1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Li F, Ning Y, Zhang Y, Huang H, Yuan Q, Wang X, Wei W. Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40111396 DOI: 10.1080/10408398.2025.2479071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (sn-2 vs. sn-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the sn-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of sn-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with sn-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.
Collapse
Affiliation(s)
- Feng Li
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Yiren Zhang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zhang Y, Wang X, Wang X. Acyl migration of 2-monoacylglycerols rich in DHA: Effect of temperature and solvent medium. Food Chem 2023; 412:135501. [PMID: 36716621 DOI: 10.1016/j.foodchem.2023.135501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Acyl migration of 2-monoacylglycerols (2-MAGs) rich in DHA is a universal reaction occurring during storage and structural lipid synthesis, and affects their nutritional value. In this study, their acyl migration was investigated under different systems and temperatures. The enhanced temperature promoted acyl migration, leading to a 5.6-fold increase from 20 °C to 50 °C. The kinetic study indicated rate constants followed the order: hexane > solvent-free > dichloromethane > ethanol ≈ acetone ≈ acetonitrile > t-butanol, and positively correlated with log P of solvent. During acyl migration in ethanol, acetone, acetonitrile and t-butanol at 40 °C, DHA content in 2-MAGs was higher than in 1-MAGs, indicating slow acyl migration of DHA; while at 50 °C, the difference of DHA distribution was small, due to increasing acyl migration rate. The results suggest that acyl migration of different fatty acids can be regulated by changing conditions to enrich DHA at sn-2 position.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
5
|
De Bhowmick G, Guieysse B, Everett DW, Reis MG, Thum C. Novel source of microalgal lipids for infant formula. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Enzymatic Synthesis Process of EPA- and DHA-Enriched Structured Acylglycerols at the sn-2 Position Starting from Commercial Salmon Oil and Concentrated by Response Surface Methodology under Supercritical Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The bioavailability of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) has shown to be greatly influenced by their location in the triacylglycerol backbone. Therefore, the synthesis of structured acylglycerols (SAcyl), which include eicosapentaenoic acids (EPAs) or docosahexaenoic acids (DHAs) at the sn-2 position, has attracted a great interest. The objective of this study was to optimize the synthesis process of a SAcyl from commercial refined salmon oil and an EPA/DHA concentrate in order to enhance the positioning of EPA and DHA in the sn-2 location of the glycerol moiety. For this purpose, immobilized lipase B from Candida antarctica (nonspecific) was used for the acidolysis process under the CO2 supercritical condition. As a result of carrying out a Draper-Lin composite design through the response surface methodology of 18 experiments, an optimized extraction including SAcyl compounds was obtained. Mass spectrometry (MALDI-TOF) analysis was employed to identify the EPA/DHA location at the sn-2 position in the resulting glycerol moiety. In the fraction obtained, an increase in the EPA and DHA content at the sn-2 position was detected. Remarkably, the optimized SAcyl obtained after 6 h, 82 bar, and 60 °C led to the highest EPA/DHA yield at the sn-2 position in the resulting molecule.
Collapse
|
7
|
Cifuentes-Collari C, Valenzuela-Báez R, Guil-Guerrero JL, Akoh CC, Rincón-Cervera MÁ. Lipase-catalyzed synthesis of 1,3-diacylglycerols containing stearidonic, γ-linolenic and α-linolenic acids in a solvent-free system. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Cui J, Cao J, Ge J, Qu X, Li P, Li C. Comprehensive lipid profiles of sea cage aquaculture cobia (Rachycentron canadum) based on lipidomics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
10
|
Synthesis of symmetrical medium- and long-chain triacylglycerols rich in arachidonic acid at sn-2 position for infant formula. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ethanol as additive enhance the performance of immobilized lipase LipA from Pseudomonas aeruginosa on polypropylene support. ACTA ACUST UNITED AC 2021; 31:e00659. [PMID: 34367924 PMCID: PMC8326728 DOI: 10.1016/j.btre.2021.e00659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Immobilization is practical to upgrade enzymes, increasing their performance and expanding their applications. The recombinant, solvent tolerant lipase LipA PSA01 from Pseudomonas aeruginosa was immobilized on polypropylene Accurel® MP1004 to improve its performance. We investigated the effect of ethanol as an additive during the immobilization process at three concentrations (20%, 25%, and 30%) on the operational behavior of the enzyme. The immobilization efficiency was higher than 92%, and the immobilized enzymes showed hyperactivation and thermal resistance depending on the concentration of ethanol. For example, at 70 °C, the free enzyme lost the activity, while the prepared one with ethanol 25% conserved a residual activity of up to 73.3% (∆ T15 50 = 27.1 °C). LipA immobilized had an optimal pH value lower than that of the free enzyme, and the organic solvent tolerance of the immobilized enzymes depended on the ethanol used. Hence, the immobilized enzyme with ethanol 25% showed hyperactivation to more solvents than the soluble enzyme. Remarkable stability towards methanol (up to 8 folds) was evidenced in all the immobilized preparations. The immobilized enzyme changed their chemo preference, and it hydrolyzed oils preferentially with short-chain than those with long-chain. LipA had a notable shelf-life after one year, keeping its activity up to 87%. Ethanol facilitated the access of the enzyme to the hydrophobic support and increased its activity and stability according to the amount of ethanol added.
Collapse
|
12
|
Synthesis of EPA- and DHA-Enriched Structured Acylglycerols at the sn-2 Position Starting from Commercial Salmon Oil by Enzymatic Lipase Catalysis under Supercritical Conditions. Molecules 2021; 26:molecules26113094. [PMID: 34067234 PMCID: PMC8196811 DOI: 10.3390/molecules26113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
There is consistent evidence that long-chain polyunsaturated fatty acids (LCPUFA) belonging to the n-3 series, i.e., eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) acids, decrease the risk of heart, circulatory and inflammatory diseases. Furthermore, the bioavailability of such fatty acids has been shown to depend on their location in triacylglycerol (TG) molecules at the sn-2 position. Consequently, great attention has been accorded to the synthesis of structured acylglycerols (sAG), which include EPA or DHA at the sn-2 position. The aim of this work was to synthesize sAG starting from deodorized refined commercial salmon oil. For this, immobilized lipase B from Candida antarctica (nonspecific) was used as a catalyst for the intra–interesterification process under CO2 supercritical conditions (CO2SC). According to the CO2SC reaction time, three different fractions including sAG compounds were obtained. The location of EPA and DHA at the sn-2 position in the resulting glycerol backbone was identified by mass spectrometry (MALDI-TOF) analysis. In all fractions obtained, a marked decrease in the starting TG content was observed, while an increase in the DHA content at the sn-2 position was detected. The fraction obtained after the longest reaction time period (2 h) led to the highest yield of sn-2 position DHA in the resulting sAG molecule.
Collapse
|
13
|
Li Y, Li C, Feng F, Wei W, Zhang H. Synthesis of medium and long-chain triacylglycerols by enzymatic acidolysis of algal oil and lauric acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
16
|
Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
18
|
Abed SM, Wei W, Ali AH, Korma SA, Mousa AH, Hassan HM, Jin Q, Wang X. Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abed SM, Zou X, Ali AH, Jin Q, Wang X. Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. BIORESOURCE TECHNOLOGY 2017; 243:448-456. [PMID: 28688328 DOI: 10.1016/j.biortech.2017.06.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Microbial oils (MOs) have gained widespread attention due to their functional lipids and health promoting properties. In this study, 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids (SLs) were produced from MO and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. Under the optimal conditions, the content of unsaturated fatty acids (UFAs) increased from 60.63 to 84.00%, while the saturated fatty acids (SFAs) content decreased from 39.37 to 16.00% at sn-1,3 positions in SLs. Compared with MO, arachidonic acid (ARA) content at the sn-2 position of SLs accounted for 49.71%, whereas OA was predominantly located at sn-1,3 positions (47.05%). Meanwhile, the most abundant triacylglycerol (TAG) species in SLs were (18:1-20:4-18:1), (20:4-20:4-18:1), (18:1-18:2-18:1), (18:1-18:2-18:0) and (24:0-20:4-18:1) with a relative content of 18.79%, 11.94%, 6.07%, 5.75% and 4.84%, respectively. Such novel SLs with improved functional properties enriched with UFAs are highly desirable and have the potential to be used in infant formula.
Collapse
Affiliation(s)
- Sherif M Abed
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science, El-Arish University, 43511 El-Arish, Egypt
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Abdelmoneim H Ali
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; Department of Food Science, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| |
Collapse
|
20
|
Development of an up-grading process to produce MLM structured lipids from sardine discards. Food Chem 2017; 228:634-642. [DOI: 10.1016/j.foodchem.2017.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022]
|
21
|
Ilyasoglu H. Production of structured lipid with a low omega-6/omega-3 fatty acids ratio by enzymatic interesterification. GRASAS Y ACEITES 2017. [DOI: 10.3989/gya.0565161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A structured lipid (SL) constituting omega fatty acids was synthesized by using linseed and grape seed oils as substrates via a lipase-catalyzed reaction. Lipozyme® TL IM was used as a biocatalyst. Good quadratic models predicting the incorporation of omega fatty acids were achieved via the Response surface methodology (RSM). The optimal conditions for targeted omega-6/omega-3 fatty acid ratio (2:1) were obtained at a substrate molar ratio 1.4, time 8.4 h, and enzyme amount 6.4%. The SL contained linoleic acid (43 g 100g-1), which was mainly located in the sn-2 position (40 g 100g-1). ?-Linoleic acid, and α-linolenic acid at the sn-2 position were 22 g 100g-1, and 11 g 100g-1, respectively. The oxidative stability of the SL, and SL with antioxidants was also investigated. The produced SL may be proposed as a source of a balanced intake of omega fatty acids and an ingredient in functional food formulations.
Collapse
|
22
|
Zhu Y, Jin Q, Wang X, Wang X. Purification of 1,2-Diacylglycerols by a Two-Step Crystallization. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxiao Zhu
- State
Key Laboratory of Food Science and Technology, Collaborative Innovation
Center of Food Safety and Quality Control in Jiangsu Province, School
of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Qingzhe Jin
- State
Key Laboratory of Food Science and Technology, Collaborative Innovation
Center of Food Safety and Quality Control in Jiangsu Province, School
of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Xingguo Wang
- State
Key Laboratory of Food Science and Technology, Collaborative Innovation
Center of Food Safety and Quality Control in Jiangsu Province, School
of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaosan Wang
- State
Key Laboratory of Food Science and Technology, Collaborative Innovation
Center of Food Safety and Quality Control in Jiangsu Province, School
of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
23
|
Wang J, Liu X, Wang XD, Dong T, Zhao XY, Zhu D, Mei YY, Wu GH. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase. BIORESOURCE TECHNOLOGY 2016; 220:132-141. [PMID: 27566521 DOI: 10.1016/j.biortech.2016.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7°C) and decrease of crystallizing point (3°C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from $212.3 to $14.6 per batch with the microreactor. Overall, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.
Collapse
Affiliation(s)
- Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Xi Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xu-Dong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tao Dong
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, USA
| | - Xing-Yu Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Dan Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Yi-Yuan Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Guo-Hua Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
24
|
|
25
|
Araújo MEMBD, Campos PRB, Alberto TG, Contesini FJ, Carvalho PDO. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase. Braz J Microbiol 2016; 47:1006-1013. [PMID: 27528087 PMCID: PMC5052365 DOI: 10.1016/j.bjm.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids.
Collapse
Affiliation(s)
| | | | - Thiago Grando Alberto
- Universidade São Francisco, Laboratory of Multidisciplinary Research, Bragança Paulista, SP, Brazil
| | | | | |
Collapse
|
26
|
Martín Valverde L, Moreno PAG, Cerdán LE, López EN, Robles Medina A. Concentration of docosahexaenoic acid by enzymatic alcoholysis with different acyl-acceptors, using tert-butanol as reaction medium. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Wang J, Wang XD, Zhao XY, Liu X, Dong T, Wu FA. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. BIORESOURCE TECHNOLOGY 2015; 184:405-414. [PMID: 25451776 DOI: 10.1016/j.biortech.2014.09.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Novel structured triacylglycerols (STAGs) enriched with unsaturated fatty acids (UFAs) and low palmitic acid (PA) content were firstly synthesized from Schizochytrium sp. oil and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. The results indicated that, the PA content decreased from 24.49% to 6.95%, while the UFAs content increased from 70.20% to 90.9% at the sn-1,3 positions in the STAGs under the optimal condition (i.e., lipase load of 7%, molar ratio of microalgae oil TAGs to OA of 1:3, and temperature of 65 °C). The lipase Lipozyme RM IM could be reused 16 times without significant loss of activity. The improved plastic and storage ranges of STAGs are useful for infant formula formulations, by which a possible method is blending of this product and 1,3-dioleoyl-2-palmitoylglycerol enriched fats and minor lipids based on the corresponding chemical compositions of human milk fat.
Collapse
Affiliation(s)
- Jun Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Xu-Dong Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xing-Yu Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xi Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tao Dong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Fu-An Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
28
|
Navarro López E, Robles Medina A, González Moreno PA, Jiménez Callejón MJ, Esteban Cerdán L, Martín Valverde L, Castillo López B, Molina Grima E. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids: Influence of operational variables and polar lipid content. BIORESOURCE TECHNOLOGY 2015; 187:346-353. [PMID: 25863898 DOI: 10.1016/j.biortech.2015.03.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch.
Collapse
|
29
|
Zhao XY, Wang XD, Liu X, Zhu WJ, Mei YY, Li WW, Wang J. Structured lipids enriched with unsaturated fatty acids produced by enzymatic acidolysis of silkworm pupae oil using oleic acid. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xing-Yu Zhao
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Xu-Dong Wang
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Xi Liu
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Wei-Jie Zhu
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Yi-Yuan Mei
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Wen-Wen Li
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
| | - Jun Wang
- College of Biotechnology; Jiangsu University of Science and Technology; Zhenjiang P. R. China
- Sericultural Research Institute; Chinese Academy of Agricultural Sciences; Zhenjiang P. R. China
| |
Collapse
|
30
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, Hita Peña E, Esteban Cerdán L, González Moreno PA, Molina Grima E. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production. BIORESOURCE TECHNOLOGY 2014; 169:198-205. [PMID: 25058294 DOI: 10.1016/j.biortech.2014.06.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
Saponifiable lipids (SLs) were extracted with hexane from wet biomass (86 wt% water) of the microalga Nannochloropsis gaditana in order to transform them into fatty acid methyl esters (FAMEs, biodiesel). The influence of homogenization pressure on SL extraction yield at low temperature (20-22 °C) was studied. Homogenization at 1700 bar tripled the SL extraction yield. Two biomass batches with similar total lipid content but different lipidic compositions were used. Batch 1 contained fewer SLs (12.0 wt%) and neutral saponifiable lipids (NSLs, 7.9 wt%) than batch 2 (21.6 and 17.2 wt%, respectively). For this reason, and due to the selectivity of hexane toward NSLs, high SL yield (69.1 wt%) and purity (71.0 wt%) were obtained from batch 2. Moreover, this extract contains a small percentage of polyunsaturated fatty acids (16.9 wt%), thereby improving the biodiesel quality. Finally, up to 97.0% of extracted SLs were transformed to FAMEs by acid catalyzed transesterification.
Collapse
Affiliation(s)
| | | | | | - Estrella Hita Peña
- Area of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | | | | | | |
Collapse
|
31
|
Řezanka T, Lukavský J, Nedbalová L, Sigler K. Production of structured triacylglycerols from microalgae. PHYTOCHEMISTRY 2014; 104:95-104. [PMID: 24833034 DOI: 10.1016/j.phytochem.2014.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Structured triacylglycerols (TAGs) were isolated from nine cultivated strains of microalgae belonging to different taxonomic groups, i.e. Audouinella eugena, Balbiania investiens, Myrmecia bisecta, Nannochloropsis limnetica, Palmodictyon varium, Phaeodactylum tricornutum, Pseudochantransia sp., Thorea ramosissima, and Trachydiscus minutus. They were separated and isolated by means of NARP-LC/MS-APCI and chiral LC and the positional isomers and enantiomers of TAGs with two polyunsaturated, i.e. arachidonic (A) and eicosapentaenoic (E) acids and one saturated, i.e. palmitic acid (P) were identified. Algae that produce eicosapentaenoic acid were found to biosynthesize more asymmetrical TAGs, i.e. PPE or PEE, whereas algae which produced arachidonic acid give rise to symmetrical TAGs, i.e. PAP or APA, irrespective of their taxonomical classification. Nitrogen and phosphorus starvation consistently reversed the ratio of asymmetrical and symmetrical TAGs.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Linda Nedbalová
- Institute of Botany, Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization, Dukelská 135, 379 82 Třeboň, Czech Republic; Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
32
|
Separation of Acylglycerides Obtained by Enzymatic Esterification Using Solvent Extraction. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2374-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Concentration of eicosapentaenoic acid (EPA) by selective alcoholysis catalyzed by lipases. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Khodadadi M, Aziz S, St-Louis R, Kermasha S. Lipase-catalyzed synthesis and characterization of flaxseed oil-based structured lipids. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
|
36
|
Rincón Cervera MÁ, Venegas Venegas E, Ramos Bueno RP, Guil Guerrero JL. Synthesis and purification of structured triacylglycerols from evening primrose and viper's bugloss seed oils. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Lei L, Li J, Hu JN, Liu R, Fan YW, Tang L, Deng ZY. Separation of Phospholipids from Hen Egg Yolk by Short Packed Silica Gel Column Chromatography. J Food Sci 2012; 77:C948-53. [DOI: 10.1111/j.1750-3841.2012.02850.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Nunes P, Pires-Cabral P, Guillén M, Valero F, Ferreira-Dias S. Batch operational stability of immobilized heterologous Rhizopus oryzae lipase during acidolysis of virgin olive oil with medium-chain fatty acids. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Rodríguez A, Esteban L, Martín L, Jiménez MJ, Hita E, Castillo B, González PA, Robles A. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions. Enzyme Microb Technol 2012; 51:148-55. [DOI: 10.1016/j.enzmictec.2012.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
40
|
Rupani B, Kodam K, Gadre R, Najafpour GD. Lipase‐mediated hydrolysis of flax seed oil for selective enrichment of α‐linolenic acid. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100384] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Banin Rupani
- Department of Chemistry, University of Pune, Pune, Maharashtra, India
| | - Kisan Kodam
- Department of Chemistry, University of Pune, Pune, Maharashtra, India
| | - Ramchandra Gadre
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune, Maharashtra, India
| | - Ghasem D. Najafpour
- Faculty of Chemical Engineering, Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
41
|
Martín Valverde L, González Moreno PA, Rodríguez Quevedo A, Hita Peña E, Jiménez Callejón MJ, Esteban Cerdán L, Molina Grima E, Robles Medina A. Concentration of Docosahexaenoic Acid (DHA) by Selective Alcoholysis Catalyzed by Lipases. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2056-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Vázquez L, Kleiner L, Akoh CC. Concentration of Stearidonic Acid in Free Fatty Acids Form from Modified Soybean Oil by Selective Esterification with Dodecanol. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2055-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Lei L, Li J, Li GY, Hu JN, Tang L, Liu R, Fan YW, Deng ZY. Stereospecific analysis of triacylglycerol and phospholipid fractions of five wild freshwater fish from Poyang Lake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1857-1864. [PMID: 22242597 DOI: 10.1021/jf204584t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The fatty acids (FA) compositions and positional distributions in triacylglycerols (TAG) and phospholipids (PL) of five wild freshwater fish (Squaliobarbus curriculus, Erythroculter ilishaeformis, Pseudobagrus fulvidraco, Bostrichthys sinensis, and Siniperca kneri Garman) from Poyang Lake (the largest freshwater lake of China) were studied. For TAG, S. kneri German had the highest content (13.59%) of n - 3 polyunsaturated fatty acids (PUFA) and E. ilishaeformis had the lowest ratio of (n - 6)/(n - 3) (0.65). PL had a high content of PUFA, which declined in the order of phosphatidylethanolamine (PE) > phosphatidylcholine (PC) > TAG. 9c11t-18:2 accounted for 6.38-50.77% of total conjugated linoleic acids (CLA). The highest level of odd-branched chain fatty acids (OBCFA) was 26.7% in B. sinensis. The study revealed that the distribution of FA among the sn positions was not random: monounsaturated fatty acids (MUFA) and PUFA preferred positions 1 and 3 and saturated fatty acids (SFA) position 2 of TAG, while SFA and MUFA predominated over sn-1-PL and PUFA over sn-2-PL.
Collapse
Affiliation(s)
- Lin Lei
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
de Araújo MEMB, Campos PRB, Noso TM, Alberici RM, da Silva Cunha IB, Simas RC, Eberlin MN, de Oliveira Carvalho P. Response surface modelling of the production of structured lipids from soybean oil using Rhizomucor miehei lipase. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Hu JN, Zhang B, Zhu XM, Li J, Fan YW, Liu R, Tang L, Lee KT, Deng ZY. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4771-4778. [PMID: 21456611 DOI: 10.1021/jf200188r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.
Collapse
Affiliation(s)
- Jiang-Ning Hu
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Production of triacylglycerols rich in palmitic acid at sn-2 position by lipase-catalyzed acidolysis. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Gupta S, Singh K, Bhattacharya A. Lipase immobilization on Polysulfone globules and their performances in olive oil hydrolysis. Int J Biol Macromol 2010; 46:445-50. [DOI: 10.1016/j.ijbiomac.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
|
49
|
Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Synthesis of structured lipid with balanced omega-3: Omega-6 ratio by lipase-catalyzed acidolysis reaction: Optimization of reaction using response surface methodology. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|