1
|
Skillin NP, Bauman GE, Kirkpatrick BE, McCracken JM, Park K, Vaia RA, Anseth KS, White TJ. Photothermal Actuation of Thick 3D-Printed Liquid Crystalline Elastomer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313745. [PMID: 38482935 PMCID: PMC12019735 DOI: 10.1002/adma.202313745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Liquid crystalline elastomers (LCEs) are stimuli-responsive materials that transduce an input energy into a mechanical response. LCE composites prepared with photothermal agents, such as nanoinclusions, are a means to realize wireless, remote, and local control of deformation with light. Amongst photothermal agents, gold nanorods (AuNRs) are highly efficient converters when the irradiation wavelength matches the longitudinal surface plasmon resonance (LSPR) of the AuNRs. However, AuNR aggregation broadens the LSPR which also reduces photothermal efficiency. Here, the surface chemistry of AuNRs is engineered via a well-controlled two-step ligand exchange with a monofunctional poly(ethylene glycol) (PEG) thiol that greatly improves the dispersion of AuNRs in LCEs. Accordingly, LCE-AuNR nanocomposites with very low PEG-AuNR content (0.01 wt%) prepared by 3D printing are shown to be highly efficient photothermal actuators with rapid response (>60% strain s-1) upon irradiation with near-infrared (NIR; 808 nm) light. Because of the excellent dispersion of PEG-AuNR within the LCE, unabsorbed NIR light transmits through the nanocomposites and can actuate a series of samples. Further, the dispersion also allows for the optical deformation of millimeter-thick 3D printed structures without sacrificing actuation speed. The realization of well-dispersed nanoinclusions to maximize the stimulus-response of LCEs can benefit functional implementation in soft robotics or medical devices.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grant E. Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joselle M. McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
- UES, Inc., Dayton, OH, 45433, USA
| | - Richard A. Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder CO, 80303, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder CO, 80303, USA
| |
Collapse
|
2
|
Zhang J, Liu S, Wang X, Zhang X, Hu X, Zhang L, Sun Q, Liu X. 4D Printable liquid crystal elastomers with restricted nanointerfacial slippage for long-term-cyclic-stability photothermal actuation. MATERIALS HORIZONS 2024; 11:2483-2493. [PMID: 38477135 DOI: 10.1039/d3mh02230g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Liquid crystal elastomers (LCEs) blended with photothermal nanofillers can reversibly and rapidly deform their shapes under external optical stimuli. However, nanointerfacial slipping inevitably occurs between the LCE molecules and the nanofillers due to their weak physical interactions, eventually resulting in cyclic instability. This work presents a versatile strategy to fabricate nanointerfacial-slipping-restricted photoactuation elastomers by chemically bonding the nanofillers into a thermally actuatable liquid crystal network. We experimentally and theoretically investigated three types of metal-based nanofillers, including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, and two-dimensional (2D) nanosheets. The toughly crosslinked nanointerface allows for remarkably promoted interfacial thermal conductivity and stress transfer. Therefore, the resultant actuators enable the realization of long-term-cyclic-stability 4D-printed flexible intelligent systems such as the optical gripper, crawling robot, light-powered self-sustained windmill, butterflies with fluttering wings, and intelligent solar energy collection system.
Collapse
Affiliation(s)
- Juzhong Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuiren Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xianghong Wang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoguang Hu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Linlin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Qingqing Sun
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuying Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Wu J, Wang Y, Ye W, She J, Su CY. Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2023. [DOI: 10.20965/jaciii.2023.p0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.
Collapse
Affiliation(s)
- Jundong Wu
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Yawu Wang
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Wenjun Ye
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| | - Jinhua She
- School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Chun-Yi Su
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
4
|
Shi T, Liang J, Li X, Zhang C, Yang H. Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification. Polymers (Basel) 2022; 14:4509. [PMID: 36365505 PMCID: PMC9653635 DOI: 10.3390/polym14214509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 09/08/2024] Open
Abstract
A multifunctional aviation aluminum alloy with good superhydrophobicity and corrosion resistance was prepared by a two-step process of etching followed by polymer modification. Meanwhile, micro- and nanostructures formed on the processed sample. Compared with bare sample, the static liquid contact angle on the as-prepared sample was increased by 100.8°. Further polarization tests showed that the corrosion potential of such a sample increased, and the corrosion current density decreased obviously, thus suggesting that the corrosion resistance of the modified sample was significantly improved. The same conclusion was confirmed by subsequent impedance testing. The work is of great economic value and practical significance to enhance the corrosion resistance of aviation actuator materials and also lays a foundation for future hydrophobic application research in aeronautical engineering.
Collapse
Affiliation(s)
- Tian Shi
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Jingsong Liang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuewu Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanwei Zhang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Hejie Yang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
5
|
Kim H, Choi J. Subcontinuum Interpretation of Mechanical Behavior for Cross-Linked Epoxy Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongdeok Kim
- Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Molecular architecture dependence of mesogen rotation during uniaxial elongation of liquid crystal elastomers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Computational Study on Interfacial Interactions between Polymethyl Methacrylate-Based Bone Cement and Hydroxyapatite in Nanoscale. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polymethyl methacrylate (PMMA)-based bone cement (BC) is a key material in joint replacement surgery that transfers external forces from the implant to the bone while allowing their robust binding. To quantitatively evaluate the effect of polymerization on the thermomechanical properties of the BC and on the interaction characteristics with the bone ceramic hydroxyapatite (HAp), molecular dynamics simulations were performed. The mechanical stiffness of the BC material under external loading increased gradually with the crosslinking reaction occurrence, indicating increasing load transfer between the constituent molecules. In addition, as the individual Methyl Methacrylate (MMA) segments were interconnected in the system, the freedom of the molecular network was largely suppressed, resulting in more thermally stable structures. Furthermore, the pull-out tests using HAp/BC bilayer models under different constraints (BC at 40% and 85%) revealed the cohesive characteristics of the BC with the bone scaffold in molecular detail. The stiffness and the fracture energy increased by 32% and 98%, respectively, with the crosslink density increasing.
Collapse
|