1
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
2
|
Han JC, Wang SF, Deng R, Wu QY. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane For Minimizing Internal Concentration Polarization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Preparation and Properties of Thin-Film Composite Forward Osmosis Membranes Supported by Cellulose Triacetate Porous Substrate via a Nonsolvent-Thermally Induced Phase Separation Process. MEMBRANES 2022; 12:membranes12040412. [PMID: 35448382 PMCID: PMC9025079 DOI: 10.3390/membranes12040412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
A porous substrate plays an important role in constructing a thin-film composite forward osmosis (TFC-FO) membrane. To date, the morphology and performance of TFC-FO membranes are greatly limited by porous substrates, which are commonly fabricated by non-solvent induced phase separation (NIPS) or thermally induced phase separation (TIPS) processes. Herein, a novel TFC-FO membrane has been successfully fabricated by using cellulose triacetate (CTA) porous substrates, which are prepared using a nonsolvent-thermally induced phase separation (N-TIPS) process. The pore structure, permeability, and mechanical properties of CTA porous substrate are carefully investigated via N-TIPS process (CTAN-TIPS). As compared with those via NIPS and TIPS processes, the CTAN-TIPS substrate shows a smooth surface and a cross section combining interconnected pores and finger-like macropores, resulting in the largest water flux and best mechanical property. After interfacial polymerization, the obtained TFC-FO membranes are characterized in terms of their morphology and intrinsic transport properties. It is found that the TFC-FO membrane supported by CTAN-TIPS substrate presents a thin polyamide film full of nodular and worm-like structure, which endows the FO membrane with high water permeability and selectivity. Moreover, the TFC-FO membrane supported by CTAN-TIPS substrate displays a low internal concentration polarization effect. This work proposes a new insight into preparing TFC-FO membrane with good overall performance.
Collapse
|
4
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
5
|
Jamil TS, Nasr RA, Abbas HA, Ragab TIM, Xabela S, Moutloali R. Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds. MEMBRANES 2021; 12:6. [PMID: 35054532 PMCID: PMC8778589 DOI: 10.3390/membranes12010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Novel low-cost cellulose triacetate-based membranes extracted from palm fronds have been fabricated through the phase-inversion procedure. The cellulose tri-acetate (CTA) membrane was modified by incorporation of graphene oxide (GO) prepared from palm fronds according to the modified Hummer method as well as the preparation of polyamide thin film composite CTA membranes to improve forward osmosis performance for seawater desalination. The surface characteristics and morphology of the prepared CTA, GO, and the fabricated membranes were investigated. The modified TFC prepared membrane had superior mechanical characteristics as well as permeation of water. The performance of the prepared membranes was tested using synthetic 2 M Sodium chloride (NaCl) feed solution. The water flux (Jw) of the thin-film composite (TFC) (CTA/0.3% GO) was 35 L/m2h, which is much higher than those of pure CTA and CTA/0.3% GO. Meanwhile, the salt reverse flux TFC (CTA/0.3% GO) was 1.1 g/m2h), which is much lower than those of pure CTA and CTA/0.3%. GO (Specific salt flux of TFC (CTA/0.3% GO) substrate membrane was 0.03 g/L indicating good water permeation and low reverse salt flux of the TFC membrane compared to CTA. A real saline water sample collected from Hurgada, Egypt, with totally dissolved solids of 42,643 mg/L with NaCl as the draw solution (DS) at 25 °C and flow rate 1.55 L/min, was used to demonstrate the high performance of the prepared TFC membrane. The chemical analysis of desalted permeated water sample revealed the high performance of the prepared TFC membrane. Consequently, the prepared low-cost forward osmosis (FO) thin-film composite CTA membranes can be introduced in the desalination industry to overcome the high cost of reverse osmosis membrane usage in water desalination.
Collapse
Affiliation(s)
- Tarek S. Jamil
- National Research Center El Behouth Street Dokki, Water Pollution Control Department, Dokki 12622, Cairo, Egypt;
| | - Rabab A. Nasr
- National Research Center El Behouth Street Dokki, Water Pollution Control Department, Dokki 12622, Cairo, Egypt;
| | - Hussien A. Abbas
- National Research Centre, Inorganic Chemistry Department, El Behouth Street Dokki, Dokki 12622, Cairo, Egypt;
| | - Tamer I. M. Ragab
- National Research Centre, Chemistry of Natural and Microbial Products Department, Dokki 12622, Cairo, Egypt;
| | - Sinethemba Xabela
- Department of Chemical Sciences, University of Johannesburg, Doornforntein 2028, South Africa;
| | - Richard Moutloali
- Campus Florida, Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, Florida Science, University of South Africa, Johannesburg 1709, South Africa;
| |
Collapse
|
6
|
Jain H, Dhupper R, Verma AK, Garg MC. Development of titanium dioxide incorporated ultrathin cellulose acetate membrane for enhanced forward osmosis performance. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:67. [DOI: 10.1007/s41204-021-00161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/26/2021] [Indexed: 08/20/2024]
|
7
|
He Y, Lin X, Chen J, Zhan H. Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Behboudi A, Ghiasi S, Mohammadi T, Ulbricht M. Preparation and characterization of asymmetric hollow fiber polyvinyl chloride (PVC) membrane for forward osmosis application. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
10
|
Ndiaye I, Chaoui I, Vaudreuil S, Bounahmidi T. Selection of substrate manufacturing techniques of polyamine‐based
thin‐film
composite membranes for forward osmosis process. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Issa Ndiaye
- Euro‐Med Research Institute, Euro‐Med University of Fes (UEMF) Fes Morocco
| | - Imane Chaoui
- Euro‐Med Research Institute, Euro‐Med University of Fes (UEMF) Fes Morocco
- Laboratoires d'Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d'Ingénieurs, Université Mohammed V de Rabat Rabat‐Agdal Morocco
| | | | - Tijani Bounahmidi
- Euro‐Med Research Institute, Euro‐Med University of Fes (UEMF) Fes Morocco
| |
Collapse
|
11
|
Guo J, Yang Q, Meng QW, Lau CH, Ge Q. Membrane Surface Functionalization with Imidazole Derivatives to Benefit Dye Removal and Fouling Resistance in Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6710-6719. [PMID: 33512147 DOI: 10.1021/acsami.0c22685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water contaminated with low concentrations of pollutants is more difficult to clean up than that with high pollutant content levels. Membrane separation provides a solution for removing low pollutant content from water. However, membranes are prone to fouling, losing separation performances over time. Here we synthesized neutral (IM-NH2) and positively charged (IL-NH2) imidazole derivatives to chemically functionalize membranes. With distinct properties, these imidazole grafts could tailor membrane physicochemical properties and structures to benefit forward osmosis (FO) processes for the removal of 20-100 ppm of Safranin O dye-a common dye employed in the textile industry. The water fluxes produced by IM-NH2- and IL-NH2-modified membranes increased by 67% and 122%, respectively, with DI water as the feed compared to that with the nascent membrane. A 39% flux increment with complete dye retention (∼100%) was achieved for the IL-NH2-modified membrane against 100 ppm of Safranin O dye. Regardless of the dye concentration, the IL-NH2-modified membrane exhibited steadily higher permeation performance than the original membrane in long-term experiments. Reproducible experimental results were obtained with the IL-NH2-modified membrane after cleaning with DI water, demonstrating the good antifouling properties and renewability of the newly developed membrane.
Collapse
Affiliation(s)
- Jie Guo
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qiaoli Yang
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Qing-Wei Meng
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, The King's Buildings, Edinburgh EH9 3FB, Scotland, U.K
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, Fujian 350116, China
| |
Collapse
|
12
|
Alihemati Z, Hashemifard SA, Matsuura T, Ismail AF. Feasibility of using polycarbonate as a substrate of thin film composite membrane in forward osmosis. J Appl Polym Sci 2021. [DOI: 10.1002/app.50511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Z. Alihemati
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - S. A. Hashemifard
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - T. Matsuura
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Canada
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
| |
Collapse
|
13
|
Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Eftimie Totu E, Modrogan C, Chiriac AL, Nicolae CA. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers (Basel) 2020; 12:polym12081792. [PMID: 32785152 PMCID: PMC7464649 DOI: 10.3390/polym12081792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023] Open
Abstract
The present paper synthesized, characterized, and evaluated the performance of the novel biopolymeric membrane enriched with cellulose acetate and chitosan (CHI)-silver (Ag) ions in order to remove iron ion from the synthetic wastewater using a new electrodialysis system. The prepared membranes were characterized by Fourier Transforms Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DSC), contact angle measurements, microscopy studies, and electrochemical impedance spectroscopy (EIS). The electrodialysis experiments were performed at the different applied voltages (5, 10, and 15 V) for one hour, at room temperature. The treatment rate (TE) of iron ions, current efficiency (IE), and energy consumption (Wc) were calculated. FTIR-ATR spectra evidenced that incorporation of CHI-Ag ions into the polymer mixture led to a polymer-metal ion complex formation within the membrane. The TGA-DSC analysis for the obtained biopolymeric membranes showed excellent thermal stability (>350 °C). The contact angle measurements demonstrated the hydrophobic character of the polymeric membrane and a decrease of it by CHI-Ag adding. The EIS results indicated that the silver ions induced a higher ionic electrical conductivity. The highest value of the iron ions treatment rate (>60%) was obtained for the biopolymeric membrane with CHI-Ag ions at applied voltage of 15 V.
Collapse
Affiliation(s)
- Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
| | - Roxana Gabriela Zgârian
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
| | - Graţiela Teodora Tihan
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
- Correspondence:
| | - Violeta Purcar
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| | - Eugenia Eftimie Totu
- Analytical Chemistry and Environmental Engineering Department, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania; (E.E.T.); (C.M.)
| | - Cristina Modrogan
- Analytical Chemistry and Environmental Engineering Department, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania; (E.E.T.); (C.M.)
| | - Anita-Laura Chiriac
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| | - Cristian Andi Nicolae
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| |
Collapse
|
14
|
Ma J, Xiao T, Long N, Yang X. The role of polyvinyl butyral additive in forming desirable pore structure for thin film composite forward osmosis membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Interfacial polymerization of thin-film composite forward osmosis membranes using ionic liquids as organic reagent phase. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ndiaye I, Vaudreuil S, Bounahmidi T. Forward Osmosis Process: State-Of-The-Art of Membranes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1622133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Issa Ndiaye
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| | - Sébastien Vaudreuil
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
| | - Tijani Bounahmidi
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| |
Collapse
|
17
|
Shi SJ, Pan YH, Wang SF, Dai ZW, Gu L, Wu QY. Aluminosilicate Nanotubes Embedded Polyamide Thin Film Nanocomposite Forward Osmosis Membranes with Simultaneous Enhancement of Water Permeability and Selectivity. Polymers (Basel) 2019; 11:E879. [PMID: 31091763 PMCID: PMC6572521 DOI: 10.3390/polym11050879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Nanocomposite membranes are strongly desired to break a trade-off between permeability and selectivity. This work reports new thin film nanocomposite (TFN) forward osmosis (FO) membranes by embedding aluminosilicate nanotubes (ANTs) into a polyamide (PA) rejection layer. The surface morphology and structure of the TFN FO membranes were carefully characterized by FTIR, XPS, FESEM and AFM. The ANTs incorporated PA rejection layers exhibited many open and broad "leaf-like" folds with "ridge-and-valley" structures, high surface roughness and relatively low cross-linking degree. Compared with thin film composite (TFC) membrane without ANTs, the TFN membrane with only 0.2 w/v% ANTs loading presented significantly improved FO water permeability, selectivity and reduced structural parameters. This promising performance can be mainly contributed to the special ANTs embedded PA rejection layer, where water molecules preferentially transport through the nanochannels of ANTs. Molecular dynamic simulation further proved that water molecules have much larger flux through the nanotubes of ANTs than sodium and chloride ions, which are attributed to the intrinsic hydrophilicity of ANTs and low external force for water transport. This work shows that these TFN FO membranes with ANTs decorated PA layer are promising in desalination applications due to their simultaneously enhanced permeability and selectivity.
Collapse
Affiliation(s)
- She-Ji Shi
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ye-Han Pan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shao-Fei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zheng-Wei Dai
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201; China.
| | - Qing-Yun Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|