1
|
de Souza Cunha RC, de Sousa Fontes VM, de Souza EGT, Silva GS, da Silva LR, de Sousa Galvão M, Alvim ID, da Silva Alves AM, Pacheco MTB, Brum FL, Torres SM, Madruga MS, Minim VPR, Bezerra TKA. Microencapsulation of maillard reaction products from chicken bone protein hydrolysates: Retention and preservation of meat flavoring compounds. Food Chem 2025; 483:144313. [PMID: 40245627 DOI: 10.1016/j.foodchem.2025.144313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The Maillard reaction is a natural process in foods and widely used in by-products to develop meat flavors. However, few research has focused on protecting the volatile compounds generated. This study investigated the Maillard reaction in chicken bone hydrolysate at pH 4 and 6, followed by spray drying encapsulation to assess volatile retention, preservation, and sensory properties. Forty-five volatile compounds were identified, with pH 6 showing a higher volatile profile. The pH 6 flavoring demonstrated the formation of aldehydes and furans, including hexanal, heptanal, benzeneacetaldehyde, nonanal, and 2-pentyl furan, which contributed to the characteristic aroma of cooked chicken. Microencapsulated flavorings were evaluated for sensory properties, with lower acceptance than the control, but no significant differences (p < 0.05) in volatile profiles across carrier concentrations. This study is the first to develop a powdered flavoring from chicken bone hydrolysate, demonstrating good aromatic retention and making it viable for food industry applications.
Collapse
Affiliation(s)
| | | | | | - Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Layane Rosa da Silva
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Mercia de Sousa Galvão
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Izabela Dutra Alvim
- Institute of Food Technology (ITAL), Brasil Ave 2880, P.O. Box 139, Campinas 13070-178, Brazil.
| | | | | | - Felipe Lopes Brum
- Laboratory of New Materials Technology, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Sandro Marden Torres
- Laboratory of New Materials Technology, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | | | | |
Collapse
|
2
|
Afifah EN, Sari IA, Susilo AW, Malik A, Fukusaki E, Putri SP. Characterization of fine-flavor cocoa in parent-hybrid combinations using metabolomics approach. Food Chem X 2024; 24:101832. [PMID: 39386152 PMCID: PMC11462170 DOI: 10.1016/j.fochx.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Fine-flavored cocoa is generally characterized by fresh bean color and sensory characteristics. However, these methods cannot be applied to progenies/hybrids because their colors may vary depending on their parents. Additionally, sensory evaluation lacks universal quality standards, necessitating robust complementary characterization methods. This study aimed to characterize the fine-flavor cacao in parent-hybrid combinations using widely targeted Gas Chromatography-Mass Spectrometry (GC-MS) and bean phenotype analysis. Fine-flavored cacao exhibits white-bean characteristics and a lighter color than forastero. Conversely, the hybrids displayed varying percentages of fresh bean color. Caffeine and organic acids (malic acid, fumaric acid, citric acid, lactic acid, and tartaric acid) were found to correspond to the characteristics of fine-flavored cacao. Each parent-hybrid combination demonstrated distinct flavor characteristics, with the ICCRI03-hybrid emerging as a promising clone, exhibiting flavor characteristics similar to those of its female parent (fine-flavor cacao). This information on flavor characteristics will be beneficial for further fine-flavored cacao selection.
Collapse
Affiliation(s)
- Enik Nurlaili Afifah
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Sleman district, Daerah Istimewa Yogyakarta 55281, Indonesia
| | - Indah Anita Sari
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, Jawa Timur 68118, Indonesia
| | - Agung Wahyu Susilo
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, Jawa Timur 68118, Indonesia
| | - Abdul Malik
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, Jawa Timur 68118, Indonesia
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratories, International Center for Biotechnology, Osaka University, 2-1, Yamadaoka, Suita, Osaka, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Nguyen VT, Thi Tran PT. Characterization of microencapsulated powders rich in saponins from cocoa pod husk ( Theobroma cacao L.) and medicinal plant an xoa ( Helicteres hirsuta Lour.). Heliyon 2024; 10:e32703. [PMID: 38912482 PMCID: PMC11193021 DOI: 10.1016/j.heliyon.2024.e32703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Cocoa pod husk (CPH) is a major residue of cocoa processing industry, while medicinal plant H. hirsuta is used for treatment of malaria and diabetes mellitus in folk medicine. This study aimed to produce microencapsulated powders from saponin-enriched CPH and H. hirsuta extracts and assess their physicochemical, phytochemical, antioxidant, and α-glucosidase inhibition properties. The findings show that the microencapsulated powders were achieved diserable physicochemical properties (moisture of 3.22-4.76 %, water activity of 0.43-0.46, water solubility index of 74.18-88.77 %, particle size of 254.2-719.7 nm, and zeta potential from -6.97 to -15.1 mV). The phytochemical content of microencapsulated CPH powders gained at high levels (total saponin content of 151.87-193.46 mg EE/g DS, total flavonoid content of 33.80-46.05 mg CE/g DS), total alkaloid content of 15.20-24.23 mg AA/g DS, and total phenolic content of 5.41-6.49 mg GAE/g DS). The antioxidant potential of microencapsulated CPH powders using ARSC and FRAP assays was 15.51-18.20 and 9.61-11.89 mg TE/g DS, respectively, while their α-glucosidase inhibition capacity at 100 μg/mL was found at 51.74-52.16 %. The phytochemical content (except total alkaloid content), antioxidant, and α-glucosidase inhibitory potential of microencapsulated CPH powders were smaller than those of microencapsulated H. hirsuta and combined powders. This study reveals that the microencapsulated CPH and H. hirsuta powders were prospective in reducing hyperglycemia activity. Therefore, this study provided an evidence for further application of CPH and H. hirsuta plant for functional food development.
Collapse
Affiliation(s)
- Van Tang Nguyen
- Group of Research, Development and Teaching on Functional Foods, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Viet Nam
- Food Technology Faculty, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Viet Nam
| | - Phuong Trang Thi Tran
- Group of Research, Development and Teaching on Functional Foods, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Viet Nam
- Life Science Department, University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
| |
Collapse
|
4
|
Yeasmen N, Orsat V. Microencapsulation of ultrasound-assisted phenolic extracts of sugar maple leaves: Characterization, in vitro gastrointestinal digestion, and storage stability. Food Res Int 2024; 182:114133. [PMID: 38519199 DOI: 10.1016/j.foodres.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Sugar maple leaves (SML), usually considered residue plant biomass and discarded accordingly, contain a considerable amount of phenolic antioxidants. In this study, SML phenolics were extracted employing both advanced (homogenization pretreated ultrasound-assisted extraction) and conventional (maceration) methods followed by their encapsulation by freeze drying and spray drying using a combination of maltodextrin and gum arabic as coating agents. Detailed physicochemical analyses revealed that the encapsulated microparticles had high solubility (>90 %) and encapsulation efficiency (>95 %), acceptable thermal stability with good handling properties. Phenolic compounds were completely released from microparticles during simulated gastric conditions. The microparticles influenced the bioaccessibility of more than 43 % of the phenolic fraction in the intestinal phase. The antioxidant capacity of the microparticles was preserved during storage. These findings suggest the effectiveness of the microencapsulation process for producing high quality microparticles of SML phenolic extracts and the possibility of their use in the food, nutraceutical, bio-pharmaceutical sectors.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
5
|
Silva GS, Gomes MHG, de Carvalho LM, Abreu TL, Dos Santos Lima M, Madruga MS, Kurozawa LE, Bezerra TKA. Microencapsulation of organic coffee husk polyphenols: Effects on release, bioaccessibility, and antioxidant capacity of phenolics in a simulated gastrointestinal tract. Food Chem 2024; 434:137435. [PMID: 37713755 DOI: 10.1016/j.foodchem.2023.137435] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Whey protein concentrate (WPC) and maltodextrin were used to microencapsulate polyphenols extract from organic coffee husks by spray drying. The microparticles were characterized and evaluated for their influence on the release, bioaccessibility, and antioxidant capacity of polyphenols in the simulated gastrointestinal tract. WPC as a single encapsulating agent promoted better yield (54.8%) of microparticles. The microparticles showed solubility above 92%, and lower hygroscopicity when encapsulated with maltodextrin alone (7.4%). Smaller diameter (6.78 µm), better encapsulation efficiency (89.1%) and retention of compounds (74.4%) were observed in microparticles with WPC in the composition. Polyphenols were completely released from the microparticles during simulated gastric digestion. The microparticles influenced the bioaccessibility of over 70% of the polyphenols in the intestinal phase. The microparticles showed rapid gastrointestinal release effect but favored the increase of bioaccessibility and preservation of the antioxidant capacity of polyphenols, especially those from the microparticles with WPC compared to the free extract.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Leila Moreira de Carvalho
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Thaianaly Leite Abreu
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Laureanti EJG, Paiva TS, de Matos Jorge LM, Jorge RMM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int J Biol Macromol 2023; 253:126969. [PMID: 37730006 DOI: 10.1016/j.ijbiomac.2023.126969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.
Collapse
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Thainnane Silva Paiva
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Luiz Mário de Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Chemical Engineering Department, State University of Maringá (UEM), Colombo Avenue, 5790, CEP, 87020-900, Maringá, PR, Brazil
| | - Regina Maria Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil.
| |
Collapse
|
7
|
da Silva Júnior ME, Araújo MVRL, Martins ACS, Dos Santos Lima M, da Silva FLH, Converti A, Maciel MIS. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. Sci Rep 2023; 13:15222. [PMID: 37709786 PMCID: PMC10502068 DOI: 10.1038/s41598-023-40390-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Microcapsules of ciriguela peel extracts obtained by ultrasound-assisted extraction were prepared by spray drying, whose results were compared with those of freeze-drying as a control. The effects of spray-drying air temperature, feed flow rate and ratio of encapsulating agents (maltodextrin and arabic gum) were studied. Encapsulation efficiency, moisture content, total phenolic compounds (TPC), water activity, hygroscopicity, solubility, colorimetric parameters, phenolic profile by HPLC/DAD, simulated gastrointestinal digestion and morphology of spray-dried and freeze-dried microcapsules were evaluated, as well as their stability of TPC during 90 days storage at 7 and 25 °C. Spray-dried extract showed higher encapsulation efficiency (98.83%) and TPC (476.82 mg GAE g-1) than freeze-dried extract. The most abundant compounds in the liquid extract of ciriguela peel flour were rutin, epicatechin gallate, chlorogenic acid and quercetin. Rutin and myricetin were the major flavonoids in the spray-dried extract, while quercetin and kaempferol were in the freeze-dried one. The simulated gastrointestinal digestion test of microencapsulated extracts revealed the highest TPC contents after the gastric phase and the lowest one after the intestinal one. Rutin was the most abundant compound after the digestion of both spray-dried (68.74 µg g-1) and freeze-dried (93.98 µg g-1) extracts. Spray-dried microcapsules were of spherical shape, freeze-dried products of irregular structures. Spray-dried microcapsules had higher phenolic compounds contents after 90 days of storage at 7 °C compared to those stored at 25 °C, while the lyophilized ones showed no significant difference between the two storage temperatures. The ciriguela agro-industrial residue can be considered an interesting alternative source of phenolic compounds that could be used, in the form of bioactive compounds-rich powders, as an ingredient in pharmaceutical, cosmetic and food industries.
Collapse
Affiliation(s)
| | - Maria Vitória Rolim Lemos Araújo
- Laboratory of Physical-Chemical Analysis of Food, Department of Consumer Sciences, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, PE, 56314-520, Brazil
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy
| | - Maria Inês Sucupira Maciel
- Food Science and Technology Graduate Program, Technology Center, Federal University of Paraíba, João Pessoa, Brazil.
- Food Science and Technology Graduate Program, Federal Rural University of Pernambuco, Recife, Brazil.
| |
Collapse
|
8
|
Nguyen VT, Tran NTH, Tran TG. Central Composite experimental design for ultrasound‐assisted extraction optimization of alkaloid compounds and antioxidant properties from cocoa pod husk (
Theobroma cacao
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Van Tang Nguyen
- Research, Development and Teaching Group on Functional Foods Nha Trang University No. 2 Nguyen Dinh Chieu, Nha Trang Vietnam
- Faculty of Food Technology Nha Trang University No. 2 Nguyen Dinh Chieu, Nha Trang Vietnam
| | - Nhu Thi Huynh Tran
- Research, Development and Teaching Group on Functional Foods Nha Trang University No. 2 Nguyen Dinh Chieu, Nha Trang Vietnam
| | - Thanh Giang Tran
- Research, Development and Teaching Group on Functional Foods Nha Trang University No. 2 Nguyen Dinh Chieu, Nha Trang Vietnam
- Faculty of Food Technology Nha Trang University No. 2 Nguyen Dinh Chieu, Nha Trang Vietnam
| |
Collapse
|