1
|
Afroze N, Kim M, Chowdhury MMI, Haroun B, Andalib M, Umble A, Nakhla G. Effect of thermal shock and sustained heat treatment on mainstream partial nitrification and microbial community in sequencing batch reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6258-6276. [PMID: 38147251 DOI: 10.1007/s11356-023-31421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
In order to develop a promising means of achieving mainstream short-cut nitrification, this study evaluated the effect of thermal shock on nitrite accumulation using intermittent offline and continuous inline heat treatment of biomass in sequencing batch reactors (SBRs). The SBRs fed with municipal wastewater were operated at a solid retention time of 7 days and nitrogen loading rate of 0.04 gN/L·d to 0.08 gN/L·d without the application of pre-treatment. Contrary to literature studies that showed suppression of nitrite-oxidizing bacteria at temperature 60 to 80 °C, nitrite accumulation was achieved temporarily when 20% of the biomass was heated for 2 h at 47 °C, as well as in continuously heated SBRs at 37 °C and 42 °C. The continuously heated reactors at 37 °C and 42 °C produced a maximum nitrite accumulation ratio (NAR) of 0.59 and 0.79, respectively, whereas the intermittent offline heating at 47 °C-2 h produced a NAR of 0.37. Although nitrite accumulation was stable only for 10-12 days in all heated reactors, this study demonstrates the achievement of mainstream partial nitrification (PN) at lower temperature (42 °C) than that reported in literature and also highlights the potential for achieving PN by implementing heat treatment of a portion of the return activated sludge (RAS) in biological nitrogen removal (BNR) systems. During the time when full nitrification was achieved, Nitrospira was more dominant than Nitrosomonas in all reactors at ratios of 1.4:1, 2.4:1, 2.4:1, and 3.7:1 for the control SBR (22 °C), 47 °C -2 h offline heating SBR, 37 °C SBR, and 42 °C SBR, respectively, suggesting that it may have played a role as a comammox bacteria capable of degrading ammonia to nitrates at elevated temperature.
Collapse
Affiliation(s)
- Niema Afroze
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mingu Kim
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Mohammad M I Chowdhury
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Basem Haroun
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | | | - Arthur Umble
- Stantec Water Institute for Technology & Policy, 1560 Broadway, Suite 1800, Denver, CO, 80202-6000, USA
| | - George Nakhla
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
2
|
Namburath M, Alappat BJ, Ramaswamy ST. A critical review of inverse fluidized bed reactors-start-up optimization strategies and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108370-108392. [PMID: 37768490 DOI: 10.1007/s11356-023-29876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
A critical evaluation of strategies used for reducing start-up time and biological wastewater treatment using an inverse fluidized bed reactor (IFBR) was done. The start-up of an IFBR is one of the most important, time-consuming, and limiting steps in wastewater treatment using biofilm reactors. Evaluation of different strategies used by various researchers is helpful in future research works with this reactor. Different types of treated wastewater, the effect of wastewater characteristics, carriers used, and reactor hydrodynamics on the reactor performance were reviewed in detail in the first part. The second part of this review covers the use of an IFBR in the biological treatment of different wastewaters through multiple biochemical pathways and how it helped improve performance compared to other reactors. This will enable the researchers to understand the novelty of an IFBR for wastewater treatment and allow them to use it as a potential reactor.
Collapse
Affiliation(s)
- Maneesh Namburath
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India.
| | - Babu J Alappat
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Sreekrishnan Trichur Ramaswamy
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
3
|
Antileo C, Jaramillo F, Candia O, Osorio A, Muñoz C, Farías J, Proal-Nájera JB, Zhang Q, Geissen SU. Long-term nitrite-oxidizing bacteria suppression in a continuous activated sludge system exposed to frequent changes in pH and oxygen set-points. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115545. [PMID: 35752006 DOI: 10.1016/j.jenvman.2022.115545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Research has proven the adaptation of nitrite-oxidizing bacteria to unfavorable environmental conditions, and this work presents a novel concept to prevent nitrite oxidation during partial nitrification in wastewater. The approach is based on the real-time updating of mathematical models of the process to search for optimal set-points of pH and oxygen concentration in a continuous activated sludge reactor with a high sludge age (20.3 days). A heuristic optimization technique by 13 optimum set-points simultaneously maximized the degree of ammonia oxidation (α) and nitrite accumulation (β), achieving an (α + β) = 190% per day. The activated sludge reactor was conducted for 780 days under three control schemes: open-loop control, fuzzy model supervisory control and phenomenological supervisory control. The phenomenological supervisory control system achieved the best results, simultaneously reaching 95% ammonium oxidation and 90% nitrite accumulation. The Haldane kinetics were analyzed using steady-state concentrations of all nitrogen species, concluding that the simultaneous maximization of α + β led to selecting set-points at the extreme values of the following ranges: pH = 7.5-8.5 and DO = 0.8-1.0 mg O2/L, which enabled the inhibition of one nitrifier species. At the same time, the other one was relieved from inhibition. The 16sRNA assays indicated that the nitrite-oxidizing bacteria presence (genera Nitrobacter and Nitrospira) shifted from 32% to less than 8% after 280 days of continuous operation with optimal pH and oxygen set-points.
Collapse
Affiliation(s)
- Christian Antileo
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Francisco Jaramillo
- Department of Electrical Engineering, Faculty of Physical and Mathematical Sciences, University of Chile, Av. Tupper 2007, Santiago, Chile.
| | - Oscar Candia
- Facultad de Ingeniería, Universidad Autónoma de Chile, 5 Poniente 1670, Talca, Chile.
| | - Aahilyn Osorio
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Carlos Muñoz
- Department of Electrical Engineering, Faculty of Engineering and Sciences, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Jorge Farías
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - José B Proal-Nájera
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, Dgo., C.P. 34220, Mexico.
| | - Qiqi Zhang
- Department of Environmental Technology, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Sven-Uwe Geissen
- Department of Environmental Technology, Technische Universität Berlin, 10623, Berlin, Germany.
| |
Collapse
|
4
|
Wang L, Liu S, Nakhla G, Zhu J, Shao Y. Comparison of carrier particles in the gas-liquid-solid inverse fluidised bed bioreactor. ENVIRONMENTAL TECHNOLOGY 2022; 43:3507-3518. [PMID: 33908820 DOI: 10.1080/09593330.2021.1924287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The performance and energy consumption of a gas-liquid-solid inverse fluidised bed bioreactor (GLS-IFBBR) using polyethylene (PE) particles with different surface coatings (zeolite, lava rock, activated carbon and multi-plastic) as media for synthetic wastewater treatment were investigated at loading rates of 1.64-3.38 kg COD/(m3·d) and 0.17-0.34 kg N/(m3·d) to determine the optimum carrier media. The results showed that PE coated with other inorganic materials could increase the nutrient removal efficiency at the same influent conditions. Compared with other media, PE coated with zeolite (PEZ) was the optimal carrier particles in this study as reflected by the highest COD and nitrogen removal, stable effluent, low biomass yield at different hydraulic retention times (HRT). In addition, the energy consumption of lavarock-coated PE (PEL) with a highest density was the lowest.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - Sicong Liu
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, People's Republic of China
| | - Yuanyuan Shao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
5
|
He L, Lin Z, Zhu K, Wang Y, He X, Zhou J. Mesophilic condition favors simultaneous partial nitrification and denitrification (SPND) and anammox for carbon and nitrogen removal from anaerobic digestate food waste effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151498. [PMID: 34752875 DOI: 10.1016/j.scitotenv.2021.151498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Three simultaneous partial nitrification and denitrification (SPND) bioreactors were established on ambient (30 °C), mesophilic (40 °C) and thermophilic condition (50 °C) at high dissolved oxygen levels (2-7 mg L-1) to remove nitrogen and carbon from anaerobic digestate food waste effluent (ADFE). The bioreactor performed best under mesophilic condition, with TN and COD removal efficiency of 96.3 ± 0.1% and 91.7 ± 0.1%, respectively. Free ammonia (FA) and free nitrous acid (FNA) alternately ensured selective inhibition of nitrite-oxidizing bacteria (NOB) in long-term operation of SPND systems. Candidatus Brocadia, known as anammox bacteria, was observed unexpectedly in the bioreactors. The analysis of microbial community and metabolic pathways revealed that mesophilic strategy stimulated SPND and anammox process. Mesophilic condition helped autotropic microbes resist the competitive pressure from heterotrophic bacteria, improving the balance between nitrifiers, anammox bacteria and other co-existing heterotrophs. Overall, this study offers new insights into the linkage among temperature, pollutant removals (carbon and nitrogen) and metabolic potential in the SPND bioreactors.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kun Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Effect of the Aeration Strategy on NOB Suppression in Activated Sludge and Biofilm in a Hybrid Reactor with Nitrification/Denitrification. WATER 2022. [DOI: 10.3390/w14010072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The purpose of the study was to analyse the impact of aeration strategies defined by the changes in the duration of aerated sub-phases, the ratio between non-aerated and aerated sub-phase times (R), and dissolved oxygen concentrations (DO) on the suppression of nitrite-oxidizing bacteria (NOB) in activated sludge and biofilm developing in a hybrid reactor with nitrification/denitrification. The primary factor causing NOB suppression both in biofilm and in activated sludge was an increase in the R-value (from 0 to 1/4 and from 1/4 to 1/3). After reducing the DO from 3 to 2 mg O2/L, there were no changes in the frequency of NOB occurrence, and no reduction in the nitrite oxidation rate was recorded. The abundance of Comammox bacteria was considerably affected by the change from continuous to intermittent aeration. Activated sludge showed a substantial increase in the quantity of clade A and B, whereas the quantity considerably decreased in biofilm.
Collapse
|
7
|
Zhang L, Zhang Q, Dai J, Chen Y, Zhu Z, Li X, Peng Y. Rapidly achieving and optimizing simultaneous partial nitrification denitrification and anammox integrated process by hydroxylamine addition for advanced nitrogen removal from domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 342:125987. [PMID: 34600317 DOI: 10.1016/j.biortech.2021.125987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The achievement and stable maintenance of partial nitrification and partial anammox process for municipal sewage is a challenging research topic at present. In this study, a novel strategy of hydroxylamine (NH2OH) addition under low DO condition was adopted for rapidly achieving simultaneous partial nitrification denitrification and anammox process (SPNDA) to deal with domestic wastewater, the nitrite accumulation ratio (NAR) increased from 1% to 82% in the first 4 days. After the addition of NH2OH was stopped, the PN effect of SPNDA process remained relatively stable within 100 days. During the stable operation period with aerobic HRT of 5 h, the nitrogen removal efficiency was 87.9 ± 4.2%. Moreover, the abundance of denitrifying bacteria and Candidatus Brocadia increased from 1.79% and 0.062% to 22.49% and 0.38% respectively, which promoted nitrogen removal effect. Overall, this study provided a quickly way for achieving the cost-effective SPNDA process to enhance nitrogen removal with NH2OH addition.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiatong Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yanhui Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Bae WB, Park Y, Chandran K, Shin J, Kang SB, Wang J, Kim YM. Temporal triggers of N 2O emissions during cyclical and seasonal variations of a full-scale sequencing batch reactor treating municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149093. [PMID: 34303238 DOI: 10.1016/j.scitotenv.2021.149093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
To investigate the major triggers of nitrous oxide (N2O) production in a full-scale wastewater treatment plant, N2O emissions and wastewater characteristics (ammonia, nitrite, nitrate, total nitrogen, dissolved inorganic carbon, dissolved organic carbon, pH, temperature, dissolved oxygen and specific oxygen uptake rate), the results of variations in the cycling of a sequential batch reactor (SBR, where only full nitrification was performed), were monitored seasonally for 16 months. Major triggers of N2O production were investigated based on a seasonal measured database using a random forest (RF) model and sensitivity analysis, which was applied to identify important input variables. As the result of seasonal monitoring in the full-scale SBR, the N2O emission factor relative to daily total nitrogen removal ranged from 0.05 to 2.68%, corresponding to a range of N2O production rate from 0.02 to 0.70 kg-N/day. Results from the RF model and sensitivity analysis revealed that emissions during nitrification were directly or indirectly related to nitrite accumulation, temperature, ammonia loading rate and the specific oxygen uptake rate ratio between ammonia oxidizing bacteria and nitrite oxidizing bacteria (sOUR-ratio). However, changes in the microbial community did not significantly impact N2O emissions. Based on these results, the sOUR-ratio could represent the major trigger for N2O emission in a full-scale BNR system: a higher sOUR-ratio value with an average of 3.13 ± 0.23 was linked to a higher N2O production rate with an average value of 1.27 ± 0.12 kg-N/day (corresponding to 3.96 ± 1.20% of N2O emission factor relative to daily TN removal), while a lower sOUR-ratio with an average value of 2.39 ± 0.27 was correlated with a lower N2O production average rate of 0.17 ± 0.11 kg-N/day (corresponding to 0.74 ± 0.69% of N2O emission factor) (p-value = 0.00001, Mann-Whitney test).
Collapse
Affiliation(s)
- Wo Bin Bae
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Yongeun Park
- School of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, New York, NY 10027, USA
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Bong Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
9
|
Choi D, Cho K, Hwang K, Yun W, Jung J. Achieving stable nitrogen removal performance of mainstream PN-ANAMMOX by combining high-temperature shock for selective recovery of AOB activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148582. [PMID: 34323753 DOI: 10.1016/j.scitotenv.2021.148582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
This paper describes the new concept of the mainstream partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) combined with a high-temperature shock strategy for the selective recovery of ammonia-oxidizing bacteria (AOB) activity. In the preliminary test, the temperature shock condition for PN was optimized (60 °C and > 20 min). Based on this, the implementation strategy in a continuous stirred tank reactor (CSTR) system was studied further, and the polyvinyl alcohol (PVA)/sodium alginate carrier exposure ratio (ER) and dissolved oxygen (DO) concentration were considered as primary variables. The AOB activity was recovered selectively when the ER of the carrier ranged from 20 to 40%, and the DO was higher than 2.3 mg O2/L. This was not the case for nitrite-oxidizing bacteria (NOB) (AOB: 1.17±0.1 gNH4+-N/LCarrier/d, NOB: 0.34±0.1 gNO3--N/LCarrier/d). As a result, the activity of AOB was recovered selectively with a decrease in Nitrospira spp., which was verified by kinetic and microbial analyses for the AOB (KS, DO = 3.89 mgO2/L) and NOB (KS, DO = 1.14 mgO2/L). Eventually, the mainstream PN-ANAMMOX was achieved with a nitrogen removal efficiency of 81.5±3.3% for 95 days. The findings provide insight to establishing a stable mainstream PN-ANAMMOX process using a high-temperature shock strategy.
Collapse
Affiliation(s)
- Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, South Korea
| | - Kwanghyun Hwang
- GS Engineering and Construction Research Institute, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul, South Korea
| | - Wonsang Yun
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| |
Collapse
|
10
|
Rodríguez-Gómez LE, Rodríguez-Sevilla J, Hernández A, Álvarez M. Factors affecting nitrification with nitrite accumulation in treated wastewater by oxygen injection. ENVIRONMENTAL TECHNOLOGY 2021; 42:813-825. [PMID: 31314696 DOI: 10.1080/09593330.2019.1645742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
This work provides information on nitrification with nitrite accumulation in low strength ammonia (below 50 mg L-1 NH4-N) and low organic matter (below 150 mg L-1 COD) reclaimed wastewater. In the South Tenerife reclaimed wastewater pipeline (62 km long), injection of O2 has been applied to promote a nitrification process in order to improve water quality and to avoid anaerobic conditions. Nitrification occurs, in most cases, with nitrite accumulation. The amount of oxidized nitrogen compounds produced increases with the oxygen dose applied. The nitrification process is usually favoured instead of the organic matter transformation, due to the low organic matter/ammonia nitrogen ratio of water. The influence of organic matter content on nitrification has been analysed, and a good suitability for COD has been found as an indicator for nitrification limitation (for the range of COD and NH4-N concentrations of the system). Nitrification limitation has been observed above 85 mg L-1 COD, and nitrification inhibition above a concentration of 105 mg L-1. In addition, the limitation of nitrite oxidation bacteria activity (nitrite accumulation) by free ammonia and temperature has been assessed, finding that, for the range of free ammonia (0.6-2.1 mg L-1 NH3) and temperature (20.4-27.0°C) in the study, temperature plays a much more relevant role than free ammonia on nitrite accumulation. The lower limiting temperature for nitrite build-up in the system has been 21.0°C. Below this temperature, nitrite accumulation did not exist or was very low.
Collapse
Affiliation(s)
- Luis E Rodríguez-Gómez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Juan Rodríguez-Sevilla
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Antonio Hernández
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Manuel Álvarez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
11
|
Gao D, Xiang T. Deammonification process in municipal wastewater treatment: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 320:124420. [PMID: 33232853 DOI: 10.1016/j.biortech.2020.124420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The deammonification process has been proved to be an efficient nitrogen removal process in treating high NH4+-N concentration wastewater (sidestream deammonification). It is very hopeful to bring WWTP close to energy autarky. However, the feasibility of applying mainstream deammonification to sewage treatment need to be further explored. Therefore, this review attempts to give an overview of challenges in applying mainstream deammonification and to discuss the impacts of unfavorable conditions on main functional species. In addition, some novel control strategies to maintain the dominant position of desired species were summarized. Efficient solution to the conflict between AnAOB (Anaerobic ammonium-oxidizing bacteria) biomass retention and NOB (Nitrite oxidizing bacteria) wash out was also reviewed. Ultimately, we suggested further studies including effective improved process that achieve combination of autotrophy and organotrophy species based on the metabolic diversity of AnAOB.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Lin J, Chen N, Yuan X, Tian Q, Hu A, Zheng Y. Impacts of human disturbance on the biogeochemical nitrogen cycle in a subtropical river system revealed by nitrifier and denitrifier genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141139. [PMID: 32745858 DOI: 10.1016/j.scitotenv.2020.141139] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Human activities have largely modified nitrogen (N) sources supply, cycling and export from land to ocean. Nitrification and denitrification are vital processes alleviating N pollution in aquatic ecosystems but the diverse responses and niche of microbial N retention to human disturbance are still understudied. Here we investigated the changes in N species and functional genes in the urban, agriculture and reservoir river sections of the Jiulong River (southeast China). Our results show that ammonia-oxidizing bacteria (AOB) (Nitrosomonas) were dominant in the urban river section receiving ammonium-rich sewage that enhanced nitrification and subsequent denitrification, while ammonia-oxidizing archaea (AOA) was more abundant than AOB in the river section flowing through areas of pomelo (Citrus maxima) agriculture with low pH, low ammonium and very high nitrate input. Warm temperatures and large total suspended matter (TSM) in the wet season promoted growth of nitrifiers and denitrifiers, which were mostly particle-attached. The potential river N retention through gaseous N removal (PRN2O and PRN2) in the agriculture section with huge N loading was among the lowest. Strong nitrification and denitrification were suspected to occur in the agricultural acid soil system rather than in the river network. In addition, the decreased TSM and N concentration promoted free-living microbes in the reservoir. The highest PRN2 and N2 production observed in the reservoir in the dry season implied that denitrification and anammox occurring in sediments was likely to increase N retention. This study suggests the diverse factors involved in processing of N pollution among diverse landscapes.
Collapse
Affiliation(s)
- Jingjie Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, China.
| | - Xin Yuan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qing Tian
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yi Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Ficca VCA, Santoro C, D'Epifanio A, Licoccia S, Serov A, Atanassov P, Mecheri B. Effect of Active Site Poisoning on Iron−Nitrogen−Carbon Platinum‐Group‐Metal‐Free Oxygen Reduction Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem 2020. [DOI: 10.1002/celc.202000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Valerio C. A. Ficca
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Carlo Santoro
- Department of Chemical Engineering and Analytical ScienceThe University of Manchester The Mill Sackville Street Manchester M13PAL UK
| | - Alessandra D'Epifanio
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Silvia Licoccia
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Alexey Serov
- Pajarito Powder, LLC 3600 Osuna Rd NE Ste 309 Albuquerque, NM 87109 USA
| | - Plamen Atanassov
- Chemical and Biomolecular EngineeringNational Fuel Cell Research CenterUniversity of California Irvine CA 92697 USA
| | - Barbara Mecheri
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
14
|
The axial and radial phase holdup distribution of bubble-induced three-phase inverse fluidized bed. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang H, He X, Nakhla G, Zhu J, Su YK. Performance and bacterial community structure of a novel inverse fluidized bed bioreactor (IFBBR) treating synthetic municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137288. [PMID: 32087585 DOI: 10.1016/j.scitotenv.2020.137288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The performance of a lab-scale integrated anoxic and aerobic inverse fluidized bed bioreactors (IFBBR) for biological nutrient removal from synthetic municipal wastewater was studied at chemical oxygen demand (COD) loading rates of 0.34-2.10 kg COD/(m3-d) and nitrogen loading rates of 0.035-0.213 kg N/(m3-d). Total COD removal efficiencies of >84% were achieved, concomitantly with complete nitrification. The overall nitrogen removal efficiencies were >75%. Low biomass yields of 0.030-0.101 g VSS/g COD were achieved. Compared with other FBBR systems, the energy consumption for this IFBBR system was an average 59% less at organic loading rates (OLRs) of 1.02 and 2.10 kg COD/(m3-d). Bacterial community structures of attached and suspended biomass revealed that the dominant phyla were Proteobacteria, Bacteroidetes, and Epsilonbacteraeota, etc. The relative abundance of ammonia-oxidizing bacteria (AOBs) and nitrite-oxidizing bacteria (NOBs) in the aerobic attached biomass were 0.451% and 0.110%, respectively. COD mass balance in the anoxic zone was closed by consideration of sulfate reduction, which was confirmed by the presence of genus Chlorobium (sulfate-reducing bacteria) in the anoxic attached biofilm with a relative abundance of 0.32%.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Xiaoqin He
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yi-Kai Su
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
16
|
Xiang T, Gao D, Wang X. Performance and microbial community analysis of two sludge type reactors in achieving mainstream deammonification with hydrazine addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136377. [PMID: 32014759 DOI: 10.1016/j.scitotenv.2019.136377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/07/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The deammonification process is a promising and energy efficient nitrogen removal technology. Since deammonification process has succeeded in high-strength ammonia nitrogen wastewater treatment (sidestream deammonification) but its application in treating low-strength ammonium nitrogen wastewater (mainstream deammonification) remains a great challenge. In this study, mainstream deammonification process in two reactors maintained stability with hydrazine (N2H4) addition. The two reactors consisted of a deammonification granular reactor and a mixed ammonia oxidizing bacteria (AOB) flocculent with anaerobic ammonia oxidizing bacteria (AnAOB) granular reactor. Deammonification granular reactor had a more efficient total nitrogen removal efficiency (TNRE, 80.5 ± 5.8%) and nitrogen removal rate (NRR, 0.33 ± 0.04 g/(L·day)). The advantage of retain biomass in granular sludge reactor lead to a more balanced ex-situ activity between AOB (0.37 mg N/(g VSS·h)) and AnAOB (0.43 mg N/(g VSS·h)). Candidatus Brocadia and Nitraspira were detected the dominant genus responsible for the observed AnAOB and nitrite oxidizing bacteria (NOB), respectively. The more obvious effect of N2H4 on enhancing AnAOB and suppressing NOB both in ex-situ activity and genus abundances in mixed sludge reactor were also founded may due to loose spatial distribution among species.
Collapse
Affiliation(s)
- Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Xiaolong Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Henan 455000, China
| |
Collapse
|
17
|
Seasonal bacterial community dynamics in a crude oil refinery wastewater treatment plant. Appl Microbiol Biotechnol 2019; 103:9131-9141. [DOI: 10.1007/s00253-019-10130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022]
|
18
|
Wang Z, Wang B, Gong X, Qiao X, Peng Y. Free nitrous acid pretreatment of sludge to achieve nitritation: The effect of sludge concentration. BIORESOURCE TECHNOLOGY 2019; 285:121358. [PMID: 31029041 DOI: 10.1016/j.biortech.2019.121358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of sludge concentration (expressed by mixed liquor volatile suspended solids, MLVSS) on free nitrous acid (FNA) pretreatment strategy to achieve nitritation. Results showed when FNA was 0.308 mgHNO2-N/L, nitrite oxidizing bacteria (NOB) activity increased by 70.2% as MLVSS increased from 8.4 to 16.8 g/L. Nitrite accumulation ceased as MLVSS increased to 12.6 g/L, indicating that FNA inhibition of NOB gradually weakened with increasing MLVSS. When FNA was higher than 0.770 mgHNO2-N/L, NOB activity was completely inhibited and the effect of MLVSS on FNA inhibition was negligible, with nitrite accumulation potential (NAP) varying from 88.1% to 90.0%. Mechanism investigation demonstrated flocs sizes distinctly declined, with more extracellular polymeric substances (EPS) released to resist FNA inactivation. Linear fitting showed NAP increased with FNA/MLVSS increment. Therefore, MLVSS affected FNA pretreatment performance, with FNA/MLVSS proposed as a more valuable criterion in FNA pretreatment strategy development, than the solely FNA.
Collapse
Affiliation(s)
- Zenghua Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaofei Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xin Qiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Duan H, Wang Q, Erler DV, Ye L, Yuan Z. Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:360-370. [PMID: 29981984 DOI: 10.1016/j.scitotenv.2018.06.346] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Inline sludge treatment using free nitrous acid (FNA) was recently shown to be effective in establishing the nitrite pathway in a biological nitrogen removal system. However, the effects of FNA treatment conditions on the nitrite pathway performance remained to be investigated. In this study, three different FNA treatment frequencies (daily sludge treatment ratios of 0.22, 0.31 and 0.38, respectively), two FNA concentrations (1.35 mgN/L and 4.23 mgN/L, respectively) and two influent feeding regimes (one- and two-step feeding) were investigated in four laboratory-scale sequencing batch reactors. The nitrite accumulation ratio was positively correlated to the FNA treatment frequency. However, when a high treatment frequency was used e.g., daily sludge treatment ratio of 0.38, a significant reduction in ammonia oxidizing bacteria (AOB) activity occurred, leading to poor ammonium oxidation. AOB were able to acclimatise to FNA concentrations up to of 4.23 mgN/L, whereas nitrite oxidizing bacteria (NOB) were limited by an FNA concentration of 1.35 mgN/L over the duration of the study (up to 120 days). This difference in sensitivity to FNA could be used to further enhance nitrite accumulation, with 90% accumulation achieved at an FNA concentration of 4.23 mgN/L and a daily sludge treatment ratio of 0.31 in this study. However, this high level of nitrite accumulation led to increased N2O emission, with emission factors of up to 3.9% observed. The N2O emission was mitigated (reduced to 1.3%) by applying two-step feeding resulting in a nitrite accumulation ratio of 45.1%. Economic analysis showed that choosing the optimal FNA treatment conditions depends on a combination of the wastewater characteristics, the nitrogen discharge standards, and the operational costs. This study provides important information for the optimisation and practical application of FNA-based sludge treatment technology for achieving the mainstream stable nitrite pathway.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qilin Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia; Griffith School of Engineering, Griffith University, QLD, Australia; Centre for Clean Environment and Energy, Environmental Futures Research Institute, Griffith University, QLD, Australia.
| | - Dirk V Erler
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Jia W, Chen Y, Zhang J, Li C, Wang Q, Li G, Yang W. Response of greenhouse gas emissions and microbial community dynamics to temperature variation during partial nitrification. BIORESOURCE TECHNOLOGY 2018; 261:19-27. [PMID: 29653330 DOI: 10.1016/j.biortech.2018.03.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the greenhouse gas emission characteristics and microbial community dynamics with the variation of temperature during partial nitrification. Low temperature weakened nitrite accumulation, and partial nitrification would shift to complete nitrification easily at 15 °C. Based on CO2 equivalents (CO2-eq), partial nitrification process released 2.7 g of greenhouse gases per gMLSS per cycle, and N2O accounted for more than 98% of the total CO2-eq emission. The total CO2-eq emission amount at 35 °C was 45.6% and 153.4% higher than that at 25 °C and 15 °C, respectively. During partial nitrification, the microbial community diversity greatly declined compared with seed sludge. However, the diversity was enhanced at low temperature. The abundance of Betaproteobacteria at class level increased greatly during partial nitrification. Proteobacteria abundance declined while Nitrospira raised at low temperature. The nosZ community abundance was not affected by temperature, although N2O emission was varied with the operating temperature.
Collapse
Affiliation(s)
- Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yunfan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Cong Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
21
|
Yue X, Yu G, Liu Z, Tang J, Liu J. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity. BIORESOURCE TECHNOLOGY 2018; 254:157-165. [PMID: 29413917 DOI: 10.1016/j.biortech.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future.
Collapse
Affiliation(s)
- Xiu Yue
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Guangping Yu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Zhuhan Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jiali Tang
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jian Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| |
Collapse
|
22
|
Zeng W, Wang A, Li C, Guo Y, Peng Y. Population dynamics of “ Candidatus Accumulibacter phosphatis” under the modes of complete nitrification and partial nitrification (nitritation) in domestic wastewater treatment system. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Perazzoli S, Michels C, Soares HM. Magnetite nanoparticles influence the ammonium-oxidizing bacteria activity during nitritation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:165-172. [PMID: 28067656 DOI: 10.2166/wst.2016.497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With nanotechnology dissemination, nanomaterials' (NMs) release into the environment is inevitable and may adversely affect the wastewater treatment processes. Among the NMs, the iron oxide nanoparticles have a considerable commercial potential, mainly because their magnetic properties, high catalytic ability and antimicrobial activity. However, few studies have examined their potential effect on the biological wastewater treatment. In this process, ammonium-oxidizing bacteria (AOB) are sensitive to the presence of inhibitory compounds and are useful as biosensors to assess contaminant toxicity information. Thus, this work aimed to assess the effect of commercial magnetite nanoparticles (Fe3O4-NPs) on AOB activity. Kinetic experiments were carried out where AOB were exposed in a short-term period (14 h) to different concentrations (from 0.2 to 1.0 g L-1) of Fe3O4-NPs. A decrease of the 61.33% in the NO2--N production rate was observed to the highest concentration of Fe3O4-NPs studied, compared with the control sample. The Fe3O4-NPs concentration that reduces 50% of NO2--N production rate (IC-50) was estimated 0.483 g Fe3O4-NP L-1. Scanning electron microscopy images revealed that NPs remained incorporated in the biomass (sludge). These results suggest that NPs can reach the environment through sludge disposal, mainly in cases of the reuse as soil fertilizer.
Collapse
Affiliation(s)
- Simone Perazzoli
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil E-mail:
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil E-mail:
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil E-mail:
| |
Collapse
|
24
|
Poot V, Hoekstra M, Geleijnse MAA, van Loosdrecht MCM, Pérez J. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. WATER RESEARCH 2016; 106:518-530. [PMID: 27770728 DOI: 10.1016/j.watres.2016.10.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/17/2016] [Accepted: 10/10/2016] [Indexed: 05/21/2023]
Abstract
Partial nitritation was stably achieved in a bench-scale airlift reactor (1.5L) containing granular sludge. Continuous operation at 20 °C treating low-strength synthetic wastewater (50 mg N-NH4+/L and no COD) achieved nitrogen loading rates of 0.8 g N-NH4+/(L·d) during partial nitritation. The switch between nitrite-oxidizing bacteria (NOB) repression and NOB proliferation was observed when ammonium concentrations in the reactor were below 2-5 mg N-NH4+/L for DO concentrations lower than 4 mg O2/L at 20 °C. Nitrospira spp. were detected to be the dominant NOB population during the entire reactor operation, whereas Nitrobacter spp. were found to be increasing in numbers over time. Stratification of the granule structure, with ammonia-oxidizing bacteria (AOB) occupying the outer shell, was found to be highly important in the repression of NOB in the long term. The pH gradient in the granule, containing a pH difference of ca. 0.4 between the granule surface and the granule centre, creates a decreasing gradient of ammonia towards the centre of the granule. Higher residual ammonium concentration enhances the ammonium oxidation rate of those cells located further away from the granule surface, where the competition for oxygen between AOB and NOB is more important, and it contributes to the stratification of both populations in the biofilm.
Collapse
Affiliation(s)
- Vincent Poot
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maaike Hoekstra
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mitchell A A Geleijnse
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Julio Pérez
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
25
|
Zhao L, Li Y, Wang S, Wang X, Meng H, Luo S. Adsorption and transformation of ammonium ion in a loose-pore geothermal reservoir: Batch and column experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 192:50-59. [PMID: 27356192 DOI: 10.1016/j.jconhyd.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Adsorption kinetics and transformation process of ammonium ion (NH4(+)) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4(+) onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20°C to 60°C in order to determine the transport parameters and transformation mechanism of NH4(+) in the studied matrix. The results showed that the adsorption process of NH4(+) onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4(+) onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014cm/h, only a little part of NH4(+) could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20°C to 60°C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Province, Jiaozuo 454000, China.
| | - Yanli Li
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shidong Wang
- Xi'an Research Institute of China Coal Technology & Engineering group, Xi'an 710054, China
| | - Xinyi Wang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hongqi Meng
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shaohe Luo
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
26
|
Vannecke TPW, Bernet N, Winkler MKH, Santa-Catalina G, Steyer JP, Volcke EIP. Influence of process dynamics on the microbial diversity in a nitrifying biofilm reactor: Correlation analysis and simulation study. Biotechnol Bioeng 2016; 113:1962-74. [DOI: 10.1002/bit.25952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas P. W. Vannecke
- Department of Biosystems Engineering; Ghent University, Coupure links 653; 9000 Ghent Belgium
| | - Nicolas Bernet
- Laboratoire de Biotechnologie de l'Environnement; INRA, UR0050; Narbonne France
| | - Mari K. H. Winkler
- Department of Biosystems Engineering; Ghent University, Coupure links 653; 9000 Ghent Belgium
| | | | | | - Eveline I. P. Volcke
- Department of Biosystems Engineering; Ghent University, Coupure links 653; 9000 Ghent Belgium
| |
Collapse
|
27
|
Ge S, Wang S, Yang X, Qiu S, Li B, Peng Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. CHEMOSPHERE 2015; 140:85-98. [PMID: 25796420 DOI: 10.1016/j.chemosphere.2015.02.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/14/2014] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Partial nitrification has gained broad interests in the biological nitrogen removal (BNR) from wastewater, since it alleviates carbon limitation issues and acts as a shortcut nitrogen removal system combined with anaerobic ammonium oxidation (Anammox) process. The occurrence and maintenance of partial nitrification relies on various conditions, which favor ammonium oxidizing bacteria (AOB) but inhibit or limit nitrite oxidizing bacteria (NOB). The studies of the AOB and NOB activities have been conducted by state-of-the-art molecular techniques, such as Polymerase Chain Reaction (PCR), Quantitative PCR, denaturing gradient gel electrophoresis (DGGE), Fluorescence in situ hybridization (FISH) technique, Terminal Restriction Fragment Length Polymorphism (T-RFLP), Live/Dead BacLight, and quinone profile. Furthermore, control strategies for obtaining partial nitrification are mainly focused on the pH, temperature, dissolved oxygen concentration, real-time aeration control, sludge retention time, substrate concentration, alternating anoxic and aerobic operation, inhibitor and ultrasonic treatment. Existing problems and further perspectives for the scale-up of partial nitrification are also proposed and suggested.
Collapse
Affiliation(s)
- Shijian Ge
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Shanyun Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiong Yang
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yongzhen Peng
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
28
|
Chai LY, Ali M, Min XB, Song YX, Tang CJ, Wang HY, Yu C, Yang ZH. Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations. BIORESOURCE TECHNOLOGY 2015; 185:134-142. [PMID: 25768415 DOI: 10.1016/j.biortech.2015.02.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater.
Collapse
Affiliation(s)
- Li-Yuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Mohammad Ali
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xiao-Bo Min
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yu-Xia Song
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China.
| | - Hai-Ying Wang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Cheng Yu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhi-Hui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
29
|
Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. Bioelectrochemistry 2015; 102:42-9. [DOI: 10.1016/j.bioelechem.2014.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
|
30
|
Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J Biosci Bioeng 2013; 115:37-42. [DOI: 10.1016/j.jbiosc.2012.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022]
|
31
|
Gévaudan G, Hamelin J, Dabert P, Godon JJ, Bernet N. Homogeneity and synchronous dynamics of microbial communities in particulate biofilms: from major populations to minor groups. Microbes Environ 2012; 27:142-8. [PMID: 22791046 PMCID: PMC4036020 DOI: 10.1264/jsme2.me11264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural or engineered microbial populations often show variations over time. These variations may be due to environmental fluctuations or intrinsic factors. Thus, studying the dynamics of microbial diversity for different communities living in a spatially homogeneous landscape is of interest. As a model ecosystem, nitrifying biofilm communities were grown in a two litre inverse turbulent bed reactor (ITBR) containing an estimated 200 million small particles (about 150 μm in diameter). Each particulate biofilm is considered as a distinct community growing in the neighborhood of other similar particles, in a homogeneous and well-controlled environmental context. A molecular approach was adopted to test how microbial community structures might evolve: either in synchrony, converging or diverging. The shape of biofilm was observed by microscopy for each particle. The biomass content was evaluated by quantitative PCR and showed similar values for each particle. The microbial community structure was evaluated by Capillary Electrophoresis-Single Strand Conformation Polymorphism (CE-SSCP) fingerprinting and showed extraordinary homogeneity between particles, even though transitory community structures were observed when reactor operating conditions were modified. This homogeneity was observed for the Bacteria primer set but, more interestingly, was also observed when minor non-nitrifying bacteria making up the biofilm, representing about 5% and 10% of total cells, were targeted.
Collapse
Affiliation(s)
- Gaëlle Gévaudan
- INRA, UR50, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne, F-11100, France
| | | | | | | | | |
Collapse
|
32
|
Picard C, Logette S, Schrotter JC, Aimar P, Remigy JC. Mass transfer in a membrane aerated biofilm. WATER RESEARCH 2012; 46:4761-4769. [PMID: 22776209 DOI: 10.1016/j.watres.2012.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/15/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
We present experimental results of mass transfer of a non reactive tracer gas (neon) measured in aerobic heterotrophic biofilm developed from activated sludge. Biofilms are grown in various hydrodynamic conditions and the effective diffusivity is used to quantify the mass transfer through the biofilm. Beyond some cross-flow conditions, the effective diffusivity through the biofilm seems larger than in the bulk. This can be explained by a dispersion generated by convection inside the biofilm, as supported by an analytical flow model and in accordance to the numerical simulation proposed by Aspa et al. (2011).
Collapse
Affiliation(s)
- C Picard
- INPT, UPS, Laboratoire de Génie Chimique, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France.
| | | | | | | | | |
Collapse
|
33
|
Mousavi S, Ibrahim S, Aroua MK, Ghafari S. Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors – A review. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Influence of Operational Parameters and Low Nickel Concentrations on Partial Nitrification in a Submerged Biofilter. Appl Biochem Biotechnol 2011; 165:1543-55. [DOI: 10.1007/s12010-011-9374-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
35
|
Sudarno U, Winter J, Gallert C. Effect of varying salinity, temperature, ammonia and nitrous acid concentrations on nitrification of saline wastewater in fixed-bed reactors. BIORESOURCE TECHNOLOGY 2011; 102:5665-5673. [PMID: 21414774 DOI: 10.1016/j.biortech.2011.02.078] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Nitrification under changing salinities (0-9%), temperatures (6-50°C), ammonia (0-5 g NL(-1)) and nitrite concentrations (0-0.4 g NL(-1)) was investigated in fixed-bed reactors. For all conditions ammonia oxidation rates (AOR) were lower than nitrite oxidation rates (NOR). AORs and NORs increased from 12.5 to 40°C and were very low at 6°C and almost zero at 50°C. No recovery of nitrification was obtained after incubation at 50°C, whereas nitrification was restorable after incubation at 6°C. Ammonia concentrations of 5 g NL(-1) or nitrite concentrations up to 0.125 g NL(-1) decreased AOR to almost zero. AORs and NORs recovered if ammonia or nitrite was removed. At concentrations of 1 and 5 g NL(-1) ammonia AOR and NOR were inhibited by 50%, whereas 27 mg N/L nitrite inhibited AOR by 50%.
Collapse
Affiliation(s)
- U Sudarno
- Institute of Biology for Engineers and Biotechnology of Wastewater Treatment KIT, Karlsruhe Institute of Technology Germany, 76131 Karlsruhe Am Fasanengarten, Germany
| | | | | |
Collapse
|
36
|
Shi YJ, Wang XH, Yu HB, Xie HJ, Teng SX, Sun XF, Tian BH, Wang SG. Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide. BIORESOURCE TECHNOLOGY 2011; 102:2536-2541. [PMID: 21145736 DOI: 10.1016/j.biortech.2010.11.081] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
In this study, the granulation of nitrifying-denitrifying via nitrite process in a sequencing batch reactor (SBR) as well as N(2)O emission patterns was investigated. After 60 days of operation, 0.8 mm granules were obtained, and partial nitrification was achieved after NH(4)(+)-N was raised to 350 mg/L. Fluorescence In-Situ Hybridization (FISH) analysis indicated that a fairly large proportion of ammonia-oxidizing bacteria (AOB) was close to the surface but nitrite-oxidizing bacteria (NOB) were rarely found. Batch experiments showed that 64.0% of NH(4)(+)-N in influent was transformed into NO(2)(-)-N, which showed the granules had excellent partial nitrification ability. Inhibition of free ammonia (FA) and limited DO diffusion within granules may contribute to the development and stabilization of partial nitrification. This process did not simultaneously lead to increased N(2)O production. N(2)O emissions at the anoxic and aerobic phases were 0.06 and 13.13 mg N(2)O/cycle, respectively.
Collapse
Affiliation(s)
- Yi-Jing Shi
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zekker I, Rikmann E, Tenno T, Menert A, Lemmiksoo V, Saluste A, Tenno T, Tomingas M. Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration. J Environ Sci (China) 2011; 23:1113-1121. [PMID: 22125903 DOI: 10.1016/s1001-0742(10)60523-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2(-)-N/NOx(-)-N was achieved for FA concentration of 70 mg/L at 36 degrees C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.
Collapse
Affiliation(s)
- Ivar Zekker
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411 Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Guo J, Peng Y, Huang H, Wang S, Ge S, Zhang J, Wang Z. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:471-479. [PMID: 20381239 DOI: 10.1016/j.jhazmat.2010.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 03/04/2010] [Accepted: 03/07/2010] [Indexed: 05/29/2023]
Abstract
Partial nitrification to nitrite has been frequently obtained at high temperatures, but has proved difficult to achieve at low temperatures when treating low strength domestic wastewater. In this study, the long-term effects of temperature on partial nitrification were investigated by operating a sequencing bath reactor with the use of aeration duration control. The specific ammonia oxidation rate decreased by 1.5 times with the temperature decreasing from 25 to 15 degrees C. However, low temperature did not deteriorate the stable partial nitrification performance. Nitrite accumulation ratio was always above 90%, even slightly higher (above 95%) at low temperatures. The nitrifying sludge accumulated with ammonia-oxidizing bacteria (AOB), but washout of nitrite-oxidizing bacteria (NOB) was used to determine the short-term effects of temperature on ammonia oxidation process. The ammonia oxidation rate depended more sensitively on lower temperatures; correspondingly the temperature coefficient theta was 1.172 from 5 to 20 degrees C, while theta was 1.062 from 20 to 35 degrees C. Moreover, the larger activation energy (111.5 kJ mol(-1)) was found at lower temperatures of 5-20 degrees C, whereas the smaller value (42.0 kJ mol(-1)) was observed at higher temperatures of 20-35 degrees C. These findings might be contributed to extend the applicability of the partial nitrification process in wastewater treatment plants operated under cold weather conditions. It is suggested that the selective enrichment of AOB as well as the washout of NOB be obtained by process control before making the biomass slowly adapt to low temperatures for achieving partial nitrification to nitrite at low temperatures.
Collapse
Affiliation(s)
- Jianhua Guo
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Yusof N, Hassan MA, Phang LY, Tabatabaei M, Othman MR, Mori M, Wakisaka M, Sakai K, Shirai Y. Nitrification of ammonium-rich sanitary landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:100-109. [PMID: 19811901 DOI: 10.1016/j.wasman.2009.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/21/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The nitrification of ammonium-rich wastewater is considered challenging due to the substrate inhibition particularly in the form of free ammonia (FA) and free nitrous acid (FNA) in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The feasibility of the nitrifying activated sludge system to completely nitrify synthetic stabilized landfill leachate with N-NH(4)(+) concentration of 1452mg/L was tested in this study. The process started with 0.4kg N-NH(4)(+)/m(3)/day of nitrogen loading rate (NLR) in a fed-batch mode to avoid any accumulation of the FA and FNA in the system followed by increasing the nitrogen loading rate (NLR) gradually. Complete nitrification was achieved with a very high ammonium removal percentage (approximately 100%). The maximum specific and volumetric nitrification rate obtained were 0.49g N-NH(4)(+)/g VSS/day and 3.0kg N-NH(4)(+)/m(3)/day, respectively which were higher than those reported previously for ammonium-rich removal using activated sludge system. The nitrifying sludge exhibited good settling characteristics of up to 36mL/g VSS and a long SRT of more than 53 days which contributed to the success of the nitrification process. The coexistence and syntrophic association of the AOB and NOB was observed by using Fluorescence in situ hybridization (FISH) technique which supported the results on complete nitrification obtained in the system. These findings would be of prominent importance for further treatment of actual sanitary landfill leachate.
Collapse
Affiliation(s)
- N Yusof
- Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li H, Gu Y, Zhao Y, Wen Z. Leachate treatment using a demonstration aged refuse biofilter. J Environ Sci (China) 2010; 22:1116-1122. [PMID: 21175005 DOI: 10.1016/s1001-0742(09)60226-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Approximately 7000 m3 of aged refuse (AR) with a placement of over eight years was excavated from Shanghai Refuse Landfill, the largest landfill in China, and used for the construction of a two-stage bioreactor (AR biofilter) media for the biological treatment of 100 m3 of refuse landfill leachate. It was found that over 64% of COD, 96.9%-99.8% of NH4+ -N, and 95.8%-99.8% of BOD5 could be removed by the AR biofilter, when the leachate with initial COD, BOD5, and NH4+ -N concentrations were 986-4128 mg/L, 264-959 mg/L, and 538-1583 mg/L, respectively. The corresponding concentrations in the effluent were reduced to below 300-400 mg/L, 2-12 mg/L, and 10-20 mg/L, respectively. The effluent was clear and pale yellow with suspended solid below 150 mg/L and color below 150 Pt/Co degree. Meanwhile, the total nitrogen removal was only 49%-63%, indicating a relative poor denitrification capacity of AR biofilter. The effluent pH was neutral and the population of Escherichia coli was less than 10(-1) CFU/mL. Hence, it was considered that the demonstration project can work well for the effective treatment of leachate.
Collapse
Affiliation(s)
- Hongjiang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | | | | | | |
Collapse
|
41
|
Shinohara T, Qiao S, Yamamoto T, Nishiyama T, Fujii T, Kaiho T, Bhatti Z, Furukawa K. Partial nitritation treatment of underground brine waste with high ammonium and salt content. J Biosci Bioeng 2009; 108:330-5. [DOI: 10.1016/j.jbiosc.2009.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/14/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
42
|
Guo J, Peng Y, Wang S, Zheng Y, Huang H, Ge S. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Ma Y, Peng Y, Wang S, Yuan Z, Wang X. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. WATER RESEARCH 2009; 43:563-572. [PMID: 19136135 DOI: 10.1016/j.watres.2008.08.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 05/27/2023]
Abstract
Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V=300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.
Collapse
Affiliation(s)
- Yong Ma
- Key Laboratory of Beijing for Water Environment Recovery, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | |
Collapse
|
44
|
Aslan S, Miller L, Dahab M. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2009; 100:659-664. [PMID: 18757199 DOI: 10.1016/j.biortech.2008.07.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/19/2008] [Accepted: 07/21/2008] [Indexed: 05/26/2023]
Abstract
In this study, the effects of sludge retention time (SRT) on NH(4)-N oxidation and NO(x)-N accumulation in the nitritation reactors were studied. The gradually decrease of SRT also caused long reaction time to achieve 99% NH(4)-N removal. Although the target NH(4)-N removal was achieved in a short reaction time at 40 days of SRT, decreasing of SRT from 40 to 30, 25, 20 days, increase the reaction time from 168 to 240 and 265 h, respectively. The inlet NH(4)-N was almost oxidized and the concentration of NO(2)-N accumulated to a high level of 177 mg/l, while NO(2)-N/(NO(3)-N+NO(2)-N) ratio was about 0.9 at SRT of 40 days. However, the concentration of NO(3)-N increased slightly and NO(2)-N/(NO(x)-N) ratio dropped to 0.8 when the SRT was lower than 40 days. During the operation in a cycle, free ammonia concentration in the SBR was decreased from 2.8 to 0.7 mg/l which is below the lowest concentration causing inhibition of nitrite oxidizing bacteria (NOB). It was assumed that combined dissolved oxygen limitation and NH(3)-N inhibition on NOB caused NO(2)-N accumulation under the experimental conditions.
Collapse
Affiliation(s)
- Sukru Aslan
- Cumhuriyet University, Department of Environmental Engineering, 58140 Sivas, Turkey.
| | | | | |
Collapse
|
45
|
Microbial population dynamics in nitrifying reactors: Experimental evidence explained by a simple model including interspecies competition. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Aslan S, Dahab M. Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors. JOURNAL OF HAZARDOUS MATERIALS 2008; 156:56-63. [PMID: 18206304 DOI: 10.1016/j.jhazmat.2007.11.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 11/19/2007] [Accepted: 11/29/2007] [Indexed: 05/25/2023]
Abstract
Fluidized-bed biofilm nitritation and denitritation reactors (FBBNR and FBBDR) were operated to eliminate the high concentrations of nitrogen by nitritation and denitritation process. The dissolved oxygen (DO) concentration was varied from 1.5 to 2.5 g/m(3) at the top of the reactor throughout the experiment. NH(4)-N conversion and NO(2)-N accumulation in the nitritation reactor effluent was over 90 and 65%, respectively. The average NH(4)-N removal efficiency was 99.2 and 90.1% at the NLR of 0.9 and 1.2 kg NH(4)-N/m(3)day, respectively. Increasing the NLR from 1.1 to 1.2 kg NH(4)-N/m(3)day decreased the NH(4)-N elimination approximately two-fold while NH(4)-N conversion to NO(2)-N differences were negligible. The NO(2)-N/NO(x)-N ratios corresponded to 0.74, 0.73, 0.72, and 0.69, respectively, indicating the occurrence of partial nitrification. An average free ammonia concentration in the FBBNR was high enough to inhibit nitrite oxidizers selectively, and it seems to be a determining factor for NO(2)-N accumulation in the process. In the FBBDR, the NO(x)-N (NO(2)-N+NO(3)-N) concentrations supplied were between 227 and 330 mg N/l (NLR was between 0.08 and 0.4 kg/m(3)day) and the influent flow was increased as long as the total nitrogen removal was close to 90%. The NO(2)-N and NO(3)-N concentrations in the effluent were 3.0 and 0.9 mg/l at 0.08 kg/m(3)day loading rate. About 98% removal of NO(x)-N was achieved at the lowest NLR in the FBBDR. The FBBDR exhibited high nitrogen removal up to the NLR of 0.25 kg/m(3)day. The NO(x)-N effluent concentration never exceeded 15 mg/l. The total nitrogen removal efficiency in the FBBRs was higher than 93% at 21+/-1 degrees C.
Collapse
Affiliation(s)
- Sukru Aslan
- Cumhuriyet University, Department of Environmental Engineering, Sivas, Turkey.
| | | |
Collapse
|
47
|
Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sánchez O, Bernet N, Delgenès JP. Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2007; 79:845-50. [PMID: 17824530 DOI: 10.2175/106143007x175807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A mathematical model based on Activated Sludge Model No. 3 (International Water Association, London) and laboratory-scale experiments were used to investigate ammonia conversion by nitrification in a sequencing batch reactor (SBR). The purpose of the study was to assess the effect of dissolved oxygen concentration on nitrite accumulation in the SBR. As the dissolved oxygen concentration in the SBR depends on the balance between oxygen consumption and oxygen transfer rates, ammonium conversion was measured for different air flowrate values to obtain different dissolved oxygen concentration profiles during the cycle. The ammonia concentration in the feeding medium was 500 mg ammonium as nitrogen (N-NH4(+))/L, and the maximum nitrite concentration achieved during a cycle was approximately 50 mg nitrite as nitrogen (N-NO2)/L. The air flow supplied to the reactor was identified as a suitable parameter to control nitrite accumulation in the SBR. This identification was carried out based on experimental results and simulation with a calibrated model. At a low value of the volumetric mass-transfer coefficient (kLa), the maximum nitrite concentration achieved during a cycle depends strongly on k(L)a, whereas, at a high value of k(L)a, the maximum nitrite concentration was practically independent of kL(a).
Collapse
Affiliation(s)
- Omar Sánchez
- Department of Chemical Engineering, Catholic University of the North, Antofagasta, Chile.
| | | | | |
Collapse
|
49
|
Chung J, Bae W, Lee YW, Rittmann BE. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Yamamoto T, Takaki K, Koyama T, Furukawa K. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. J Biosci Bioeng 2006; 102:497-503. [PMID: 17270713 DOI: 10.1263/jbb.102.497] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/23/2006] [Indexed: 11/17/2022]
Abstract
A swim-bed reactor using the biofringe acryl-fiber biomass carrier was used for partial nitritation treatment for anaerobic digestion liquor of swine wastewater. The sludge in the reactor demonstrated excellent settling properties, and the sludge volumetric index (SVI) was always about 50 ml g(-1). The mixed liquor suspended solids (MLSS) concentration was maintained above 10,000 mg l(-1) with a maximum of 16,800 mg l(-1). Satisfactory and stable partial nitritation was obtained at a nitrogen loading rate (NLR) of 1.9 kg-N m(-3) d(-1) without any operational control. Only a little nitrate was produced almost during the whole operational period and the nitrite to total oxidized nitrogen ratio (NO(2)-N/(NO(2)-N+NO(3)-N)) was always above 95%. In addition, the influence of temperature on partial nitritation efficiencies was also investigated and non-controlled efficiencies were maintained stably between 15 degrees C and 30 degrees C at an NLR of 1.9 kg-N m(-3) d(-1), but suddenly deteriorated when the temperature fell below 15 degrees C. Nitrite oxidizing bacteria were inhibited by free ammonia and free nitric acid, which prevented the conversion of nitrite to nitrate and the inhibition due to free nitric acid weaken with a decrease in temperature. It was apparent that these phenomena were crucial to the control of partial nitritation treatment.
Collapse
Affiliation(s)
- Taichi Yamamoto
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|