1
|
Singh B, Pragya, Tiwari SK, Singh D, Kumar S, Malik V. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 2023; 40:22. [PMID: 38008864 DOI: 10.1007/s11274-023-03783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/28/2023]
Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, 123029, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, Shobhit Institute of Engineering and Technology (Deemed to Be University), Modipurum, Meerut, 250110, UP, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
2
|
Mashhadi Farahani S, Dadmehr M, Ali Karimi M, Korouzhdehi B, Amin Karimi M, Rajabian M. Fluorometric detection of phytase enzyme activity and phosphate ion based on gelatin supported silver nanoclusters. Food Chem 2022; 396:133711. [PMID: 35853372 DOI: 10.1016/j.foodchem.2022.133711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Phytase is the commercial enzyme for bioconversion of phytate substrate to digestible phosphate ions. Recently silver nanoclusters (AgNCs) have received great attention as the optical transducer nanoparticles in biosensors structure. The novel detection platform was developed to detect the phytase enzyme activity and phosphate ions based on fluorescence quenching of AgNCs. The AgNCs were synthesized through gelatin supported reaction and characterized by TEM, FTIR and XRD analysis. The hydrolytic effect of phytase enzyme and subsequent phosphate release led to suppression of AgNCs fluorescence. The linear range was observed for enzyme in the range of 0.5-5 U/mL with the detection limit of 0.2 U/mL. Also, the same fluorescence quenching effect was observed in the presence of phosphate ion in the linear range of 1 to 16 µM with a detection limit of 0.5 µM. The proposed mechanism showed effectiveness of detection strategy for detection of phytase enzyme and phosphate ion.
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Behnaz Korouzhdehi
- Department of Biotechnology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Rajabian
- Department of Biology, Payame Noor University, Tehran, Iran
| |
Collapse
|
3
|
Pragya, Sharma KK, Kumar A, Singh D, Kumar V, Singh B. Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit Rev Food Sci Nutr 2021; 63:5465-5487. [PMID: 34965785 DOI: 10.1080/10408398.2021.2020719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.
Collapse
Affiliation(s)
- Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| | - Vijay Kumar
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali, India
| |
Collapse
|
4
|
Singh B, Kumar G, Kumar V, Singh D. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition. Protein Pept Lett 2021; 28:1083-1089. [PMID: 34303326 DOI: 10.2174/0929866528666210720142359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytic acid acts as anti-nutritional factor in food and feed ingredients for monogastric animals as they lack phytases. OBJECTIVE Phytase production by Bacillus subtilis subsp. subtilis JJBS250 was studied in solid state fermentation and its applicability in dephytinization of food Methods: Bacterial culture was grown in solid state fermentation using wheat bran and various culture conditions were optimized using 'One variable at a time' (OVAT) approach. Effects of different substrates (wheat bran, wheat straw, sugarcane bagasse), incubation time (24, 48, 72 and 96 h), incubation temperatures (25, 30, 35 and 40 oC), pH (4.0, 5.0, 6.0, 7.0 and 8.0) and moisture content (1:1.5, 1:2.0, 1:2.5 and 1:3) were studied on phytase production. Bacterial phytase was used in dephytinization of food samples. RESULTS Optimization of phytase production was studied in solid state fermentation (SSF) using 'One variable at a time' (OVAT) approach. Bacillus subtilis subsp. subtilis JJBS250 grew well in various agroresidues in SSF and secreted high enzyme titres using wheat bran at 30 oC and pH 5.0 after incubation time of 48 h with substrate to moisture ratio of 1:3. Glucose and ammonium sulphate supplementation to wheat bran further enhanced phytase production in SSF. Optimization of phytase production resulted in 2.4-fold improvement in phytase production in solid state fermentation. The enzyme resulted in dephytinization of wheat and rice flours with concomitant release of inorganic phosphate, reducing sugar and soluble protein. CONCLUSION Optimization resulted in 2.34-fold enhancement in phytase production by bacterial culture that showed dephytinization of food ingredients with concomitant release of nutritional components. Therefore, phytase of B. subtilis subsp. subtilis JJBS250 could find application in improving nutritional quality of food and feed of monogastric animals.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Gurprit Kumar
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendergarh-123031, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Satnali Road, Mahendergarh-123029, Haryana, India
| |
Collapse
|
5
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Jain J, Kumar A, Singh D, Singh B. Purification and kinetics of a protease-resistant, neutral, and thermostable phytase from Bacillus subtilis subsp. subtilis JJBS250 ameliorating food nutrition. Prep Biochem Biotechnol 2018; 48:718-724. [DOI: 10.1080/10826068.2018.1487848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jinender Jain
- Department of Microbiology, Laboratory of Bioprocess Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anil Kumar
- Department of Botany, Pt. Neki Ram Sharma Government College, Rohtak, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Haryana, India
| | - Bijender Singh
- Department of Microbiology, Laboratory of Bioprocess Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
7
|
Molecular modeling and docking of recombinant HAP-phytase of a thermophilic mould Sporotrichum thermophile reveals insights into molecular catalysis and biochemical properties. Int J Biol Macromol 2018; 115:501-508. [PMID: 29678789 DOI: 10.1016/j.ijbiomac.2018.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
A thermostable and protease-resistant HAP-phytase of Sporotrichum thermophile was over-expressed in Pichia pastoris X-33. Purified recombinant phytase displayed all its biochemical properties similar to wild type. Molecular modeling and docking of phytase with various substrates showed differential binding patterns with GoldScore values ranging from 40.61 to 79.78. Docking with different substrates revealed strong binding affinity with ATP and phytic acid, while the lowest with AMP and phosphoenol pyruvate. This was further confirmed using biochemical assays, as the recombinant enzyme displayed broad substrate specificity. Docking with inhibitors also showed differential binding with GoldScore values ranging from 22.94 (2,3-butanedione) to 85.72 (myo-inositol hexasulphate). Validation using biochemical analysis revealed that both 2,3-butanedione and phenyl glyoxal inhibited the phytase activity significantly. Furthermore, presence of inorganic phosphate in the reaction mixture also inhibited the phytase activity, as there was no activity at and beyond 0.8 mM. Docking of phytase with metavanadate showed binding at the same atom in the active-site where the substrate i.e. phytic acid binds. Vanadium incorporation resulted in the catalytic conversion of phytase into a peroxidase with concomitant inhibition of phytase activity. Peroxidase activity was high in acidic range and the product formation showed correlation with reaction time. Furthermore, molecular modeling and docking of recombinant HAP-phytase of a thermophilic mould S. thermophile reveals insights into molecular catalysis that is validated by the biochemical properties.
Collapse
|
8
|
Balwani I, Chakravarty K, Gaur S. Role of phytase producing microorganisms towards agricultural sustainability. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 2017; 98:595-609. [PMID: 28174082 DOI: 10.1016/j.ijbiomac.2017.01.134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/02/2023]
Abstract
Phytases are phosphatases which stepwise remove phosphates from phytic acid or its salts. β-Propeller phytase (BPPhy) belongs to a special class of microbial phytases that is regarded as most diverse, isolated and characterized from different microbes, mainly from Bacillus spp. BPPhy class is unique for its Ca2+-dependent catalytic activity, strict substrate specificity, active at neutral to alkaline pH and high thermostability. Numerous sequence and structure based studies have revealed unique attributes and catalytic properties of this class, as compared to other classes of phytases. Recent studies including cloning and expression and genetic engineering approaches have led to improvements in BPPhy which provide an opportunity for extended utilization of this class of phytases in improving animal nutrition, human health, plant growth promotion, and environmental protection, etc. This review describes the sources and diversity of BPPhy genes, biochemical properties, Ca2+ dependence, current developments in structural elucidation, heterogeneous expression and catalytic improvements, and multifarious applications of BPPhy.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India.
| | - Ajar Nath Yadav
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Priyanka Verma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Punesh Sangwan
- Department of Biochemistry, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Abhishake Saxena
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Krishan Kumar
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Bijender Singh
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
10
|
Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases. Appl Biochem Biotechnol 2016; 181:1485-1495. [DOI: 10.1007/s12010-016-2297-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
11
|
Maurya AK, Parashar D, Satyanarayana T. Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. Int J Biol Macromol 2016; 94:36-44. [PMID: 27697488 DOI: 10.1016/j.ijbiomac.2016.09.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Thermophilc mold Sporotrichum thermophile secretes an acidstable and thermostable phytase, which finds application as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. Low extracellular phytase production by the mold is a major bottleneck for its application on a commercial scale. We have successfully overcome this problem by constitutive secretary expression of codon optimized rStPhy under glyceraldehyde phosphate dehydrogenase (GAP) promoter in Pichia pastoris. A ∼41-fold improvement in rStPhy production has been achieved. Circular Dichroism (CD) spectra revealed that rStPhy is composed of 26.65% α-helices, 5.26% β-sheets and 68.09% random coils at pH 5.0 and 60°C, the optima for the enzyme activity. The melting temperature (Tm) of the enzyme is ∼73°C. The 3D structure of rStPhy displayed characteristic signature sequences (RHGXRXP and HD) of HAP phytase. The catalytically important amino acids (Arg74, His75, Arg78, His368 and Asp369) were identified by docking and site directed mutagenesis. Fluorescence quenching by N-bromosuccinimide (NBS) and CsCl exposed tryptophan residues surrounded by negative charges, which play a key role in maintaining structural integrity of rStPhy.
Collapse
Affiliation(s)
- Anay Kumar Maurya
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Deepak Parashar
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
12
|
Dokuzparmak E, Sirin Y, Cakmak U, Saglam Ertunga N. Purification and characterization of a novel thermostable phytase from the thermophilic Geobacillus sp. TF16. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1203930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
|
14
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Sapna, Singh B. Biocatalytic potential of protease-resistant phytase ofAspergillus oryzaeSBS50 in ameliorating food nutrition. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1076215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kumari A, Satyanarayana T, Singh B. Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed. Appl Biochem Biotechnol 2015; 178:197-210. [PMID: 26433602 DOI: 10.1007/s12010-015-1868-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/23/2015] [Indexed: 11/24/2022]
Abstract
The optimum values of the critical variables determined by the central composite design of response surface methodology (RSM) for maximum phytase production (1881.26 U g(-1) dry mouldy residue (DMR)) by Sporotrichum thermophile are 2.5 % Tween 80, 1.0 % yeast extract and 48 h of incubation period. Phytase production in the mixed substrate (sugarcane bagasse and wheat bran) fermentation enhanced 11.6-fold over the initial production as a consequence of optimization. Phytase titres are sustainable in flasks, trays and column bioreactor (1796 to 2095 U g(-1) DMR), thus validating the model and the process for large-scale phytase production. When the yeast extract was replaced with corn steep liquor (2 % w/v), a sustained enzyme titre (1890 U g(-1) DMR) was attained, making the process cost-effective. Among all the detergents, Tween 80 supported a higher phytase production than others. The enzyme efficiently liberated nutritional components from poultry feed (inorganic phosphate, soluble protein and reducing sugars) in a time-dependent manner.
Collapse
Affiliation(s)
- Amit Kumari
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
17
|
Bajaj BK, Wani MA. Purification and characterization of a novel phytase fromNocardiasp. MB 36. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1083014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Bioprocess for efficient production of recombinant Pichia anomala phytase and its applicability in dephytinizing chick feed and whole wheat flat Indian breads. ACTA ACUST UNITED AC 2015; 42:1389-400. [DOI: 10.1007/s10295-015-1670-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
Abstract
Abstract
The phytase of the yeast Pichia anomala (PPHY) is a suitable biocatalyst as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. The cell-bound nature and low phytase titres are the main bottlenecks for its utility in food and feed industries. In this investigation, we have overcome the problems by constitutive secretory expression of PPHY under glyceraldehyde phosphate dehydrogenase (GAP) promoter. A ~44-fold increase in rPPHY titre has been achieved after optimization of cultural variables by one-variable-at-a-time approach and two factorial statistical design. The use of GAP promoter makes the cultivation of the recombinant P. pastoris straight forward and eliminates the requirement of methanol for induction and hazards associated with its storage. Among metal-phytate complexes, Ca2+ phytate is hydrolyzed more efficiently by rPPHY than Co2+, Mn2+, Mg2+, Fe3+ and Zn2+ phytates. The enzyme is effective in dephytinizing whole wheat unleavened flat Indian breads (naan and tandoori) and different broiler feeds, thus mitigating anti-nutritional effects of phytates.
Collapse
|
19
|
Singh N, Kumari A, Gakhar SK, Singh B. Enhanced cost-effective phytase production by Aspergillus niger and its applicability in dephytinization of food ingredients. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715020149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 2014; 36:59-69. [PMID: 25025273 DOI: 10.3109/07388551.2014.923985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.
Collapse
Affiliation(s)
- Bijender Singh
- a Laboratory of Bioprocess Technology, Department of Microbiology , Maharshi Dayanand University , Rohtak-124001 , Haryana , India
| |
Collapse
|
22
|
Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Appl Biochem Biotechnol 2014; 173:1885-95. [PMID: 24879597 DOI: 10.1007/s12010-014-0974-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Aspergillus oryzae SBS50 secreted a high titre of phytase in solid-state fermentation (SSF) using wheat bran at 30 °C after 96 h at the initial substrate to moisture ratio of 1:2 and a water activity of 0.95. The production of phytase increased when wheat bran was supplemented with sucrose and beef extract. Further enhancement in enzyme production was recorded when the substrate was supplemented with the surfactant Triton X-100 (145 U/g of DMB). An overall 29-fold improvement in phytase production was achieved owing to optimization. Under optimized conditions, the mould secreted 9.3-fold higher phytase in SSF as compared to submerged fermentation (SmF). The mesophilic mould also secreted amylase, cellulase (CMCase), pectinase and xylanase along with phytase in SSF. Scanning electron microscopy revealed luxuriant growth of A. oryzae on wheat bran with abundant spores. The enzyme dephytinized wheat bran with concomitant liberation of inorganic phosphate.
Collapse
|
23
|
Casciatori FP, Laurentino CL, da Costa KKL, Casciatori PA, Thoméo JC. Hygroscopic Properties of Orange Pulp and Peel. J FOOD PROCESS ENG 2013. [DOI: 10.1111/jfpe.12049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fernanda Perpétua Casciatori
- Departamento de Engenharia e Tecnologia de Alimentos; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista (UNESP); Rua Cristóvão Colombo 2265 Sao José do Rio Preto 15054000 Brazil
| | - Carmem Lúcia Laurentino
- Departamento de Engenharia e Tecnologia de Alimentos; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista (UNESP); Rua Cristóvão Colombo 2265 Sao José do Rio Preto 15054000 Brazil
| | - Karen Kristhine Leal da Costa
- Departamento de Engenharia e Tecnologia de Alimentos; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista (UNESP); Rua Cristóvão Colombo 2265 Sao José do Rio Preto 15054000 Brazil
| | - Priscila Aparecida Casciatori
- Departamento de Engenharia e Tecnologia de Alimentos; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista (UNESP); Rua Cristóvão Colombo 2265 Sao José do Rio Preto 15054000 Brazil
| | - João Cláudio Thoméo
- Departamento de Engenharia e Tecnologia de Alimentos; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista (UNESP); Rua Cristóvão Colombo 2265 Sao José do Rio Preto 15054000 Brazil
| |
Collapse
|
24
|
Sapna, Singh B. Improved production of protease-resistant phytase by Aspergillus oryzae and its applicability in the hydrolysis of insoluble phytates. ACTA ACUST UNITED AC 2013; 40:891-9. [DOI: 10.1007/s10295-013-1277-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Among three hundred isolates of filamentous fungi, Aspergillus oryzae SBS50 secreted higher phytase activity at pH 5.0, 35 °C and 200 rpm after 96 h of fermentation. Starch and beef extract supported the highest phytase production than other carbon and nitrogen sources. A nine-fold improvement in phytase production was achieved due to optimization. Supplementation of the medium with inorganic phosphate repressed the enzyme synthesis. Among surfactants tested, Tween 80 increased fungal growth and phytase production, which further resulted in 5.4-fold enhancement in phytase production. The phytase activity was not much affected by proteases treatment. The enzyme resulted in the efficient hydrolysis of insoluble phytate complexes (metal- and protein–phytates) in a time dependent manner. Furthermore, the hydrolysis of insoluble phytates was also supported by scanning electron microscopy. The enzyme, being resistant to trypsin and pepsin, and able to hydrolyze insoluble phytates, can find an application in the animal food/feed industry for improving nutritional quality and also in combating environmental phosphorus pollution and plant growth promotion.
Collapse
Affiliation(s)
- Sapna
- grid.411524.7 0000000417902262 Laboratory of Bioprocess Technology, Department of Microbiology Maharshi Dayanand University 124001 Rohtak Haryana India
| | - Bijender Singh
- grid.411524.7 0000000417902262 Laboratory of Bioprocess Technology, Department of Microbiology Maharshi Dayanand University 124001 Rohtak Haryana India
| |
Collapse
|
25
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
26
|
Rodríguez-Fernández DE, Rodríguez-León JA, de Carvalho JC, Karp SG, Sturm W, Parada JL, Soccol CR. Influence of airflow intensity on phytase production by solid-state fermentation. BIORESOURCE TECHNOLOGY 2012; 118:603-606. [PMID: 22704830 DOI: 10.1016/j.biortech.2012.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/04/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Phytase production by Aspergillus niger F3 by solid state fermentation (SSF) on citrus peel was evaluated at pilot scale under different aeration conditions. The best airflow intensity was 1 VkgM (Lair kg medium(-1) min(-1)), which allowed to produce 65 units of phytases per gram in dry basis (65 Ug(-1) d.b.) as it removed the metabolic heat generated by the microorganism, Agitation did not improve heat removal. Airflow intensity was considered as scale-up criterion. When the airflow intensity was maintained at 1 VkgM for SSF with 2 and 20 kg of medium, the kinetics parameters for biomass and enzyme concentration at the end of fermentation differed by less than 2. The air flow intensity was required to maintain the temperature and cool the SSF and to provide oxygen for microbial growth. Air flow intensity is a key a factor that must be considered when scale-up of SSF is attempted.
Collapse
Affiliation(s)
- D E Rodríguez-Fernández
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, 81.531-980 Curitiba, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bajaj BK, Wani MA. Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: Potential application for animal feed production. Eng Life Sci 2011. [DOI: 10.1002/elsc.201100039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Madeira JV, Macedo JA, Macedo GA. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess Biosyst Eng 2011; 35:477-82. [DOI: 10.1007/s00449-011-0587-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022]
|