1
|
Zhang Z, Zhang J, Lucia LA, Abidi N. Bamboo fiber reinforced poly (acrylonitrile-styrene-acrylic)/chlorinated polyethylene via compabilization. Int J Biol Macromol 2024; 266:131287. [PMID: 38565367 DOI: 10.1016/j.ijbiomac.2024.131287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In the quest to enhance the performance of natural fiber-reinforced polymer composites, achieving optimal dispersion of fiber materials within a polymeric matrix has been identified as a key strategy. Traditional approaches, such as the surface modification of natural fibers, often necessitate the use of additional synthetic chemical processes, presenting a significant challenge. In this work, taking poly (acrylonitrile-styrene-acrylic) (ASA) and bamboo fiber (BF) as a model system, we attempt to use the elastomer-chlorinated polyethylene (CPE) as a compatibilizer to tailor the mechanical properties of ASA/CPE/BF ternary composites. It was found that increasing CPE content contributed to more remarkable reinforcing efficiency, where composite with 15 phr CPE exhibited a nearly four-fold increase in reinforcing efficiency of tensile strength (20 %) compared with that of composite system without CPE (4.1 %). Such improvement was ascribed to the compatibilizing effect exerted by CPE, which prevented the aggregation of BF within polymeric matrix. Surface properties suggested the stronger interface between CPE and BF compared to that between ASA and BF and thereby contributed to the compabilizing effect. Since no chemical process was involved, it is suggested that the introduction of elastomer to be a universal, green and sustainable approach to achieve the reinforcement.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA; Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Lubbock, TX, USA.
| | - Jun Zhang
- College of Materials Science & Engineering, Nanjing University of Technology, Nanjing, Jiangsu Province, China.
| | - Lucian A Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Lubbock, TX, USA
| |
Collapse
|
2
|
Soni A, Das PK, Yusuf M, Pasha AA, Irshad K, Bourchak M. Synergy of RHA and silica sand on physico-mechanical and tribological properties of waste plastic-reinforced thermoplastic composites as floor tiles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124566-124584. [PMID: 35599290 DOI: 10.1007/s11356-022-20915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The usage of waste for the development of sustainable building materials has received an increasing attention in socio-eco-environment spheres. The rice husk ash (RHA) produced during burning of rice husk and the ever-increasing plastic wastes are useless causing detrimental effects on the environment. This research supports the idea of sustainability and circular economy via utilization of waste to produce value-added products. This research explores the potential of waste plastics, RHA, and silica sand as thermoplastic composite materials. The different composite samples were prepared through waste plastics which includes low- and high-density polyethylene and polypropylene with incorporation of RHA and silica sand in proportions. The study investigates the effect of filler/polymer in 30/70, 20/80, and 10/90 (wt. %) on the workability of the developed composite materials. The workability of the composites was found to improve with filler reinforcement. The experimental results showed the maximum density of 1.676 g/cm3 and mechanical strength of 26.39, 4.89, and 3.25 MPa as compressive, flexural, and tensile strengths, respectively. The minimum percentage of water absorption was 0.052%. The wear tests resulted in a minimum abrasive and sliding wear rate of 0.03759 (cm3) and 0.00692 × 10-6 kg/m. The correlations between wear mechanisms and responses were morphologically analyzed. The developed composites verify the feasibility of RHA and plastics waste as a cost effective and environmentally competent product. The results and discussions provided a direction for the future research on sustainable polymeric composite materials.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Mohammad Yusuf
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia.
| | - Amjad Ali Pasha
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Kashif Irshad
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Researcher at K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum and Mineral, Dhahran, 31261, Saudi Arabia
| | - Mostefa Bourchak
- Aerospace Engineering Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Yang J, Zhou X, Wen X, Hao G, Xiao L, Zhang G, Jiang W. Molecular Engineering of Binder for Improving the Mechanical Properties and Recyclability of Energetic Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1087. [PMID: 36985981 PMCID: PMC10051099 DOI: 10.3390/nano13061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Mechanical properties and reprocessing properties are of great significance to the serviceability and recyclability of energetic composites. However, the mechanical robustness of mechanical properties and dynamic adaptability related to reprocessing properties are inherent contradictions, which are difficult to optimize at the same time. This paper proposed a novel molecular strategy. Multiple hydrogen bonds derived from acyl semicarbazides could construct dense hydrogen bonding arrays, strengthening physical cross-linking networks. The zigzag structure was used to break the regular arrangement formed by the tight hydrogen bonding arrays, so as to improve the dynamic adaptability of the polymer networks. The disulfide exchange reaction further excited the polymer chains to form a new "topological entanglement", thus improving the reprocessing performance. The designed binder (D2000-ADH-SS) and nano-Al were prepared as energetic composites. Compared with the commercial binder, D2000-ADH-SS simultaneously optimized the strength and toughness of energetic composites. Due to the excellent dynamic adaptability of the binder, the tensile strength and toughness of the energetic composites still maintained the initial values, 96.69% and 92.89%, respectively, even after three hot-pressing cycles. The proposed design strategy provides ideas for the design and preparation of recyclable composites and is expected to promote the future application in energetic composites.
Collapse
Affiliation(s)
- Jing Yang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Zhou
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaomu Wen
- Science and Technology on Transient Impact Laboratory, Research Institute of China Ordnance Industries, Beijing 102202, China
| | - Gazi Hao
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Xiao
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023; 28:molecules28010428. [PMID: 36615616 PMCID: PMC9823830 DOI: 10.3390/molecules28010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects. This review describes the research progress on self-healing binders for ECMs. The structural designs of these strategies to manipulate macro-molecular and/or supramolecular polymers are discussed in detail, and then the implementation of these strategies on ECMs is discussed. However, the reasonable configuration of robust microstructures and effective dynamic exchange are still challenges. Therefore, the prospects for the development of self-healing binders for ECMs are proposed. These critical insights are emphasized to guide the research on developing novel self-healing binders for ECMs in the future.
Collapse
|
5
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|