1
|
Li Y, Zhang H, Zhang D, Yao S, Dong S, Chen Q, Fan F, Jia H, Dong M. Construction of Bi 2WO 6/g-C 3N 4 Z-Scheme Heterojunction and Its Enhanced Photocatalytic Degradation of Tetracycline with Persulfate under Solar Light. Molecules 2024; 29:1169. [PMID: 38474681 DOI: 10.3390/molecules29051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Z-scheme heterojunction Bi2WO6/g-C3N4 was obtained by a novel hydrothermal process; its photocatalysis-persulfate (PDS) activation for tetracycline (TC) removal was explored under solar light (SL). The structure and photoelectrochemistry behavior of fabricated samples were well characterized by FT-IR, XRD, XPS, SEM-EDS, UV-vis DRS, Mott-Schottky, PL, photocurrent response, EIS and BET. The critical experimental factors in TC decomposition were investigated, including the Bi2WO6 doping ratio, catalyst dosage, TC concentration, PDS dose, pH, co-existing ion and humic acid (HA). The optimum test conditions were as follows: 0.4 g/L Bi2WO6/g-C3N4 (BC-3), 20 mg/L TC, 20 mg/L PDS and pH = 6.49, and the maximum removal efficiency of TC was 98.0% in 60 min. The decomposition rate in BC-3/SL/PDS system (0.0446 min-1) was 3.05 times higher than that of the g-C3N4/SL/PDS system (0.0146 min-1), which might be caused by the high-efficiency electron transfer inside the Z-scheme Bi2WO6/g-C3N4 heterojunction. Furthermore, the photogenerated hole (h+), superoxide (O2•-), sulfate radical (SO4•-) and singlet oxygen (1O2) were confirmed as the key oxidation factors in the BC-3/SL/PDS system for TC degradation by a free radical quenching experiment. Particularly, BC-3 possessed a wide application potential in actual antibiotic wastewater treatment for its superior catalytic performance that emerged in the experiment of co-existing components.
Collapse
Affiliation(s)
- Yukun Li
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haiyang Zhang
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dan Zhang
- Science and Technology Innovation Coordination Service Center of Laiwu District, Jinan 271100, China
| | - Sen Yao
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Qishi Chen
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Fengjuan Fan
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Hongyuan Jia
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mingjia Dong
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
2
|
Morovati R, Rajabi S, Ghaneian MT, Dehghani M. Efficiency of Ag 3PO 4/TiO 2 as a heterogeneous catalyst under solar and visible light for humic acid removal from aqueous solution. Heliyon 2023; 9:e15678. [PMID: 37305470 PMCID: PMC10256826 DOI: 10.1016/j.heliyon.2023.e15678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Nowadays, the presence of humic acid (HA) in water sources is highly regarded due to the production of extremely harmful byproducts such as trihalomethanes. In this study, the effectiveness of an Ag3PO4/TiO2 catalyst produced by in situ precipitation as a heterogeneous catalyst for the degradation of humic acid in the existence of visible and solar light was evaluated. The Ag3PO4/TiO2 catalyst's structure was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS), after which the catalyst dosage, HA concentration, and pH parameters were adjusted. After a 20-min reaction, the highest HA degradation of 88.2% and 85.9% in presence of solar light and visible light were attained at the ideal operating conditions of 0.2 g/L catalyst, 5 mg/L HA, and pH 3, respectively. It was discovered that, based on kinetic models, the degradation of HA matched both Langmuir-Hinshelwood and pseudo-first-order kinetics at concentrations of 5 to 30 mg/L (R2 > 0.8). The Langmuir-Hinshelwood model had surface reaction rate constants (Kc) of 0.729 mg/L.min and adsorption equilibrium constants (KL-H) of 0.036 L/mg. Eventually, a real-water investigation into the process' effectiveness revealed that, under ideal circumstances, the catalyst had a reasonable HA removal efficiency of 56%.
Collapse
Affiliation(s)
- Roya Morovati
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Rajabi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Chen X, Chen J, Li N, Li J, He J, Xu S, Zhu Y, Yao L, Lai Y, Zhu R. Ag 3PO 4-anchored La 2Ti 2O 7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121322. [PMID: 36813103 DOI: 10.1016/j.envpol.2023.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Developing wide spectra-responsive photocatalysts has attracted considerable attention in the photocatalytic technology to achieve excellent catalytic activity. Ag3PO4, with strong response to light spectra shorter than 530 nm, shows extremely outstanding photocatalytic oxidation ability. Unfortunately, the photocorrosion of Ag3PO4 is still the biggest obstacle to its application. Herein, the La2Ti2O7 nanorod was used to anchor Ag3PO4 nanoparticles in this study, and a novel Z-Scheme La2Ti2O7/Ag3PO4 heterostructure composite was constructed. Remarkably, the composite showed strong responsive to most of the spectra in natural sunlight. The Ag0 formed in-situ acted as the recombination center of photogenerated carriers, which promoted their efficient separation and contributed to the improved photocatalytic performance of the heterostructure. When the mass ratio of Ag3PO4 in the La2Ti2O7/Ag3PO4 catalyst was 50%, the degradation rate constant of Rhodamine B (RhB), methyl orange (MO), chloroquine phosphate (CQ), tetracycline (TC), and phenol under natural sunlight irradiation were 0.5923, 0.4463, 0.1399, 0.0493, and 0.0096 min-1, respectively. Furthermore, the photocorrosion of the composite was greatly inhibited, 76.49% of CQ and 83.96% of RhB were still degraded after four cycles. Besides, the holes and O2•- played a significant role in RhB degradation, and it included multiple mechanisms of deethylation, deamination, decarboxylation, and cleavage of ring-structures. Moreover, the treated solution can also show safety to the water receiving environment. Overall, the synthesized Z-Scheme La2Ti2O7/Ag3PO4 composite exhibited immense potential for removing various organic pollutants through photocatalytic technology under natural sunlight irradiation.
Collapse
Affiliation(s)
| | | | - Ning Li
- Foshan University, Foshan 528225, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510610, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Yiqi Lai
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
4
|
Tong S, Liu Z, Lin Y, Yang C. Highly Enhanced Photocatalytic Performances of Composites Consisting of Silver Phosphate and N-Doped Carbon Nanomesh for Oxytetracycline Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14865. [PMID: 36429583 PMCID: PMC9690370 DOI: 10.3390/ijerph192214865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic technology based on silver phosphate (Ag3PO4) has excellent potential in removing antibiotic pollutants, but the low separation rate of photogenerated hole-electron pairs restricts the application of the photocatalyst. In this study, it was found that the combination of nitrogen-doped carbon (NDC) with carbon defects and Ag3PO4 can significantly enhance the photocatalytic ability of Ag3PO4. After it was exposed to visible light for 5 min, the photocatalytic degradation efficiency of oxytetracycline (OTC) by the composite photocatalyst Ag3PO4@NDC could reach 100%. In addition, the structure of NDC, Ag3PO4, and Ag3PO4@NDC was systematically characterized by SEM, TEM, XRD, Raman, and EPR. The XPS results revealed intense interface interaction between Ag3PO4 and NDC, and electrons would transfer from Ag3PO4 to the NDC surface. A possible mechanism for enhancing the photocatalytic reaction of the Ag3PO4@NDC composite catalyst was proposed. This study provides a highly efficient visible light catalytic material, which can be a valuable reference for designing and developing a new highly efficient visible light catalyst.
Collapse
Affiliation(s)
- Shehua Tong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Zhibing Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
| |
Collapse
|
5
|
|
6
|
Xie L, Zhu P, Xu J, Duan M, Zhang S, Wu X. Highly Efficient Bi 4Ti 3O 12/g-C 3N 4/BiOBr Dual Z-Scheme Heterojunction Photocatalysts with Enhanced Visible Light-Responsive Activity for the Degradation of Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9532-9545. [PMID: 35905457 DOI: 10.1021/acs.langmuir.2c00907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel Bi4Ti3O12/g-C3N4/BiOBr(BTO/CN/BOB) composite was synthesized by a solvothermal-mechanical mixed thermal method. The composition, structure, and micromorphology of the samples were analyzed. The BTO/CN/BOB composite photocatalyst shows better photocatalytic performance for tetracycline hydrochloride (TC) degradation compared to Bi4Ti3O12 and binary composite photocatalysts. The highest degradation rate of TC can reach 89.84% using the BTO/CN/BOB photocatalyst under the optimal conditions, and BTO/CN/BOB still exhibits good photocatalytic properties after recycling. Moreover, it also shows good photodegradation activity for different kinds of antibiotics, implying its wide application prospect. The photocatalytic performance and reuse stability of BTO/CN/BOB were significantly improved, which may be because of the enhanced spectral absorption range and efficient electron transfer capability by the synergistic effect and interaction among Bi4Ti3O12, BiOBr, and g-C3N4. Finally, the possible degradation pathway and electron transfer mechanism of the dual Z-scheme heterojunction are proposed.
Collapse
Affiliation(s)
- Lisi Xie
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shasha Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
7
|
Liu J, Feng C, Li Y, Zhang Y, Liang Q, Xu S, Li Z, Wang S. Photocatalytic detoxification of hazardous pymetrozine pesticide over two-dimensional covalent-organic frameworks coupling with Ag3PO4 nanospheres. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Wang J, Chen Y. Simple synthesis of conjugated polyvinyl alcohol derivative-modified ZnFe2O4 nanoparticles with higher photocatalytic efficiency. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|