this paper, a series of poly(ethylene 2,5-tetrahydrofuran dimethyl terephthalate; PEFTs) with different components were synthesized from 2,5-tetrahydrofuran dimethanol (THFDM), terephthalic acid (TPA), and ethylene glycol (EG). Their chemical structures and compositions were determined by FTIR, 1H NMR, and 13C NMR. With the increase in THFDM content, the crystallization, T m, and tensile strength of PEFTs gradually decrease because the introduced THFDM breaks the order of molecular chains, while the thermal stability and T g remain stable. PEFTs seem to present a significant shear thinning phenomenon, which was indicated by the rheological test. Electrospinning technology was used to explore the spinnability of PEFT; it was found that PEFTs have better spinning performance than PET. In addition, due to the good hydrophobicity and porosity of PEFT nanofiber films, they have potential application value in the manufacture of hydrophobic nanofiber and filter films.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yue-Song Mu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ze-Jian He
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xin-Ming Pu
- Wankai New Material Co., Ltd. Haining 314415 China
| | - Dong-Qi Wang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Li-Ping Yang
- Wankai New Material Co., Ltd. Haining 314415 China
| |
Collapse
|
8
|
Zhang W, Wang Q, Wang G, Liu S. Synthesis and characterization of bio‐based poly(ethylene 2,5‐furandicarboxylate)‐b‐poly(butylene adipate‐co‐terephthalate) copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Zhang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan Shanxi China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing China
| | - Qingyin Wang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| | - Gongying Wang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| | - Shaoying Liu
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| |
Collapse
|
9
|
Lee S, Jung YJ, Park SJ, Ryu MH, Kim JE, Song HM, Kang KH, Song BK, Sung BH, Kim YH, Kim HT, Joo JC. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. BIORESOURCE TECHNOLOGY 2022; 352:127106. [PMID: 35378283 DOI: 10.1016/j.biortech.2022.127106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter Ptac in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.e., protocatechuic acid. Based on the culture optimization, fed-batch fermentation of the final strain resulted in 22.7 g/L PDC with a molar yield of 1.0 mol/mol and productivity of 0.21 g/L/h. Subsequent purification of PDC at high purity was successfully implemented, which was consequently applied for the novel polyester.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mi-Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Joo Eon Kim
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyoung Hee Kang
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Keun Song
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yong Hwan Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
10
|
Shen A, Wang J, Zhang X, Fei X, Fan L, Zhu Y, Dong Y, Zhu J. High thermal resistance amorphous copolyesters synthesized from bio‐based 2,5‐furandicarboxylic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ang Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xuan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Lin Fan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Yanliu Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Yunxiao Dong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| |
Collapse
|
11
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
12
|
Weinland DH, van Putten RJ, Gruter GJM. Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Zhang W, Wang Q, Wang G, Liu S. The effect of isothermal crystallization on mechanical properties of poly(ethylene 2,5-furandicarboxylate). E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The effects of isothermal crystallization temperature/time on mechanical properties of bio-based polyester poly(ethylene 2,5-furandicarboxylate) (PEF) were investigated. The intrinsic viscosity, crystallization properties, thermal properties, and microstructure of PEF were characterized using ubbelohde viscometer, X-ray diffraction, polarizing optical microscope, differential scanning calorimetry, and scanning electron microscopy. The PEF sample isothermal crystallized at various temperatures for various times was denoted as PEF-T-t. The results showed that the isothermal crystallization temperature affected the mechanical properties of PEF-T-30 by simultaneously affecting its crystallization properties and intrinsic viscosity. The isothermal crystallization time only affected the crystallization properties of PEF-110-t. The crystallinity of PEF-110-40 was 17.1%. With small crystal size, poor regularity, and α′-crystal, PEF-110-40 can absorb the energy generated in the tensile process to the maximum extent. Therefore, the best mechanical properties can be obtained for PEF-110-40 with the tensile strength of 43.55 MPa, the tensile modulus of 1,296 MPa, and the elongation at a break of 13.36%.
Collapse
Affiliation(s)
- Wei Zhang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
- Department of Materials Engineering, Taiyuan Institute of Technology , Taiyuan , Shanxi, 030008 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Qingyin Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Gongying Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Shaoying Liu
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| |
Collapse
|
14
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kim JH, Oh YR, Hwang J, Kang J, Kim H, Jang YA, Lee SS, Hwang SY, Park J, Eom GT. Valorization of waste-cooking oil into sophorolipids and application of their methyl hydroxyl branched fatty acid derivatives to produce engineering bioplastics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:195-202. [PMID: 33631444 DOI: 10.1016/j.wasman.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Waste-cooking oil (WCO) is defined as vegetable oil that has been used to fry food at high temperatures. The annual global generation of WCO is 41-67 million tons. Without proper treatment, most WCO is abandoned in sinks and the solid residue of WCO is disposed of in landfills, resulting in serious environmental problems. Recycling and valorizing WCO have received considerable attention to reduce its negative impact on ecosystems. To convert WCO into a high value-added compound, we aimed to produce sophorolipids (SLs) that are industrially important biosurfactants, using WCO as a hydrophobic substrate by the fed-batch fermentation of Starmerella bombicola. The SLs concentration was increased ~3.7-fold compared with flask culture (315.6 vs. 84.8 g/L), which is the highest value ever generated from WCO. To expand the applications of SLs, we prepared methyl hydroxy branched fatty acids (MHBFAs) from SLs, which are important chemicals for various industries yet difficult to produce by chemical methods, using a bio-chemical hybrid approach. We synthesized bio-based plastics using MHBFAs as co-monomers. Compared with the control polymer without MHBFAs, even the incorporation of 1 mol% into polymer chains improved mechanical properties (such as ultimate tensile strength, 1.1-fold increase; toughness, 1.3-fold increase). To the best of our knowledge, this is the first attempt to apply MHBFAs from SLs derived from WCO to building blocks of plastics. Thus, we extended the valorization areas of WCO to one of the world's largest industries.
Collapse
Affiliation(s)
- Jeong-Hun Kim
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Yu-Ri Oh
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Juyoung Hwang
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Jaeryeon Kang
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Hyeri Kim
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Young-Ah Jang
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Seung-Soo Lee
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Gyeong Tae Eom
- Research Center for Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
17
|
Kim D, Kim IC, Kwon YN, Myung S. Novel bio-based polymer membranes fabricated from isosorbide-incorporated poly(arylene ether)s for water treatment. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liu X, Desilles N, Lebrun L. Polyesters from renewable 1,4:3,6-dianhydrohexitols for food packaging: Synthesis, thermal, mechanical and barrier properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Wang JG, Zhang XQ, Shen A, Zhu J, Song PA, Wang H, Liu XQ. Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Kim AR, Park MS, Lee S, Ra M, Shin J, Kim Y. Polybutylene terephthalate modified with dimer acid methyl ester derived from fatty acid methyl esters and its use as a hot‐melt adhesive. J Appl Polym Sci 2019. [DOI: 10.1002/app.48474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A Ryeon Kim
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Min Su Park
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
- Department of Advanced Materials & Chemical EngineeringUniversity of Science & Technology, 217 Gajeong‐ro, Yuseong‐gu Daejeon 34113 Republic of Korea
| | - Sangjun Lee
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Mirae Ra
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
- Department of Advanced Materials & Chemical EngineeringUniversity of Science & Technology, 217 Gajeong‐ro, Yuseong‐gu Daejeon 34113 Republic of Korea
| | - Jihoon Shin
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
- Department of Advanced Materials & Chemical EngineeringUniversity of Science & Technology, 217 Gajeong‐ro, Yuseong‐gu Daejeon 34113 Republic of Korea
| | - Young‐Wun Kim
- Environment & Sustainable Resources Research CenterCarbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
- Department of Advanced Materials & Chemical EngineeringUniversity of Science & Technology, 217 Gajeong‐ro, Yuseong‐gu Daejeon 34113 Republic of Korea
| |
Collapse
|
21
|
Park SA, Im C, Oh DX, Hwang SY, Jegal J, Kim JH, Chang YW, Jeon H, Park J. Study on the Synthetic Characteristics of Biomass-Derived Isosorbide-Based Poly(arylene ether ketone)s for Sustainable Super Engineering Plastic. Molecules 2019; 24:E2492. [PMID: 31288408 PMCID: PMC6651539 DOI: 10.3390/molecules24132492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Demand for the development of novel polymers derived from biomass that can replace petroleum resources has been increasing. In this study, biomass-derived isosorbide was used as a monomer in the polymerization of poly(arylene ether ketone)s, and its synthetic characteristics were investigated. As a phase-transfer catalyst, crown ether has increased the weight-average molecular weight of polymers over 100 kg/mol by improving the reaction efficiency of isosorbide and minimizing the effect of moisture. By controlling the experimental parameters such as halogen monomer, polymerization solvent, time, and temperature, the optimal conditions were found to be fluorine-type monomer, dimethyl sulfoxide, 24 h, and 155 °C, respectively. Biomass contents from isosorbide-based polymers were determined by nuclear magnetic resonance and accelerator mass spectroscopy. The synthesized polymer resulted in a high molecular weight that enabled the preparation of transparent polymer films by the solution casting method despite its weak thermal degradation stability compared to aromatic polysulfone. The melt injection molding process was enabled by the addition of plasticizer. The tensile properties were comparable or superior to those of commercial petrochemical specimens of similar molecular weight. Interestingly, the prepared specimens exhibited a significantly lower coefficient of thermal expansion at high temperatures over 150 °C compared to polysulfone.
Collapse
Affiliation(s)
- Seul-A Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Changgyu Im
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ji Hyeon Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Young-Wook Chang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Korea.
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
22
|
Poulopoulou N, Pipertzis A, Kasmi N, Bikiaris DN, Papageorgiou DG, Floudas G, Papageorgiou GZ. Green polymeric materials: On the dynamic homogeneity and miscibility of furan-based polyester blends. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wang X, Wang Q, Liu S, Wang G. Synthesis and characterization of poly(isosorbide-co-butylene 2,5-furandicarboxylate) copolyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Synthesis and properties of poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol 2019; 38:50-67. [PMID: 31151764 DOI: 10.1016/j.tibtech.2019.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Collapse
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden.
| | - Lars J Nilsson
- Environmental and Energy Systems Studies, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Baozhong Zhang
- Center for Analysis and Synthesis, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Nicola Rehnberg
- Bona Sweden AB, Murmansgatan 130, Box 210 74, SE-200 21, Malmö, Sweden
| | | |
Collapse
|
26
|
Vijjamarri S, Hull M, Kolodka E, Du G. Renewable Isohexide-Based, Hydrolytically Degradable Poly(silyl ether)s with High Thermal Stability. CHEMSUSCHEM 2018; 11:2881-2888. [PMID: 29958332 DOI: 10.1002/cssc.201801123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Several degradable poly(silyl ether)s (PSEs) have been synthesized by dehydrogenative cross-coupling between bio-based 1,4:3,6-dianhydrohexitols (isosorbide and isomannide) and commercially available hydrosilanes. An air-stable manganese salen nitrido complex [MnV N(salen-3,5-tBu2 )] was employed as the catalyst. High-molecular-weight polymer was obtained from isosorbide and diphenylsilane (Mn up to 17000 g mol-1 ). Thermal analysis showed that these PSEs possessed high thermal stability with thermal decomposition temperatures (T-5 % ) of 347-446 °C and glass transition temperatures of 42-120 °C. Structure-property analysis suggested that steric bulk and molecular weight have a significant influence to determine the thermal properties of synthesized polymers. Importantly, these polymers were degraded effectively to small molecules under acidic and basic hydrolysis conditions.
Collapse
Affiliation(s)
- Srikanth Vijjamarri
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota, 58202, USA
| | - Marianne Hull
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota, 58202, USA
| | - Edward Kolodka
- Department of Chemical Engineering, University of North Dakota, 241 Centennial Dr. Stop 7101, Grand Forks, North Dakota, 58202, USA
| | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota, 58202, USA
| |
Collapse
|
27
|
Nguyen HL, Hanif Z, Park SA, Choi BG, Tran TH, Hwang DS, Park J, Hwang SY, Oh DX. Sustainable Boron Nitride Nanosheet-Reinforced Cellulose Nanofiber Composite Film with Oxygen Barrier without the Cost of Color and Cytotoxicity. Polymers (Basel) 2018; 10:E501. [PMID: 30966535 PMCID: PMC6415411 DOI: 10.3390/polym10050501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
This paper introduces a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber (CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. Most commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmission rate (OTR) of <1 cc/m²/day in highly controlled conditions. A CNF film typically fabricated by the air drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m²/day. The addition of 0⁻5 wt % BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR of 4.7 cc/m²/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases the pathway of oxygen gas and reduces the chances of pinhole formation during film fabrication involving water drying. In addition, BNNS improves the mechanical properties of the CNF films (Young's modulus and tensile strength) without significant elongation reductions, probably due to the good miscibility of CNF and BNNS in the aqueous solution. Addition of BNNS also produces negligible color change, which is important for film aesthetics. An in vitro cell experiment was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great potential as a sustainable high-performance food-packaging material.
Collapse
Affiliation(s)
- Hoang-Linh Nguyen
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Zahid Hanif
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
| | - Seul-A Park
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Ganwan-do, Samcheok 25913, Korea.
| | - Thang Hong Tran
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Dong Soo Hwang
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Jeyoung Park
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
28
|
Morales-Huerta JC, Martínez de Ilarduya A, León S, Muñoz-Guerra S. Isomannide-Containing Poly(butylene 2,5-furandicarboxylate) Copolyesters via Ring Opening Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Juan Carlos Morales-Huerta
- Department d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647,8028 Barcelona, Spain
| | - Antxon Martínez de Ilarduya
- Department d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647,8028 Barcelona, Spain
| | - Salvador León
- Departamento de Ingeniería Química, Universidad Politécnica de Madrid, ETSIIM, Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sebastián Muñoz-Guerra
- Department d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647,8028 Barcelona, Spain
| |
Collapse
|
29
|
Wang P, Arza CR, Zhang B. Indole as a new sustainable aromatic unit for high quality biopolyesters. Polym Chem 2018. [DOI: 10.1039/c8py00962g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time, indole has been used as a sustainable aromatic unit to produce high quality biopolyesters.
Collapse
Affiliation(s)
- Ping Wang
- Lund University
- Centre of Analysis and Synthesis
- SE-22100 Lund
- Sweden
| | - Carlos R. Arza
- Lund University
- Centre of Analysis and Synthesis
- SE-22100 Lund
- Sweden
| | - Baozhong Zhang
- Lund University
- Centre of Analysis and Synthesis
- SE-22100 Lund
- Sweden
| |
Collapse
|