1
|
Zhong J, Wu S, Chen WJ, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. CHEMOSPHERE 2023; 326:138390. [PMID: 36935058 DOI: 10.1016/j.chemosphere.2023.138390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.
Collapse
Affiliation(s)
- Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Possible Processes and Mechanisms of Hexachlorobenzene Decomposition by the Selected Comamonas testosteroni Bacterial Strains. Processes (Basel) 2022. [DOI: 10.3390/pr10112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The bacterial destructing activity toward pesticides has been the focus of research in the last few decades. Hexachlorobenzene is included in the organochlorine pesticides group that are prohibited for use. However, large hexachlorobenzene amounts are still concentrated in the soil, stressing the relevance of research on hexachlorobenzene-destroying bacteria. Methods: The ability to destroy hexachlorobenzene by Comamonas testosteroni UCM B-400, B-401, B-213 strains was investigated and established. Bacteria were cultivated (7 days at 28 °C) in mineral Luria-Bertrani (LB) medium with three hexachlorobenzene doses: 10, 20, 50 mg/L. The hexachlorobenzene concentrations were recorded by a gas chromatography method. Results: The results showed that C. testosteroni UCM B-400, B-401 have high destructive activity toward hexachlorobenzene. The highest (50 mg/L) initial concentration decreased to 41.5 and 43.8%, respectively, for C. testosteroni UCM B-400, B-401. The unadapted C. testosteroni UCM B-213 was tolerant to hexachlorobenzene (cell titers after cultivating with 10.0, 20.0, 50.0 mg/mL were higher compared to initial titer), but had a low-destructing activity level (two times less than B-400 and B-401). Conclusions: Bacterial strains C. testosteroni UCM B-400, B-401 can be seen as a potential soil bioremediation from hexachlorobenzene pollution.
Collapse
|
3
|
Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol 2022; 106:5973-5986. [PMID: 36063179 DOI: 10.1007/s00253-022-12141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.
Collapse
Affiliation(s)
- Minwen Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Microbial degradation of n-hexadecane using Pseudomonas aeruginosa PU1 isolated from transformer-oil contaminated soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
6
|
Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA. Microbial Biodegradation of Paraffin Wax in Malaysian Crude Oil Mediated by Degradative Enzymes. Front Microbiol 2020; 11:565608. [PMID: 33013795 PMCID: PMC7506063 DOI: 10.3389/fmicb.2020.565608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37–C40 and increase the ratio of C14–C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
Collapse
Affiliation(s)
- Nur Aina Adlan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Zhang C, Chen L, Si H, Gao W, Liu P, Zhang J. Study on the characteristics and mechanisms of nicosulfuron biodegradation by Bacillus velezensis CF57. J Basic Microbiol 2020; 60:649-658. [PMID: 32378242 DOI: 10.1002/jobm.202000039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/08/2022]
Abstract
Nicosulfuron is one of the main sulfonylurea herbicides that have been widely used to protect maize crops. A total of 10 nicosulfuron-degrading strains were isolated from the intestine tract of earthworm Eisenia foetida. Among them, Bacillus velezensis CF57 with the highest degradation efficiency was selected and studied in detail. The degradation characteristics of CF57 showed that it was able to effectively degrade nicosulfuron in a wide range of temperature, pH, and a low inoculation amount, and the response surface analysis revealed that the optimum degradation conditions were 30.8 °C, pH 6.31, and inoculation amount 3.04%. Meanwhile, CF57 could degrade high-concentration nicosulfuron efficiently and posed a broad degradation spectrum of other sulfonylurea herbicides. Furthermore, the localization of degradation enzyme indicated that the nicosulfuron-degrading enzyme was an extracellular fraction. By analyzing the metabolites of nicosulfuron, it could be further determined that the degradation of nicosulfuron by strain CF57 was mainly through the extracellular enzyme, and its possible degradation pathway was mainly derived from the cleavage of the C-N bond of the sulfonylurea bridge. These results may provide new insights into bioremediation of nicosulfuron-contaminated environments and enrich the resources of degrading bacteria of sulfonylurea herbicides.
Collapse
Affiliation(s)
- Chenfang Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Helong Si
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Wei Gao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Peng Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Zhang D, Li Y, Sun A, Tong S, Jiang X, Mu Y, Li J, Han W, Sun X, Wang L, Shen J. Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron. CHEMOSPHERE 2020; 247:125832. [PMID: 31931312 DOI: 10.1016/j.chemosphere.2020.125832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic reduction of nitrobenzene (NB) can be efficiently enhanced bySupplementing withSulfide-modified nanoscale zerovalent iron (S-nZVI). In thisStudy,S/Fe ratio ofS-nZVI was further optimized for enhancing biological NB removal in anaerobicSystem amended withS-nZVI and inoculated by anaerobicSludge. The results indicated that the performance andStability of the coupled anaerobicSystem for NB reduction and aniline formation were remarkably improved byS-nZVI atS/Fe molar ratio of 0.3 (0.3S-nZVI). TheSecretion of extracellular polymericSubstances (EPS), transformation of volatile fatty acids (VFAs), yield of methane and activity ofSeveral key enzymes could be efficiently improved by 0.3S-nZVI. Furthermore,Species related to NB reduction, fermentation, electroactivity and methanogenesis could be enriched in 0.3S-nZVI coupled anaerobicSystem, with remarkable improvement in the biodiversity observed. ThisStudy demonstrated thatSulfidation would be a promising method to improve the performance of nZVI in coupled anaerobicSystems for the removal of recalcitrant nitroaromatic compounds from wastewater.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and EnvironmentalSciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Aiwu Sun
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, 223001, Jiangsu Province, China
| | - Siqi Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University ofScience and Technology of China, Hefei, 230026, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| |
Collapse
|
9
|
Zhang Z, Yang D, Wang J, Huo J, Zhang J. Studies on the interactions between nicosulfuron and degradation enzymes. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|
11
|
Castrejón-Godínez ML, Ortiz-Hernández ML, Salazar E, Encarnación S, Mussali-Galante P, Tovar-Sánchez E, Sánchez-Salinas E, Rodríguez A. Transcriptional analysis reveals the metabolic state of Burkholderia zhejiangensis CEIB S4-3 during methyl parathion degradation. PeerJ 2019; 7:e6822. [PMID: 31086743 PMCID: PMC6486813 DOI: 10.7717/peerj.6822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia zhejiangensis CEIB S4-3 has the ability to degrade methyl parathion (MP) and its main hydrolysis byproduct p-nitrophenol (PNP). According to genomic data, several genes related with metabolism of MP and PNP were identified in this strain. However, the metabolic state of the strain during the MP degradation has not been evaluated. In the present study, we analyzed gene expression changes during MP hydrolysis and PNP degradation through a transcriptomic approach. The transcriptional analysis revealed differential changes in the expression of genes involved in important cellular processes, such as energy production and conversion, transcription, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, among others. Transcriptomic data also exhibited the overexpression of both PNP-catabolic gene clusters (pnpABA′E1E2FDC and pnpE1E2FDC) present in the strain. We found and validated by quantitative reverse transcription polymerase chain reaction the expression of the methyl parathion degrading gene, as well as the genes responsible for PNP degradation contained in two clusters. This proves the MP degradation pathway by the strain tested in this work. The exposure to PNP activates, in the first instance, the expression of the transcriptional regulators multiple antibiotic resistance regulator and Isocitrate Lyase Regulator (IclR), which are important in the regulation of genes from aromatic compound catabolism, as well as the expression of genes that encode transporters, permeases, efflux pumps, and porins related to the resistance to multidrugs and other xenobiotics. In the presence of the pesticide, 997 differentially expressed genes grouped in 104 metabolic pathways were observed. This report is the first to describe the transcriptomic analysis of a strain of B. zhejiangensis during the biodegradation of PNP.
Collapse
Affiliation(s)
| | - Ma Laura Ortiz-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Emmanuel Salazar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V. Environmental sustainability: challenges and viable solutions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-00038-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Maltman C, Yurkov V. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Arch Microbiol 2018; 200:1411-1417. [DOI: 10.1007/s00203-018-1555-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
|
14
|
Luo X, Zhang D, Zhou X, Du J, Zhang S, Liu Y. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Sci Rep 2018; 8:7384. [PMID: 29743662 PMCID: PMC5943319 DOI: 10.1038/s41598-018-25734-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30–46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l−1 and 0.918 ± 0.025 U·µg−1, respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems.
Collapse
Affiliation(s)
- Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Deyong Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Jiao Du
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Songbai Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China.
| | - Yong Liu
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China.
| |
Collapse
|
15
|
Zhang Z, Zhang Y, Yang DC, Zhang JL. Expression and functional analysis of three nicosulfuron-degrading enzymes from Bacillus subtilis YB1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:476-485. [PMID: 29596028 DOI: 10.1080/03601234.2018.1455344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To investigate the degradation activity of the manganese ABC transporter, vegetative catalase 1 and acetoin dehydrogenase E1 from Bacillus subtilis YB1, the proteins were prokaryotically expressed and purified. Assay results showed that the three enzymes were able to degrade nicosulfuron (2- (4,6-dimethoxypyrimidine-2-pyrimidinylcarbamoylaminosulfonyl) -N,N-dimethylnicotinamide), with vegetative catalase 1 exhibiting the highest activity. To further examine the degradation pathway, the degradation products of the three enzymes and the YB1 strain were detected by liquid chromatography-mass spectrometry(LC-MS). The nicosulfuron degradation products of the three enzymes were consistent with those of the YB1 strain, indicating the presence of two pathways: one due to cleavage of sulfonylurea bridges and ring-opening of 1-(4,6-dimethoxy-pyrimidin-2-yl)-3-(2-methyliminomethanesulfonyl-acetyl)-ureaas the pyrimidine ring, yielding the product; and the another due to cleavage of a sulfonylurea bridge, yielding 4,6-dihydroxy pyrimidine (111 m/z), 2-ylamine -4,6-dimethoxy pyrimidine and ((4-(dimethycarbamoyl)pyridine-2-yl)sulfonyl)carbamic acid as products, which were further degraded to 4,6-dihydroxy pyrimidine and N,N-dimethyl-2-sulfamoyl-isonicotinamide. The above results reveal a major contribution of extracellular enzymes to the degradation of nicosulfuron by the YB1 strain. Our data help in elucidation of the mechanism of nicosulfuron bio-degradation and may facilitate the construction of engineered strains.
Collapse
Affiliation(s)
- Zhe Zhang
- a College of Plant Protection , Agricultural University of Hebei , Baoding , Hebei , China
| | - Yue Zhang
- b College of Plant Protection , Nanjing Agricultural University , Nanjing , Jiangsu , China
| | - Dong C Yang
- a College of Plant Protection , Agricultural University of Hebei , Baoding , Hebei , China
| | - Jin L Zhang
- a College of Plant Protection , Agricultural University of Hebei , Baoding , Hebei , China
| |
Collapse
|
16
|
Jiang X, Shen J, Xu K, Chen D, Mu Y, Sun X, Han W, Li J, Wang L. Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. WATER RESEARCH 2018; 130:291-299. [PMID: 29245151 DOI: 10.1016/j.watres.2017.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Due to highly recalcitrant and toxicological nature of pyridine, the conventional anaerobic bioprocess is often limited by low removal rate and poor process stability. In this study, an electricity-assisted anaerobic system was developed in order to enhance biodegradation of pyridine from wastewater. The results showed that the performance and stability of the anaerobic reactor was remarkably improved for pyridine biodegradation with the applied direct current of 0.3 mA, where the efficiencies of pyridine and total organic carbon removal as well as NH4+-N formation were as high as 100.0%, 96.1 ± 1.2% and 60.1 ± 2.1% respectively. The compact biofilm due to electrical stimulation as well as the microaerobic environment in the bioanode might promote pyridine bio-mineralization in the anaerobic reactor. Moreover, the species related to pyridine biodegradation (Desulfovibrio, Dokdonella, Hydrogenophaga, and Paracoccus) were enriched in the anodic biofilm, which would be another reason for better reactor performance. This study demonstrated that electrical stimulation would be a potential alternative for the enhancement of pyridine removal from wastewater in anaerobic systems.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kaichun Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Yu YY, Fang Z, Gao L, Song H, Yang L, Mao B, Shi W, Yong YC. Engineering of bacterial electrochemical activity with global regulator manipulation. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Liu X, Zhao X, Yu YY, Wang YZ, Shi YT, Cheng QW, Fang Z, Yong YC. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation. Anal Bioanal Chem 2017; 410:1231-1236. [PMID: 28965160 DOI: 10.1007/s00216-017-0656-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.
Collapse
|
20
|
Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1. Front Microbiol 2017; 8:193. [PMID: 28232826 PMCID: PMC5299021 DOI: 10.3389/fmicb.2017.00193] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10-C14 were completely degraded, while C15-C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University Vellore, India
| | - Elumalai Preetham
- School of Aquatic Food Products and Technology, Kerala University of Fisheries and Ocean Studies Kochi, India
| | - Laura L Machuca
- Curtin Corrosion Engineering Industry Centre, School of Chemical and Petroleum Engineering, Curtin University, Bentley WA, Australia
| | - Pattanathu K S M Rahman
- School of Science and Engineering, Technology Futures Institute, Teesside UniversityMiddlesbrough, UK; TeeGene Biotech Ltd., Wilton CentreRedcar, UK
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar UniversityCoimbatore, India; Thiruvalluvar UniversityVellore, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University Vellore, India
| |
Collapse
|
21
|
Sun DZ, Yu YY, Xie RR, Zhang CL, Yang Y, Zhai DD, Yang G, Liu L, Yong YC. In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems. Biosens Bioelectron 2017; 87:195-202. [DOI: 10.1016/j.bios.2016.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/20/2023]
|
22
|
Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L. Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. WATER RESEARCH 2016; 88:257-265. [PMID: 26512803 DOI: 10.1016/j.watres.2015.10.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 05/20/2023]
Abstract
Bioelectrochemical system (BES) coupled upflow anaerobic sludge blanket (UASB) was developed for the removal of recalcitrant pollutants but lack of a comprehensive study. Thus in this study an integrated UASB-BES system was operated continuously for 240 d to systematically investigate the feasibility of the enhanced reduction of 2,4-dinitrochlorobenzene (DNCB), with the key operation parameters, the system stability as well as the microbial biodiversity emphasized. The results indicate that high voltage supplied had a positive effect on DNCB reduction but a negative impact for the overhigh voltage (>1.6 V). The ability to resist shock loading was strengthened in the UASB-BES system in comparison with the control UASB system. High-throughput sequencing analysis suggested that the enhanced reduction of DNCB in UASB-BES could be attributed to higher diversity and the enrichment of reduction-related species, potential electroactive species and fermentative species. Both DNCB removal and dechlorination gradually increased with the increase of operation time, indicating the improved performance of the coupled UASB-BES system. The heatmap visualized only slight differences in the microbial community during long-term operation, indicating the stability of the microbial community. The observed efficient and stable performance highlights the potential for long-term operation and full-scale application of the UASB-BES coupled system particularly for highly recalcitrant pollutants removal.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Jinyou Shen
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| | - Yan Han
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Shuai Lou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Weiqing Han
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Jiansheng Li
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui Province, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
23
|
|
24
|
Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413. Arch Microbiol 2015; 198:101-13. [PMID: 26521065 DOI: 10.1007/s00203-015-1164-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/27/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023]
Abstract
This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.
Collapse
|
25
|
Transformation pathway of 2,4,6-trinitrotoluene by Escherichia coli nitroreductases and improvement of activity using structure-based mutagenesis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Shestivska V, Dryahina K, Nunvář J, Sovová K, Elhottová D, Nemec A, Smith D, Španěl P. Quantitative analysis of volatile metabolites released
in vitro
by bacteria of the genus
Stenotrophomonas
for identification of breath biomarkers of respiratory infection in cystic fibrosis. J Breath Res 2015; 9:027104. [DOI: 10.1088/1752-7155/9/2/027104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Zhang G, Yu D, Yang G, Dong H, Zhang T, Liu X. Crystallization and preliminary X-ray analysis of the hypothetical deaminase RPB_0146 from Rhodopseudomonas palustris HaA2. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1560-2. [PMID: 25372831 DOI: 10.1107/s2053230x14018391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/12/2014] [Indexed: 05/28/2023]
Abstract
RPB_0146, a putative deaminase from Rhodopseudomonas palustris HaA2, was expressed in Escherichia coli BL21 (DE3) cells and purified using a His6 tag by Ni2+-chelating affinity chromatography for X-ray crystallographic analysis. Diffraction-quality crystals were grown by the hanging-drop vapour-diffusion method at 289 K and diffracted to a resolution of 2.44 Å using a wavelength of 1.000 Å at the Photon Factory (KEK), Japan. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=66.26, b=123.94, c=155.95 Å.
Collapse
Affiliation(s)
- Guofang Zhang
- Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China
| | - Dan Yu
- Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China
| | - Guodong Yang
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People's Republic of China
| | - Hui Dong
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People's Republic of China
| | - Tongcun Zhang
- Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China
| | - Xiang Liu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People's Republic of China
| |
Collapse
|
28
|
Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One 2013; 8:e77329. [PMID: 24155944 PMCID: PMC3796475 DOI: 10.1371/journal.pone.0077329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very low sequence similarity compared with reported pyrethroid-degrading genes. PytY was expressed, purified, and characterized. Enzyme assay revealed that PytY is a broad-spectrum degrading enzyme that can degrade various pyrethroids. It is a new pyrethroid-degrading gene and enriches genetic resource. Kinetic constants of Km and Vmax were 2.34 mmol·L(-1) and 56.33 nmol min(-1), respectively, with lambda-cyhalothrin as substrate. PytY displayed good degrading ability and stability over a broad range of temperature and pH. The optimal temperature and pH were of 35°C and 7.5. No cofactors were required for enzyme activity. The results highlighted the potential use of PytY in the elimination of pyrethroid residuals from contaminated environments.
Collapse
|
29
|
Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0145-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
|
31
|
Yong YC, Zhong JJ. Impacts of quorum sensing on microbial metabolism and human health. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:25-61. [PMID: 22767136 DOI: 10.1007/10_2012_138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteria were considered to be lonely 'mutes' for hundreds of years. However, recently it was found that bacteria usually coordinate their behaviors at the population level by producing (speaking), sensing (listening), and responding to small signal molecules. This so-called quorum sensing (QS) regulation enables bacteria to live in a 'society' with cell-cell communication and controls many important bacterial behaviors. In this chapter, QS systems and their signal molecules for Gram-negative and Gram-positive bacteria are introduced. Most interestingly, QS regulates the important bacterial behaviors such as metabolism and pathogenesis. QS-regulated microbial metabolism includes antibiotic synthesis, pollutant biodegradation, and bioenergy production, which are very relevant to human health. QS is also well-known for its involvement in bacterial pathogenesis, such as iin nfections by Pseudomonas aeruginosa and Staphylococcus aureus. Novel disease diagnosis strategies and antimicrobial agents have also been developed based on QS regulation on bacterial infections. In addition, to meet the requirements for the detection/quantification of QS signaling molecules for research and application, different biosensors have been constructed, which will also be reviewed here. QS regulation is essential to bacterial survival and important to human health. A better understanding of QS could lead better control/manipulation of bacteria, thus making them more helpful to people.
Collapse
Affiliation(s)
- Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu Province, China
| | | |
Collapse
|
32
|
Maya K, Singh R, Upadhyay S, Dubey SK. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|