1
|
Tang CC, Zhang BC, Yao XY, Sangeetha T, Zhou AJ, Liu W, Ren YX, Li Z, Wang A, He ZW. Natural zeolite enhances anaerobic digestion of waste activated sludge: Insights into the performance and the role of biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118704. [PMID: 37540982 DOI: 10.1016/j.jenvman.2023.118704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bao-Cai Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, And Industrial Sectors, National Taipei University of Technology, Taipei, 10608, Taiwan, China; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
2
|
Alimohammadi M, Demirer GN. Petroleum coke supplementation for enhanced biogas production and phosphate removal under mesophilic conditions. Biotechnol Prog 2023; 39:e3385. [PMID: 37642144 DOI: 10.1002/btpr.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range. According to the results of the experiments, supplementing reactors with PC could significantly improve biogas and methane production. Supplementation of reactors with 1.5 g/L PC led to 23.40 ± 0.26% and 42.55 ± 3.97% increase in biogas production and methane generation, respectively. Moreover, the average volatile solids (VS), phosphate, and chemical oxygen demand (COD) removals were 43.43 ± 0.73, 46.74 ± 0.77%, and 60.40 ± 0.38%, respectively.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
3
|
Improvement of Low-Fertility Soils from a Coal Mining Subsidence Area by Immobilized Nitrogen-Fixing Bacteria. Processes (Basel) 2022. [DOI: 10.3390/pr10061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coal mining subsidence leads to reductions in soil fertility. In order to improve soil physical and chemical properties and to promote vegetation restoration, a nitrogen-fixing bacterium named S1 was isolated from the coal mining subsidence area in the Shendong mining area, and a zeolite-immobilized nitrogen-fixing bacterium was studied to improve the soil in the subsidence area. The results show that the immobilized nitrogen-fixing bacteria can significantly improve the ammonium nitrogen and nitrate nitrogen of soil by 50 times and 0.6 times, respectively, at 20 days, and it can also improve organic matter. In pot experiments, it was found that immobilized microorganisms can improve germination rate, plant height and the dry and fresh weight of maize. The results of the above soil culture tests and pot experiments were then compared and analyzed. It was found that plants made obvious use of soil ammonium nitrogen and nitrate nitrogen, and planting the plants was conducive to increases in soil organic matter.
Collapse
|
4
|
Cardona L, Mazéas L, Chapleur O. Deterministic processes drive the microbial assembly during the recovery of an anaerobic digester after a severe ammonia shock. BIORESOURCE TECHNOLOGY 2022; 347:126432. [PMID: 34838975 DOI: 10.1016/j.biortech.2021.126432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion allows to produce sustainable energy but the microbial community involved in this process is highly sensitive to perturbations. In this study, a longitudinal experiment was performed in two sets of triplicate bioreactors to evaluate the influence of ammonia addition on AD microbiome and its recovery. Zeolite was added in three reactors to mitigate the inhibition. Microbial dynamics were monitored with 16S rRNA sequencing at 15 time points. Dominant methanogenic pathways were determined with gas isotopic signature analysis. Zeolite addition did not enable to reduce ammonia inhibition or improve the process under the conditions tested. In all the bioreactors, ammonia inhibition sharply decreased the methane production but the process could restart thanks to the increase of hydrogenotrophic archaea and syntrophic bacteria. Interestingly, similar behaviour was observed in the six reactors. Neutral modelling and null model were used and showed that a deterministic process governed the recovery of AD microbiome after failure.
Collapse
Affiliation(s)
- Laëtitia Cardona
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France.
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France.
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France.
| |
Collapse
|
5
|
Sánchez E, Herrmann C, Maja W, Borja R. Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38455-38465. [PMID: 33733420 DOI: 10.1007/s11356-021-13428-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to investigate the impact of biochar addition on the mesophilic semi-continuous anaerobic digestion of swine waste with a focus on the effects of the organic loading rate (OLR) on biogas production, methane yield, total volatile fatty acids (TVFA), alkalinity, ammonium, volatile solids (VS) removal efficiency and process stability. Four reactors, two with amended biochar (R1 and R2) and two without biochar addition as controls (R3 and R4), were operated at OLRs in the range of 2-7 g VS/(L d), which corresponded to hydraulic retention times (HRTs) in the range of 7-2 days, respectively. The addition of biochar initially caused an increase in the generation of biogas and methane when compared to the control reactors when the process operated at OLRs of 2 and 3 g VS/(L d). This behaviour could be attributed to the presence of several trace elements (such as Fe, Co, Ni and Mn) in the biochar, which are involved in the action of acetyl-CoA synthase and methyl coenzyme M reductase to catalyse key metabolic steps, especially the methanogenic stage. The pH, alkalinity, TVFA and TVFA/Alkalinity ratio values for the effluents remained within the optimal ranges for the anaerobic digestion process. It was also found that the increase in OLR in the range of 2-5 g VS/(L d) determined a proportional increase in the VS removal rate. However, when the OLR increased up to 7 g VS/(L d), a drastic decrease in the VS removal rate was found for the control reactors. Biochar amendment contributed to a more balanced state of the anaerobic process, preventing biomass washout.
Collapse
Affiliation(s)
- Enrique Sánchez
- Investment GAMMA S.A, Ministry of Science, Technology and Environment, Calle 14 Nro. 308 e/ 3ra y 5ta, La Habana, Cuba
| | - Christiane Herrmann
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Werner Maja
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Rafael Borja
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km1-41013, Sevilla, Spain.
| |
Collapse
|
6
|
Abstract
Research on natural zeolites (NZ) has increased over the years, showing potential in different areas, and many of them involve cation exchange (CE), considered one of the essential properties of NZ. This work aims to identify studies’ cognitive structure based on the cation exchange capacity (CEC) of NZ through bibliometric analysis to evaluate scientific production, growth trend, and visualization through bibliometric maps using the VOSviewer software. All types of documents and all languages indexed in Scopus from 1970 to 2020 were considered for the database, obtaining 703 documents. The results indicate an increasing trend in CE annual publications in NZ. This analysis shows the most influential authors such as Daković, Wang and Colella, while the countries that stand out are China, Turkey and the United States. Besides, the bibliometric maps made it possible to understand the intellectual structure of this academic discipline, identifying areas of current and potential interest in this field of studies such as its application in medicine, agriculture, catalysts, heavy metal removal, wastewater treatment (WWT), bioremediation and construction. Finally, these studies showed trends in science and technology studies favoring environmental remediation and human health.
Collapse
|
7
|
Elsamadony M, Mostafa A, Fujii M, Tawfik A, Pant D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. WATER RESEARCH 2021; 190:116732. [PMID: 33316662 DOI: 10.1016/j.watres.2020.116732] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inhibition of the anaerobic digestion (AD) process, caused by long chain fatty acids (LCFAs), has been considered as an important issue in the wastewater treatment sector. Proper understanding of mechanisms behind the inhibition is a must for further improvements of the AD process in the presence of LCFAs. Through analyzing recent literature, this review extensively describes the mechanism of LCFAs degradation, during AD. Further, a particular focus was directed to the key parameters which could affect such process. Besides, this review highlights the recent research efforts in mitigating LCFAs-caused inhibition, through the addition of commonly used additives such as cations and natural adsorbents. Specifically, additives such as bentonite, cation-based adsorbents, as well as zeolite and other natural adsorbents for alleviating the LCFAs-induced inhibition are discussed in detail. Further, panoramic evaluations for characteristics, various mechanisms of reaction, merits, limits, recommended doses, and preferred conditions for each of the different additives are provided. Moreover, the potential for increasing the methane production via pretreatment using those additives are discussed. Finally, we provide future horizons for the alternative materials that can be utilized, more efficiently, for both mitigating LCFAs-based inhibition and boosting methane potential in the subsequent digestion of LCFA-related wastes.
Collapse
Affiliation(s)
- Mohamed Elsamadony
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan; Tanta University, Faculty of Engineering, Public Works Engineering Department, 31521, Tanta City, Egypt.
| | - Alsayed Mostafa
- Department of Smart City Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, South Korea
| | - Manabu Fujii
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Giza, 12622, Egypt
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
8
|
Abstract
Processing of the produced primary and secondary sludge during sewage treatment is demanding and requires considerable resources. Most common practices suggest the cotreatment of primary and secondary sludge starting with thickening and anaerobic digestion. The aim of this study is to investigate the anaerobic digestion of the primary sludge only and estimate its impact on sludge treatment and energy recovery. Within this context, the performance of the anaerobic digestion of primary sludge is explored and focused on practices to further enhance the methane production by using additives, e.g., a cationic polyelectrolyte and attapulgite. The results showed that the overall yield in methane production during anaerobic digestion of primary sludge alone was higher than that obtained by the anaerobic digestion of mixed primary and secondary sludge (up to 40%), while the addition of both organic polyelectrolyte and attapulgite enhanced further the production of methane (up to 170%). Attapulgite increased the hydrolysis rate of biosolids and produced relatively stabilized digestate, though of lower dewaterability. Moreover, the results suggest that single digestion of primary sludge may accomplish higher methane production capacities at lower digestors’ volume increasing their overall efficiency and productivity, while the produced digestates are of adequate quality for further utilization mainly in agricultural or energy sectors.
Collapse
|
9
|
Cardona L, Mazéas L, Chapleur O. Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. CHEMOSPHERE 2021; 262:127932. [PMID: 32805662 DOI: 10.1016/j.chemosphere.2020.127932] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 05/22/2023]
Abstract
Zeolite addition has been widely suggested for its ability to overcome ammonia stress occurring during anaerobic digestion. However little is known regarding the underlying mechanisms of mitigation and especially how zeolite influences the microbial structuration. The aim of this study was to bring new contributions on the effect of zeolite on the microbial community arrangement under a low ammonia stress. Replicated batch experiments were conducted. The microbial population was characterised with 16S sequencing. Methanogenic pathways were identified with methane isotopic fractionation. In presence of ammonia, zeolite mitigated the decrease of biogas production rate. Zeolite induced the development of Izimaplasmatales order and preserved Peptococcaceae family members, known as propionate degraders. Moreover methane isotopic fractionation showed that hydrogenotrophic methanogenesis was maintained in presence of zeolite under ammonia low stress. Our results put forward the benefit of zeolite to improve the bacteria-archaea syntrophy needed for propionate degradation and methane production under a low ammonia stress.
Collapse
Affiliation(s)
- Laëtitia Cardona
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| |
Collapse
|
10
|
Ciezkowska M, Bajda T, Decewicz P, Dziewit L, Drewniak L. Effect of Clinoptilolite and Halloysite Addition on Biogas Production and Microbial Community Structure during Anaerobic Digestion. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4127. [PMID: 32957462 PMCID: PMC7560405 DOI: 10.3390/ma13184127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
The study presents a comparison of the influence of a clinoptilolite-rich rock-zeolite (commonly used for improving anaerobic digestion processes)-and a highly porous clay mineral, halloysite (mainly used for gas purification), on the biogas production process. Batch experiments showed that the addition of each mineral increased the efficiency of mesophilic anaerobic digestion of both sewage sludge and maize silage. However, halloysite generated 15% higher biogas production during maize silage transformation. Halloysite also contributed to a much higher reduction of chemical oxygen demand for both substrates (by ~8% for maize silage and ~14% for sewage sludge) and a higher reduction of volatile solids and total ammonia for maize silage (by ~8% and ~4%, respectively). Metagenomic analysis of the microbial community structure showed that the addition of both mineral sorbents influenced the presence of key members of archaea and bacteria occurring in a well-operated biogas reactor. The significant difference between zeolite and halloysite is that the latter promoted the immobilization of key methanogenic archaea Methanolinea (belong to Methanomicrobia class). Based on this result, we postulate that halloysite could be useful not only as a sorbent for (bio)gas treatment methodologies but also as an agent for improving biogas production.
Collapse
Affiliation(s)
- Martyna Ciezkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| |
Collapse
|
11
|
Pirsaheb M, Hossaini H, Amini J. Evaluation of a zeolite/anaerobic buffled reactor hybrid system for treatment of low bio-degradable effluents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109943. [PMID: 31500025 DOI: 10.1016/j.msec.2019.109943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/16/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
The main objective of this work was to reduce the inhibitory effects of high contents of organics, ammonia, and heavy metals in an anaerobic buffled reactor (ABR), and to prevent the sludge wash-out using zeolites as media. In this work, a pilot scale of ABR with 8 compartments and a working volume of 14.4 L was used, and the last four ABR compartments were filled with a zeolite. The bioreactor was operated at HRTs of 3, 4, and 5 days, zeolite filling ratios of 10, 20, and 30%, and influent chemical oxygen demand (COD) concentrations of 10,000, 20,000, and 30,000 mg/L. The results obtained showed that the maximum removal efficiencies of COD and BOD5 reached 78 and 68%, respectively. The maximum removal was observed at a HRT of 5 days, a 30% medium filling ratio, and a COD of 10,000 mg/L. Increasing the filling ratio in the reactor increased the removal efficiencies of COD and BOD5 but increasing the concentration of the influent COD and decreasing HRT reduced the removal efficiency of the reactor. The initial BOD5/COD ratio was equal to 0.36, which increased by 46% when the medium filling ratio was elevated to 30%. The maximum biogas yield was 0.23 L/g of CODRemoved, and the specific methanogenic activity test verified the toxicity effect of the leachate on the gas-producer organisms. The results of scanning electronic microscopy and EDS showed that the zeolite medium immobilized the microorganisms and a biofilm was formed. Also the zeolite, as a well-known ion exchanger, decreased the concentrations of the major inhibitors (ammonia and heavy metals) and improved the reactor efficiency.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hiwa Hossaini
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jila Amini
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R. Stability improvement of algal-alginate beads by zeolite molecular sieves 13X. Int J Biol Macromol 2019; 132:592-599. [PMID: 30922914 DOI: 10.1016/j.ijbiomac.2019.03.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
This research aimed to improve the stability of Chlorella-Alginate Beads (CABs) by zeolite molecular sieves 13X. Dissolution time of synthesized Zeolite-Algal-Alginate Beads (ZABs) in a chelating agent revealed a significant improvement on the beads stability (78.5 ± 0.5 min) compared to the control beads (51.5 ± 0.5 min) under the optimum conditions of zeolite/alginate (1.5:1), pH 5 and 2% of beads. Monitoring cell growth during 5 days of incubation showed good biocompatibility of zeolite 13X. Scanning electron microscopy (SEM) indicated rough surface and spherical shapes of ZABs. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) of ZABs confirmed the presence of zeolite 13X within the matrix. The zeta potential value of ZABs indicated that the beads were relatively stable. The findings of this research showed that zeolite molecular sieves 13X have the potential to improve the stability of algal-alginate beads compared to common beads.
Collapse
Affiliation(s)
- Seyed Amirebrahim Emami Moghaddam
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Rabitah Zakaria
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Potential of Zeolite and Algae in Biomass Immobilization. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6563196. [PMID: 30643814 PMCID: PMC6311242 DOI: 10.1155/2018/6563196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
Abstract
The interest in utilizing algae for wastewater treatment has been increased due to many advantages. Algae-wastewater treatment system offers a cost-efficient and environmentally friendly alternative to conventional treatment processes such as electrocoagulation and flocculation. In this biosystem, algae can assimilate nutrients in the wastewater for their growth and simultaneously capture the carbon dioxide from the atmosphere during photosynthesis resulting in a decrease in the greenhouse gaseousness. Furthermore, the algal biomass obtained from the treatment process could be further converted to produce high value-added products. However, the recovery of free suspended algae from the treated effluent is one of the most important challenges during the treatment process as the current methods such as centrifugation and filtration are faced with the high cost. Immobilization of algae is a suitable approach to overcome the harvesting issue. However, there are some drawbacks with the common immobilization carriers such as alginate and polyacrylamide related to low stability and toxicity, respectively. Hence, it is necessary to apply a new carrier without the mentioned problems. One of the carriers that can be a suitable candidate for the immobilization is zeolite. To date, various types of zeolite have been used for the immobilization of cells of bacteria and yeast. If there is any possibility to apply them for the immobilization of algae, it needs to be considered in further studies. This article reviews cell immobilization technique, biomass immobilization onto zeolites, and algal immobilization with their applications. Furthermore, the potential application of zeolite as an ideal carrier for algal immobilization has been discussed.
Collapse
|
14
|
Wang T, Qin Y, Cao Y, Han B, Ren J. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22371-22381. [PMID: 28801857 DOI: 10.1007/s11356-017-9859-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.
Collapse
Affiliation(s)
- Tongyu Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
| | - Yan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Bin Han
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Junyi Ren
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
15
|
Montalvo S, Prades H, González M, Pérez P, Guerrero L, Huiliñir C. ANAEROBIC DIGESTION OF WASTEWATER WITH HIGH SULFATE CONCENTRATION USING MICRO-AERATION AND NATURAL ZEOLITES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160334s20150261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - H. Prades
- Universidad de Santiago de Chile, Chile
| | | | - P. Pérez
- Universidad de Santiago de Chile, Chile
| | - L. Guerrero
- Universidad Técnica Federico Santa María, Chile
| | | |
Collapse
|
16
|
Linville JL, Shen Y, Urgun-Demirtas M, Snyder SW. Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Xu S, He C, Luo L, Lü F, He P, Cui L. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. BIORESOURCE TECHNOLOGY 2015; 196:606-12. [PMID: 26298405 DOI: 10.1016/j.biortech.2015.08.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/03/2015] [Accepted: 08/08/2015] [Indexed: 05/28/2023]
Abstract
Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load.
Collapse
Affiliation(s)
- Suyun Xu
- Department of Environment & Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Chuanqiu He
- Department of Environment & Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liwen Luo
- Department of Environment & Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Lifeng Cui
- Department of Environment & Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
18
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
19
|
Huiliñir C, Montalvo S, Guerrero L. Biodegradability and methane production from secondary paper and pulp sludge: effect of fly ash and modeling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:230-237. [PMID: 26177405 DOI: 10.2166/wst.2015.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.
Collapse
Affiliation(s)
- César Huiliñir
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile E-mail:
| | - Silvio Montalvo
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile E-mail:
| | - Lorna Guerrero
- Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa Marıa, Valparaıso, Chile
| |
Collapse
|
20
|
Montalvo S, Martin JS, Huiliñir C, Guerrero L, Borja R. Assessment of a UASB reactor with high ammonia concentrations: Effect of zeolite addition on process performance. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Mumme J, Srocke F, Heeg K, Werner M. Use of biochars in anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 164:189-97. [PMID: 24859210 DOI: 10.1016/j.biortech.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 05/16/2023]
Abstract
This study investigated the behavior of biochars from pyrolysis (pyrochar) and hydrothermal carbonization (hydrochar) in anaerobic digestion regarding their degradability and their effects on biogas production and ammonia inhibition. A batch fermentation experiment (42°C, 63 days) was conducted in 100mL syringes filled with 30 g inoculum, 2g biochar and four levels of total ammonium nitrogen (TAN). For pyrochar, no clear effect on biogas production was observed, whereas hydrochar increased the methane yield by 32%. This correlates with the hydrochar's larger fraction of anaerobically degradable carbon (10.4% of total carbon, pyrochar: 0.6%). Kinetic and microbiota analyses revealed that pyrochar can prevent mild ammonia inhibition (2.1 g TANk g(-1)). Stronger inhibitions (3.1-6.6 g TAN kg(-1)) were not mitigated, neither by pyrochar nor by hydrochar. Future research should pay attention to biochar-microbe interactions and the effects in continuously-fed anaerobic digesters.
Collapse
Affiliation(s)
- Jan Mumme
- APECS Group, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Franziska Srocke
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Kathrin Heeg
- APECS Group, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Maja Werner
- APECS Group, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
22
|
Lin L, Wan C, Liu X, Lei Z, Lee DJ, Zhang Y, Tay JH, Zhang Z. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Appl Microbiol Biotechnol 2013; 97:10575-83. [DOI: 10.1007/s00253-013-5313-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
23
|
Weiß S, Lebuhn M, Andrade D, Zankel A, Cardinale M, Birner-Gruenberger R, Somitsch W, Ueberbacher BJ, Guebitz GM. Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes? Appl Microbiol Biotechnol 2013; 97:3225-38. [PMID: 23435898 DOI: 10.1007/s00253-013-4691-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.
Collapse
Affiliation(s)
- S Weiß
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Siqueira LM, Damiano ESG, Silva EL. Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1707-1716. [PMID: 23947710 DOI: 10.1080/10934529.2013.815535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study evaluated an anaerobic fluidized bed reactor (AFBR) that contained polystyrene particles as a support material for the treatment of vinasse that resulted from the alcoholic fermentation of sugarcane molasses. The AFBR was inoculated with sludge from an upflow anaerobic sludge blanket reactor that treated poultry slaughterhouse wastewater. The AFBR was operated with a hydraulic retention time of 24 h at a temperature of 30°C with influent vinasse concentrations that ranged from 2273 to 20,073 mg COD L(-1). The reactor was subjected to increased organic loading rates (OLR) that ranged from 3.33 to 26.19 kg COD m(-3) d(-1), with COD removal efficiencies that ranged from 51% to 70% and maximum removal at an OLR of 13.93 ± 2.18 kg COD m(-3) d(-1). The maximum biogas productivity was 5.37 m(3) CH4 m(-3) d(-1) for an OLR of 25.32 kg COD m(-3) d(-1) (average removal of 51%)..
Collapse
Affiliation(s)
- Laura M Siqueira
- a Department of Chemical Engineering , Federal University of São Carlos , São Carlos , Brazil
| | | | | |
Collapse
|
25
|
Guerrero L, Van Diest F, Barahona A, Montalvo S, Borja R. Influence of the type and source of inoculum on the start-up of anammox sequencing batch reactors (SBRs). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1301-1310. [PMID: 23647121 DOI: 10.1080/10934529.2013.777268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anammox (anaerobic ammonium oxidation) is an attractive option for the treatment of wastewaters with a low carbon/nitrogen ratio. This is due to its low operating costs when compared to the classical nitrification-denitrification processes. However, one of the main disadvantages of the Anammox process is slow biomass growth, meaning a relatively slow reactor start-up. This becomes even more complicated when Anammox microorganisms are not present in the inoculum. Four inocula were studied for the start-up of Anammox sequencing batch reactors (SBRs) 2 L in volume agitated at 100 rpm, one of them using zeolite as a microbial support. Two inocula were taken from UASB reactors and two from aerobic reactors (activated sludge and SBR). The Anammox SBRs studied were operated at 36 ± 0.5°C. The results showed that the only inoculum that enabled the enrichment of the Anammox biomass came from an activated sludge plant treating wastewaters from a poultry slaughterhouse. This plant was designed for organic matter degradation and nitrogen removal (nitrification). This could explain the presence of Anammox microorganisms. This SBR operated without zeolite and achieved nitrite and ammonium removals of 96.3% and 68.4% respectively, at a nitrogen loading rate (NLR) of 0.1 kg N/m(3)/d in both cases. The lower ammonium removal was due to the fact that a sub-stoichiometric amount of nitrite (1 molar ratio) was fed. The specific Anammox activity (SAA) achieved was 0.18 g N/g VSS/d.
Collapse
Affiliation(s)
- Lorna Guerrero
- Department of Chemical and Environmental Engineering, Federico Santa María Technical University, Valparaiso, Chile
| | | | | | | | | |
Collapse
|
26
|
Ahammad SZ, Davenport RJ, Read LF, Gomes J, Sreekrishnan TR, Dolfing J. Rational immobilization of methanogens in high cell density bioreactors. RSC Adv 2013. [DOI: 10.1039/c2ra21901h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Ho L, Ho G. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. WATER RESEARCH 2012; 46:4339-4350. [PMID: 22739499 DOI: 10.1016/j.watres.2012.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/29/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite treatment. The outcomes from these batch experiments support the use of pH reduction to 6.5 and zeolite treatment (10-20 g/L) as effective strategies to mitigate ammonia inhibition of the thermophilic anaerobic treatment of piggery wastewater.
Collapse
Affiliation(s)
- L Ho
- School of Environmental Science, Murdoch University, 90 South Street, Murdoch, Perth WA 6163, Australia.
| | | |
Collapse
|
28
|
Adu-Gyamfi N, Ravella SR, Hobbs PJ. Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production. BIORESOURCE TECHNOLOGY 2012; 120:248-255. [PMID: 22820114 DOI: 10.1016/j.biortech.2012.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Maximizing methane production while maintaining an appreciable level of process stability is a crucial challenge in the anaerobic digestion industry. In this study, the role of six parameters: the type of immobilizing supports, loading rate, inoculum levels, C:N ratio, trace nutrients concentrations and mixing rate, on methane production were investigated under thermophilic conditions (55 ± 1°C) with synthetic substrate medium. The immobilizing supports were Silica gel, Sand, Molecular Sieve and Dowex Marathon beads. A Taguchi Design of Experiment (DOE) methodology was employed to determine the effects of different parameters using an L(16) orthogonal array. Overall, immobilizing supports influenced methane production substantially (contributing 61.3% of the observed variation in methane yield) followed by loading rate and inoculum which had comparable influence (17.9% and 17.7% respectively). Optimization improved methane production by 153% (from 183 to 463 ml CH(4)l(-1)d(-1)).
Collapse
|
29
|
Treatment of mezcal vinasses: A review. J Biotechnol 2012; 157:524-46. [DOI: 10.1016/j.jbiotec.2011.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/05/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
|
30
|
Montalvo S, Gonzalez P, Mena C, Guerrero L, Borja R. Influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes with and without zeolite addition. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1785-1794. [PMID: 22755525 DOI: 10.1080/10934529.2012.689235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The main objective of this work was to evaluate the influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes carried out with and without zeolite addition as a microbial carrier. Three laboratory-scale experimental runs were conducted using a synthetic substrate with a COD:N:P ratio of 500:5:1. The first run (I) was conducted at a constant temperature of 27°C, increasing the F/M ratio from 0.21 to 0.40 (g COD/g VSS). During the second run (II) the temperature and the F/M ratio increased from 27°C to 37°C and from 0.21 to 0.40, respectively. Finally, in the third experimental run (III) the F/M ratio achieved high values (1.92 and 1.30) either by varying the substrate concentration at a constant biomass concentration or by increasing the biomass concentration at a constant substrate concentration. Higher biomass growth rate, COD removal and methane production were found in the reactors with zeolite, especially at the highest F/M assayed during the first run. The highest ammonium removals were also achieved at the highest F/M ratio (0.40) in the reactors with zeolite. Within the range studied (25°C-37°C) in the reactors with zeolite operating at 37°C, the second run demonstrated the low influence of temperature on substrate consumption and ammonia removal, with 93% and 70% of COD and ammonia removal efficiencies, respectively. The third run corroborated the results previously obtained and fit the experimental results to simple kinetic models, the Monod model being the most adequate for predicting the behavior of the systems studied. The maximum specific microorganism growth rate (μ(max)) values for the reactors with zeolite were almost twice as high as those obtained for the reactors without zeolite for similar F/M ratios.
Collapse
Affiliation(s)
- S Montalvo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile
| | | | | | | | | |
Collapse
|
31
|
Mery C, Guerrero L, Alonso-Gutiérrez J, Figueroa M, Lema JM, Montalvo S, Borja R. Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors: influence of zeolite particle size. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:420-427. [PMID: 22320694 DOI: 10.1080/10934529.2012.646129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An evaluation of natural zeolite as a microorganism carrier in nitrifying reactors operated in batch mode was carried out. Specifically, the influence of zeolite particle sizes of 0.5, 1.0 and 2.0 mm in diameter on microorganism adherence to zeolite, ammonium adsorption capacity and the identification of microbial populations were assessed. The greatest amount of total biomass adhered was observed for a zeolite particle size of 1 mm (0.289 g) which was achieved on the 12th day of operation. The highest ammonium adsorption capacity was observed for a zeolite particle size of 0.5 mm, which was 64% and 31% higher than that observed for particle sizes of 1.0 and 2.0 mm, respectively. The maximum de-sorption values were also found for a zeolite particle size of 0.5 mm, although when equilibrium was reached the ammonium concentrations were similar to those observed for a zeolite particle size of 1.0 mm. It was also found that the experimental data on ammonium adsorption fitted very well to the Freundlich isotherm for the three particle sizes studied. Finally, the nitrifying reactors showed similar microbial populations independently of the particle size used as microorganism carrier. The dominant bacterial community was Gammaproteobacteria making up 80% of the total population found. Betaproteobacteria were also identified and made up 12% approx. of the total population. Ammonium Oxidant Betaproteobacteria and Nitrobacter were also detected.
Collapse
Affiliation(s)
- C Mery
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
32
|
Smith DP. Chabazite biofilter for enhanced stormwater nitrogen removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:373-384. [PMID: 21553593 DOI: 10.2175/106143010x12851009156123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Enhanced nitrogen removal from stormwater using chabazite, a natural cation exchanger, was evaluated in a pilot-plant biofilter operated for 216 days. A parallel sand filter served as the control. The biofilters were subject to various operating modes including baseline periods of steady flowrate and loading, simulated high flowrate (storm) events following steady flowrates, high flowrates following extended no-flow periods, and with limited influent dissolved oxygen. Under steady-flow operation, chabazite removed 93% of ammonium and sand removed 87%; total inorganic nitrogen was reduced 35% by chabazite versus 15% by sand. In a simulated storm event following steady-flow operation, 97% of cumulative ammonia mass was retained by the chabazite biofilter versus 70% for sand. Following a 40 day no-flow period, the chabazite biofilter retained 98% of influent ammonium in a storm event while sand exhibited high effluent ammonium. Chabazite ammonium retention was high under limited influent dissolved oxygen, verses significant breakthrough by the sand biofilter. Chabazite media provided superior performance resiliency under dynamic conditions that typify stormwater treatment.
Collapse
Affiliation(s)
- Daniel P Smith
- Applied Environmental Technology, 10809 Cedar Cove Drive, Tampa, FL 33592-2250, USA.
| |
Collapse
|
33
|
Weiss S, Zankel A, Lebuhn M, Petrak S, Somitsch W, Guebitz GM. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. BIORESOURCE TECHNOLOGY 2011; 102:4353-4359. [PMID: 21277767 DOI: 10.1016/j.biortech.2010.12.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/18/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated.
Collapse
Affiliation(s)
- S Weiss
- Department of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
34
|
A study on using fireclay as a biomass carrier in an activated sludge system. J Ind Microbiol Biotechnol 2010; 38:209-13. [DOI: 10.1007/s10295-010-0846-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
35
|
Milan Z, Montalvo S, Ruiz-Tagle N, Urrutia H, Chamy R, Sanchez E, Borja R. Influence of heavy metal supplementation on specific methanogenic activity and microbial communities detected in batch anaerobic digesters. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1307-1314. [PMID: 20658410 DOI: 10.1080/10934529.2010.500878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Natural and modified zeolites (0.5-1.0 mm) from the Tasajera deposit in Cuba were used to enhance the anaerobic digestion process of synthetic substrates. Natural zeolites were modified by ionic exchange and by adsorption with nickel, cobalt and magnesium. The experiments were carried out by using an inoculum from a full-scale anaerobic reactor treating winery wastewater. Modified natural zeolites not only enhanced the anaerobic digestion process, but also increased the specific methanogenic activity (SMA) of the sludges. The textural and chemical surface characteristics of the modified zeolites were related to the process performance, volatile fatty acid (VFA) production and microbial communities found in the digesters. For the selected dose of modified zeolites [0.05 g/g of volatile suspended solids (VSS)], the lowest concentration was found for cobalt followed by nickel and magnesium. Based on the analyses of anaerobic biofilms, the heavy metal incorporated into the zeolite was shown to have a great influence on the predominance of species. For example, the presence of nickel and cobalt favoured Methanosaeta, while at the same dose magnesic zeolite stimulated the presence of Methanosarcina and sulfate-reducing bacteria (SRB). In digesters with modified zeolites and metal supplementations the values of SMA were higher than those obtained in the control and natural zeolite digesters.
Collapse
Affiliation(s)
- Z Milan
- Pontificia Universidad Catolica de Valparaiso, Chile
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang W, Xie Q, Rouse JD, Qiao S, Furukawa K. Treatment of high-strength corn steep liquor using cultivated Polyvinyl alcohol gel beads in an anaerobic fluidized-bed reactor. J Biosci Bioeng 2009; 107:49-53. [DOI: 10.1016/j.jbiosc.2008.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
|
37
|
Montalvo S, Guerrero L, Borja R, Cortés I, Sánchez E, Colmenarejo MF. Treatment of wastewater from red and tropical fruit wine production by zeolite anaerobic fluidized bed reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:437-442. [PMID: 18576225 DOI: 10.1080/03601230802062281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35 degrees C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44-46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%-86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.
Collapse
Affiliation(s)
- S Montalvo
- Department of Chemical Engineering, University of Santiago de Chile, Santiago de Chile, Chile
| | | | | | | | | | | |
Collapse
|