1
|
Karimi H, Mohammadi F, Rajabi S, Mahvi AH, Ghanizadeh G. Biological 2,4,6-trinitrotoluene removal by extended aeration activated sludge: optimization using artificial neural network. Sci Rep 2023; 13:9053. [PMID: 37270572 DOI: 10.1038/s41598-023-34657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
Serious health issues can result from exposure to the nitrogenous pollutant like 2,4,6-trinitrotoluene (TNT), which is emitted into the environment by the munitions and military industries, as well as from TNT-contaminated wastewater. The TNT removal by extended aeration activated sludge (EAAS) was optimized in the current study using artificial neural network modeling. In order to achieve the best removal efficiency, 500 mg/L of chemical oxygen demand (COD), 4 and 6 h of hydraulic retention time (HRT), and 1-30 mg/L of TNT were used in this study. The kinetics of TNT removal by the EAAS system were described by the calculation of the kinetic coefficients K, Ks, Kd, max, MLSS, MLVSS, F/M, and SVI. Adaptive neuro fuzzy inference system (ANFIS) and genetic algorithms (GA) were used to optimize the data obtained through TNT elimination. ANFIS approach was used to analyze and interpret the given data, and its accuracy was around 97.93%. The most effective removal efficiency was determined using the GA method. Under ideal circumstances (10 mg/L TNT concentration and 6 h), the TNT removal effectiveness of the EAAS system was 84.25%. Our findings demonstrated that the artificial neural network system (ANFIS)-based EAAS optimization could enhance the effectiveness of TNT removal. Additionally, it can be claimed that the enhanced EAAS system has the ability to extract wastewaters with larger concentrations of TNT as compared to earlier experiments.
Collapse
Affiliation(s)
- Hossein Karimi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Rajabi
- Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Mahvi
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghader Ghanizadeh
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Stein N, Podder A, Goel R. Biodegradation of insensitive munition (IM) formulations: IMX-101 and IMX-104 using aerobic granule technology. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130942. [PMID: 36801711 DOI: 10.1016/j.jhazmat.2023.130942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A laboratory-scale aerobic granular sludge (AGS) sequencing batch bioreactor (SBR) was initiated in this study for the biodegradation of hazardous insensitive munition (IM) formulation constituents; 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1-nitroguanidine (NQ), and 3-nitro-1,2,4-triazol-5-one (NTO). Efficient (bio)transformation of the influent DNAN and NTO was achieved throughout reactor operation with removal efficiencies greater than 95%. An average removal efficiency of 38.4 ± 17.5% was recorded for RDX. NQ was only slightly removed (3.96 ± 4.15%) until alkalinity was provided in the influent media, which subsequently increased the NQ removal efficiency up to an average of 65.8 ± 24.4%. Batch experiments demonstrated a competitive advantage for aerobic granular biofilms over flocculated biomass for the (bio)transformation DNAN, RDX, NTO, and NQ, as aerobic granules were capable of reductively (bio)transforming each IM compound under bulk aerobic conditions while flocculated biomass could not, thus demonstrating the contribution of inner oxygen-free zones within aerobic granules. A variety of catalytic enzymes were identified in the extracellular polymeric matrix of the AGS biomass. 16 S rDNA amplicon sequencing found Proteobacteria (27.2-81.2%) to be the most abundant phyla, with many genera associated with nutrient removal as well as genera previously described in relation to the biodegradation of explosives or related compounds.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Synthesis of Magnetic Fe 3O 4 Nano Hollow Spheres for Industrial TNT Wastewater Treatment. NANOMATERIALS 2022; 12:nano12050881. [PMID: 35269369 PMCID: PMC8912354 DOI: 10.3390/nano12050881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022]
Abstract
The aim of the present work was to synthesize magnetite (Fe3O4) nano hollow spheres (NHS) via simple, one-pot, template-free, hydrothermal method. The structural, morphological, and surface analysis of Fe3O4 NHS were studied by scanning electron microscopy (SEM), x-ray diffraction technique (XRD), Fourier transform infrared spectroscopy FTIR and burner-Emmett-teller (BET). The as obtained magnetic (Fe3O4) NHS were used as an adsorbent for treating industrial trinitrotoluene (TNT) wastewater to reduce its Chemical Oxygen Demand (COD) values. Adsorption capacity (Qe) of the NHS obtained is 70 mg/g, confirming the attractive forces present between adsorbent (Fe3O4 NHS) and adsorbate (TNT wastewater). COD value of TNT wastewater was reduced to >92% in 2 h at room temperature. The adsorption capacity of Fe3O4 NHS was observed as a function of time, initial concentration, pH, and temperature. The applied Fe3O4 NHS was recovered for reuse by simply manipulating its magnetic properties with slight shift in pH of the solution. A modest decrease in Qe (5.0−15.1%) was observed after each cycle. The novel Fe3O4 NHS could be an excellent candidate for treating wastewater generated by the intermediate processes during cyclonite, cyclotetramethylene-tetranitramine (HMX), nitroglycerin (NG) production and other various environmental pollutants/species.
Collapse
|
5
|
Zheng CW, Long M, Luo YH, Long X, Bi Y, Zhou D, Zhou C, Rittmann BE. Reductive destruction of multiple nitrated energetics over palladium nanoparticles in the H 2-based membrane catalyst-film reactor (MCfR). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127055. [PMID: 34523494 DOI: 10.1016/j.jhazmat.2021.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrated energetics are widespread contaminants due to their improper disposal from ammunition facilities. Different classes of nitrated energetics commonly co-exist in ammunition wastewater, but co-removal of the classes has hardly been documented. In this study, we evaluated the catalytic destruction of three types of energetics using palladium (Pd0) nano-catalysts deposited on H2-transfer membranes in membrane catalyst-film reactors (MCfRs). This work documented nitro-reduction of 2,4,6-trinitrotoluene (TNT), as well as, for the first time, denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and pentaerythritol tetranitrate (PETN) over Pd0 at ambient temperature. The catalyst-specific activity was 20- to 90-fold higher than reported for other catalyst systems. Nitrite (NO2-) released from RDX and PETN also was catalytically reduced to dinitrogen gas (N2). Continuous treatment of a synthetic wastewater containing TNT, RDX, and PETN (5 mg/L each) for more than 20 hydraulic retention times yielded removals higher than 96% for all three energetics. Furthermore, the concentrations of NO2- and NH4+ were below the detection limit due to subsequent NO2- reduction with > 99% selectivity to N2. Thus, the MCfR provides a promising strategy for sustainable catalytic removal of co-existing energetics in ammunition wastewater.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Yuqiang Bi
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Zhang X, Chen S, Lian X, Dong S, Li H, Xu K. Efficient activation of peroxydisulfate by g-C 3N 4/Bi 2MoO 6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes. J Colloid Interface Sci 2021; 607:684-697. [PMID: 34530189 DOI: 10.1016/j.jcis.2021.08.198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
Persulfate-assisted photocatalysis technology is considered to be a promising method for the rapid and efficient degradation of organic pollutants in water environment remediation. In this study, a novel g-C3N4/Bi2MoO6/PDS (CN/BMO/PDS) system is constructed and applied in 2,4-dinitrophenylhydrazine (2,4-DPH) degradation under visible light irradiation. Compared with the CN/BMO system, the degradation rate of 2,4-DPH is significantly improved from 59.7% to 90.2% within 60 min in the combined CN/BMO/PDS system. The enhanced performance can be attributed to the superior synergetic effects of CN/BMO, PDS and visible light irradiation. More importantly, singlet oxygen (1O2) is determined as the main reactive species based on the radical scavenging experiments and electron paramagnetic resonance (EPR), which indicates that the combined system can achieve non-radical oxidative degradation of pollutants, instead of the traditional radical oxidation process. In addition, the active sites of the reaction during the non-radical 1O2 oxidation are calculated by density functional theory (DFT), and the stability and reusability of catalyst are also investigated. In brief, the CN/BMO/PDS system has great application potential for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, China
| | - Suhang Chen
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, China.
| | - Xiaoyan Lian
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, China
| | - Shuai Dong
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, China
| | - Hui Li
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Kangzhen Xu
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Radiolytic degradation of explosives in aqueous solutions and ‘red’ wastewater. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Duc HD. Anaerobic degradation of 2-chloro-4-nitroaniline by Geobacter sp. KT7 and Thauera aromatica KT9. FEMS Microbiol Lett 2019; 366:5548772. [DOI: 10.1093/femsle/fnz174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
2-chloro-4-nitroaniline is a nitroaromatic compound widely used in industrial and agricultural sectors, causing serious environmental problems. This compound and some of its analogs were utilized by two Fe3+-reducing microbial strains Geobacter sp. KT7 and Thauera aromatica KT9 isolated from contaminated sediment as sole carbon and nitrogen sources under anaerobic conditions. The anaerobic degradation of 2-chloro-4-nitroaniline by the mixed species was increased approximately by 45% compared to that of individual strains. The two isolates’ crossfeeding, nutrient sharing and cooperation in the mixed culture accounted for the increase in degradation rates. The determination of degradation pathways showed that Geobacter sp. KT7 transformed the nitro group in 2-chloro-4-nitroaniline to the amino group following by the dechlorination process, while T. aromatica KT9 dechlorinated the compound before removing the nitro group and further transformed it to aniline. This study provided an intricate network of 2-chloro-4-nitroaniline degradation in the bacterial mixture and revealed two parallel routes for the substrate catabolism.
Collapse
Affiliation(s)
- Ha Danh Duc
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
9
|
Chen L, Lei Z, Luo X, Wang D, Li L, Li A. Biological Degradation and Transformation Characteristics of Total Petroleum Hydrocarbons by Oil Degradation Bacteria Adsorbed on Modified Straw. ACS OMEGA 2019; 4:10921-10928. [PMID: 31460190 PMCID: PMC6648725 DOI: 10.1021/acsomega.9b00906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 05/23/2023]
Abstract
We report a simple and "green" method for the fabrication of polymer-modified straw-supported oil degradation bacteria (PMS-ODB) for biological degradation of total petroleum hydrocarbons (TPHs) in water. The modification of straw was achieved by in situ copolymerization of styrene and butyl methacrylate using methylene-bis-acrylamide as a cross-linker in an aqueous solution containing straw powders. Compared with the control group (ODB loaded on untreated straw), the results obtained from the experimental group show that the polymer-modified straw is beneficial to the growth of microorganisms. As a result, the degradation rate of TPHs reaches 90.12%, which is 50.54 and 7.08% higher than that of the blank group (ODB only) and the control group, respectively. A study on the transformation characteristics of PMS-ODB shows that the degradation rate of alkanes with low, medium, and high carbon number is higher than 90%. w(∑C21-)/w(∑C22+) (the mass ratio of normal alkanes of high carbon/low carbon), w(pr)/w(ph) (the ratio of pristane/phytane), and OEP (the mass ratio of normal alkanes of odd carbon/even carbon) for TPHs in the experimental group were measured to be 0.6186, 0.7248, and 1.4356, respectively, all of which are the largest value among the blank group, control group, and experimental group. These findings indicate that compared with the control group, the modification of straw could enhance the comprehensive biological degradation performance for TPHs, even those highly stable organics, such as carbon n-alkanes and isoprenoid hydrocarbon, which may open a new possibility for degradation of oils or toxic organics in an enhanced biological manner.
Collapse
Affiliation(s)
- Lihua Chen
- School
of Chemical Engineering and Center of Experiment, Northwest
Minzu University, Lanzhou 730030, P. R China
| | - Zhongchun Lei
- School
of Chemical Engineering and Center of Experiment, Northwest
Minzu University, Lanzhou 730030, P. R China
| | - Xiaofang Luo
- School
of Chemical Engineering and Center of Experiment, Northwest
Minzu University, Lanzhou 730030, P. R China
| | - Dongmei Wang
- School
of Chemical Engineering and Center of Experiment, Northwest
Minzu University, Lanzhou 730030, P. R China
| | - Li Li
- School
of Chemical Engineering and Center of Experiment, Northwest
Minzu University, Lanzhou 730030, P. R China
| | - An Li
- Department
of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
10
|
Maksimova YG, Maksimov AY, Demakov VA. Biotechnological Approaches to the Bioremediation of an Environment Polluted with Trinitrotoluene. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818080045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gordon D, Nawała J, Szala M, Dziedzic D, Dawidziuk B, Popiel S. Development of analytical methods used for the study of 2,4,6-trinitrotoluene degradation kinetics in simulated sediment samples from the Baltic Sea. MARINE POLLUTION BULLETIN 2018; 135:397-410. [PMID: 30301051 DOI: 10.1016/j.marpolbul.2018.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of ammunition containing 2,4,6-trinitrotoluene (TNT) and other substances were dumped in the Baltic Sea after WWII. Considering progressive corrosion processes, studying the transformation of TNT occurring in the environment constitutes an important aspect of a possible associated risk. This study focused on the transformations of TNT in simulated conditions of the Baltic Sea bottom sediment. Methods of analysis of TNT and selected products of its transformations were developed for that purpose. The developed methods allowed for the determination of selected compounds below 1 ng/g. Systematic monitoring of TNT transformations in the environment of the bottom sediment was performed. This allowed for the determination of the kinetics of TNT degradation and identification of degradation reaction products. Based on the obtained results, the TNT decay half-time in conditions present in the Baltic Sea was estimated to be 16.7 years for the abiotic environment and 5.6 for the biotic environment.
Collapse
Affiliation(s)
- Diana Gordon
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland
| | - Jakub Nawała
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland.
| | - Mateusz Szala
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland
| | - Daniel Dziedzic
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland
| | - Barbara Dawidziuk
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland
| | - Stanisław Popiel
- Military University of Technology, Institute of Chemistry, Gen. W. Urbanowicza 2, 00-908 Warsaw, Poland
| |
Collapse
|
12
|
Sviatenko LK, Gorb L, Hill FC, Leszczynska D, Leszczynski J. Structure and electrochemical properties for complexes of nitrocompounds with inorganic ions: A theoretical approach. J Comput Chem 2016; 37:1206-13. [PMID: 26813584 DOI: 10.1002/jcc.24310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/22/2015] [Accepted: 01/06/2016] [Indexed: 11/07/2022]
Abstract
Reduction and oxidation (redox) reactions are widely used for removal of nitrocompounds from contaminated soil and water. Structures and redox properties for complexes of nitrocompounds, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), with common inorganic ions (Na(+) , Cl(-) , NO3-) were investigated at the SMD(Pauling)/PCM(Pauling)/MPWB1K/TZVP level of theory. Atoms in molecules (AIM) theory was applied to analyze the topological properties of the bond critical points involved in the interactions between the nitrocompounds and the ions. Topological analyses show that intermolecular interactions of the types O(N)…Na(+) , C-H…Cl(-) ( ONO2-), and C…Cl(-) ( ONO2-) may be discussed as noncovalent closed-shell interactions, while N-H···Cl(-) ( ONO2-) hydrogen bonds are partially covalent in nature. Complexation causes significant decrease of redox activity of the nitrocompounds. Analysis of the reduction potentials of the complexes obtained through application of the Pourbaix diagram of an iron/water system revealed that sodium complexes of NTO might be reduced by metallic iron. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liudmyla K Sviatenko
- Department of Chemistry and Biochemistry, Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, Mississippi, 39217
- Department of Organic Chemistry, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine, 49010
| | | | | | - Danuta Leszczynska
- Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, Mississippi, 39217
| | - Jerzy Leszczynski
- Department of Chemistry and Biochemistry, Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, Mississippi, 39217
| |
Collapse
|
13
|
Yang GCC, Huang SC, Jen YS, Tsai PS. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process. CHEMOSPHERE 2016; 150:576-585. [PMID: 26733014 DOI: 10.1016/j.chemosphere.2015.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment.
Collapse
Affiliation(s)
- Gordon C C Yang
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Sheng-Chih Huang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC.
| | - Yu-Sheng Jen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Shin Tsai
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
14
|
Transformation pathway of 2,4,6-trinitrotoluene by Escherichia coli nitroreductases and improvement of activity using structure-based mutagenesis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Impact of sorption functional media (SFM) from zeolite tailings on the removal of ammonia nitrogen in a biological aerated filter. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Stoll ZA, Forrestal C, Ren ZJ, Xu P. Shale gas produced water treatment using innovative microbial capacitive desalination cell. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:847-855. [PMID: 25464328 DOI: 10.1016/j.jhazmat.2014.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/08/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.
Collapse
Affiliation(s)
| | | | | | - Pei Xu
- New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
17
|
Dvořák L, Lederer T, Jirků V, Masák J, Novák L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments. ENVIRONMENTAL SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-319-01083-0_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Liu GH, Ye Z, Tong K, Zhang YH. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Meng Q, Song K, Zhao Q, Ye Z. Removal of nitro aromatic compounds and sulfite acid from distillate of 2,4,6-trinitrotoluene red water using modified porous polystyrene microspheres. J Appl Polym Sci 2012. [DOI: 10.1002/app.37545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Wang ZY, Ye ZF, Zhang MH. Bioremediation of 2,4-dinitrotoluene (2,4-DNT) in immobilized micro-organism biological filter. J Appl Microbiol 2011; 110:1476-84. [DOI: 10.1111/j.1365-2672.2011.04997.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ji G, Tong J, Tan Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. BIORESOURCE TECHNOLOGY 2011; 102:550-557. [PMID: 20797854 DOI: 10.1016/j.biortech.2010.07.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
A multi-media biological aerated filter (MBAF) with clinoptilolite media was used to treat synthetic wastewater. Coal ash bioceramsite with supplemental metallic iron was added to the clinoptilolite media of MBAFs in a brick-wall embedded design. Performance parameters, such as hydraulic, organic, N and P loading capacity and microbial community composition were studied for different quantity of supplemental metallic iron contained in three MBAFs. The MBAFs with more metallic iron were found to have superior hydraulic and organic loading, and higher N and P capacities. COD, NH3-N and TP removal dropped by 7-10%, 6-7% and 4-5%, respectively, with when hydraulic loading was raised from 2.8 to 7.5 m3 m(-2) d(-1). NH3-N removal also decreased 8-9% when ammonia loading was elevated from 0.078 to 0.156 kg NH3-N m(-3) d(-1). Real-time PCR revealed a relatively stable bacterial community composed primarily of eubacteria that formed after an initial 120 d operational period. Doubling the amount of metallic iron in the bioceramsite media resulted in a twofold increase of eubacteria in the MBAF, but a decrease in the ratio of anaerobic ammonia-oxidizing bacteria to total bacteria.
Collapse
Affiliation(s)
- Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|