1
|
Buzzo BB, Lima NSM, Pereira PAM, Gomes-Pepe ES, Sartini CCF, Lemos EGDM. Lignin degradation by a novel thermophilic and alkaline yellow laccase from Chitinophaga sp. Microbiol Spectr 2024; 12:e0401323. [PMID: 38712938 PMCID: PMC11237711 DOI: 10.1128/spectrum.04013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Laccases (EC 1.10.3.2) are oxidoreductases that belong to the multicopper oxidase subfamily and are classified as yellow/white or blue according to their absorption spectrum. Yellow laccases are more useful for industrial processes since they oxidize nonphenolic compounds in the absence of a redox mediator and stand out for being more stable and functional under extreme conditions. This study aimed to characterize a new laccase that was predicted to be present in the genome of Chitinophaga sp. CB10 - Lac_CB10. Lac_CB10, with a molecular mass of 100.06 kDa, was purified and characterized via biochemical assays using guaiacol as a substrate. The enzyme demonstrated extremophilic characteristics, exhibiting relative activity under alkaline conditions (CAPS buffer pH 10.5) and thermophilic conditions (80-90°C), as well as maintaining its activity above 50% for 5 h at 80°C and 90°C. Furthermore, Lac_CB10 presented a spectral profile typical of yellow laccases, exhibiting only one absorbance peak at 300 nm (at the T2/T3 site) and no peak at 600 nm (at the T1 site). When lignin was degraded using copper as an inducer, 52.27% of the material was degraded within 32 h. These results highlight the potential of this enzyme, which is a novel yellow laccase with thermophilic and alkaline activity and the ability to act on lignin. This enzyme could be a valuable addition to the biorefinery process. In addition, this approach has high potential for industrial application and in the bioremediation of contaminated environments since these processes often occur at extreme temperatures and pH values. IMPORTANCE The characterization of the novel yellow laccase, Lac_CB10, derived from Chitinophaga sp. CB10, represents a significant advancement with broad implications. This enzyme displays exceptional stability and functionality under extreme conditions, operating effectively under both alkaline (pH 10.5) and thermophilic (80-90°C) environments. Its capability to maintain considerable activity over extended periods, even at high temperatures, showcases its potential for various industrial applications. Moreover, its distinctive ability to efficiently degrade lignin-demonstrated by a significant 52.27% degradation within 32 h-signifies a promising avenue for biorefinery processes. This newfound laccase's characteristics position it as a crucial asset in the realm of bioremediation, particularly in scenarios involving contamination at extreme pH and temperature levels. The study's findings highlight the enzyme's capacity to address challenges in industrial processes and environmental cleanup, signifying its vital role in advancing biotechnological solutions.
Collapse
Affiliation(s)
- Bárbara Bonfá Buzzo
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Natália Sarmanho Monteiro Lima
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Pâmela Aparecida Maldaner Pereira
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | - Elisângela Soares Gomes-Pepe
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | | | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
2
|
Abdi Dezfouli R, Esmaeilidezfouli E. Optimizing laccase selection for enhanced outcomes: a comprehensive review. 3 Biotech 2024; 14:165. [PMID: 38817737 PMCID: PMC11133268 DOI: 10.1007/s13205-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Despite their widespread applications in sectors such as pulp and paper, textile, food and beverage, pharmaceuticals, and biofuel production, laccases encounter challenges related to their activity and stability under varying reaction conditions. This review accumulates data on the complex interplay between laccase characteristics and reaction conditions for maximizing their efficacy in diverse biotechnological processes. Benefits of organic media such as improved substrate selectivity and reaction control, and their risks such as enzyme denaturation and reduced activity are reported. Additionally, the effect of reaction conditions such as pH and temperature on laccase activity and stability are gathered and reported. Sources like Bacillus pumilus, Alcaligenes faecalis, Bacillus clausii, and Bacillus tequilensis SN4 are producing laccases that are both thermo-active and alkali-active. Additionally, changes induced by the presence of various substances within reaction media such as metals, inhibitors, and organic solvents are also reported. Bacillus pumilus and Bacillus licheniformis LS04 produce the most resistant laccases in this case. Finally, the remarkable laccases have been highlighted and the proper laccase source for each industrial application is suggested. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04015-5.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, 1411413137, Iran
| | - Ensieh Esmaeilidezfouli
- Microbial Biotechnology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Arumugam DP, Uthandi S. Optimization and characterization of laccase (LccH) produced by Hexagonia hirta MSF2 in solid-state fermentation using coir pith wastes (CPW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120625. [PMID: 38503232 DOI: 10.1016/j.jenvman.2024.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
The accumulation of coir pith waste, a byproduct of coconut husk processing, poses environmental and logistical challenges. An innovative and sustainable solution involves using coir pith as a substrate for solid-state fermentation (SSF). In SSF, coir pith can be converted into valuable products, such as enzymes, organic acids, and bioactive compounds. The present study aimed to evaluate laccase production by Hexagonia hirta MSF2 through SSF using the coir pith waste as substrate. Physico-chemical parameters like moisture, pH, temperature, C source, N source, and CuSO4 concentrations were pre-optimized, and optimized through RSM. Laccase activity of 1585.24 U g-1 of dry substrate was recorded by H. hirta MSF2 on coir pith containing 1 % C source, 0.5 % N source, 0.25 mM of CuSO4 concentration, moisture content of 75 % at pH 4.6 and temperature 28 °C. Subsequently, the enzyme extraction parameters including, extraction buffer, mode of extraction, and temperature were optimized. The molecular weight of laccase was 66 kDa as observed by SDS-PAGE and native-PAGE. The optimum activity of partially purified laccase was achieved at 40 °C, and pH 4.0. Increasing salt concentration and use of different inhibitors affected the laccase activity. Organic solvents like dimethyl sulphoxide (DMSO) and methanol, and metal ions like BaCl2, CaCl2, CuSO4, and MnCl2 stimulated the laccase activity. Hence, coir pith used in SSF offers a dual benefit of waste management and enzyme synthesis through an eco-friendly and cost-effective approach.
Collapse
Affiliation(s)
- Devi Priya Arumugam
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
4
|
Li Y, Chen L, Li J, Zhao B, Jing T, Wang R. Computational explorations of the interaction between laccase and bisphenol A: influence of surfactant and different organic solvents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:963-981. [PMID: 38009185 DOI: 10.1080/1062936x.2023.2280584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Bisphenol A (BPA), as an environmental endocrine disruptor can cause damage to the reproductive, nervous and immune systems. Laccase can be used to degrade BPA. However, laccase is easily deactivated, especially in organic solvents, but the specific details are not clear. Molecular dynamics simulations were used to investigate the reasons for changes in laccase activity in acetonitrile (ACN) and dimethyl formamide (DMF) solutions. In addition, the effects of ACN and DMF on the activity of laccase and surfactant rhamnolipid (RL) on the degradation of BPA by laccase were investigated. Results showed that addition of ACN changed the structure of the laccase, not only decreasing the van der Waals interaction that promoted the binding of laccase with BPA, but also increasing the polar solvation free energy that hindered the binding of laccase with BPA, so it weakened the laccase activity. DMF greatly enhanced the van der Waals interaction between laccase and BPA, and played a positive role in their binding. The addition of surfactant RL alleviated the effect of organic solvent on the activity of laccase by changing the polar solvation energy. The mechanism of surfactant RL affecting laccase activity in ACN and DMF is described, providing support for understanding the effect of organic solvents on laccase.
Collapse
Affiliation(s)
- Y Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - L Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - J Li
- Transportation Class in the first operation area of the Fourth Oil Production Plant of Daqing Oilfield of CNPC, Daqing, P. R. China
| | - B Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, P. R. China
| | - T Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - R Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| |
Collapse
|
5
|
Chemical modification of laccase using phthalic and 2-octenyl succinic anhydrides: Enzyme characterization, stability, and its potential for clarification of cashew apple juice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Radhakrishnan R, Manna B, Ghosh A. Solvent induced conformational changes for the altered activity of laccase: A molecular dynamics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127123. [PMID: 34530268 DOI: 10.1016/j.jhazmat.2021.127123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The growing demands of solvent-based industries like paint, pharmaceutical, petrochemical, paper and pulp, etc., have directly increased the release of effluents that are rich in hazardous aromatic compounds in the environment. A sustainable biotechnological approach utilizing laccases as biocatalyst enable in biodegradation of these aromatic toxin-rich effluents. However, this enzymatic process is ineffective as laccases lose their stability and catalytic activity at high organic solvent concentrations. In this study, molecular dynamic simulations of a novel solvent tolerant laccase, DLac from Cerrena sp. RSD1 was performed to explore the molecular-level understanding of DLac in 30%(v/v) acetone and acetonitrile. Solvent-induced conformational changes were analyzed via protein structure network, which was illustrated with respect to cliques and communities. In the presence of acetonitrile, the cliques around the active site and substrate-binding site were disjoined, thus the communities lost their network integrity. Whereas with acetone, the community near the substrate-binding site gained new residues and formed a rigidified network that corresponded to enhanced DLac's activity. Moreover, prominent solvent binding sites were speculated, which can be probable mutation targets to further improve solvent tolerance and catalytic activity. The molecular basis behind solvent induced catalytic activity will further aid in engineering laccase for its industrial application.
Collapse
Affiliation(s)
- Rokesh Radhakrishnan
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
7
|
Nsa IY, Akinyemi BT, Bello-Akinosho M, Ezechukwu SN, Bayode TB, Igbinigie EE, Adeleke RA. Development of a saprophytic fungal inoculum for the biodegradation of sub-bituminous coal. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractThe rhizospheres of the weeds Ageratum conyzoides, Axonopus compressus, Emilia coccinea, Synedrella nodiflora, Urena lobata and Sida acuta from a sub-bituminous coal mining site and a control site, without coal discards, were screened for new fungi with ability to degrade sub-bituminous coal in the laboratory. The isolates were identified by cultural and molecular methods. Seventeen out of the sixty-one fungal isolates tested could utilize sub-bituminous coal as an energy source. Upon further evaluation, only seven of these were promising candidates for coal biodegradation, and they were assayed for their biosolubilization and depolymerization activities to determine their mechanisms of coal biodegradation. Based on the accumulation of humic acid (HA), which is the marker for biosolubilization, Mucor circinelloides and Aspergillus tubingensis were the most active. On the other hand, Cunninghamella bertholletiae, Simplicillium subtropicum, Penicillium daleae and Trichoderma koningiopsis were the highest producers of fulvic acid (FA), the indicator of depolymerization. Purpureocillium lilacinum produced the lowest yields of both HA and FA compared to the other six coal-degrading candidates. The presence of laccase in Trichoderma koningiopsis, Penicillium daleae and Simplicillium subtropicum suggests a role for this enzyme in the enhancement of the coal biodegradation process. However, the inability to amplify the laccase gene in Cunninghamella bertholletiae indicates that another enzyme probably aids its coal bioconversion. The current investigation highlights the potentials of these strains in harnessing biotechnological processes of sub-bituminous coal conversion into value-added products, which could be extended to the bioremediation of coal-polluted soils. The fungi with the highest coal bioconversion capabilities belonged to Ascomycota and Zygomycota and were found in the rhizospheres of the weeds Emilia coccinea, Ageratum conyzoides and Axonopus compressus.
Collapse
|
8
|
Kesebir AÖ, Kılıç D, Şişecioğlu M, Adıgüzel A, Küfrevioğlu Öİ. Recombinant laccase production from Bacillus licheniformis O12: Characterization and its application for dye decolorization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
A novel acid-stable intracellular laccase from Aureobasidium pullulans: Purification, characterization and application in the removal of Bisphenol A from solutions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Gogotya A, Nnolim NE, Digban TO, Okoh AI, Nwodo UU. Characterization of a thermostable and solvent-tolerant laccase produced by Streptomyces sp. LAO. Biotechnol Lett 2021; 43:1429-1442. [PMID: 33864196 DOI: 10.1007/s10529-021-03131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Decaying wood samples were collected, and actinomycetes were isolated and screened for laccase production. The identity of the efficient laccase-producing isolate was confirmed by using a molecular approach. Fermentation conditions for laccase production were optimized, and laccase biochemical properties were studied. RESULTS Based on the 16S rRNA gene sequencing and phylogenetic analysis, the isolate coded as HWP3 was identified as Streptomyces sp. LAO. The time-course study showed that the isolate optimally produced laccase at 84 h with 40.58 ± 2.35 U/mL activity. The optimized physicochemical conditions consisted of pH 5.0, ferulic acid (0.04%; v/v), pine back (0.2 g/L), urea (1.0 g/L), and lactose (1 g/L). Streptomyces sp. LAO laccase was optimally active at pH and temperature of 8.0 and 90 °C, respectively, with remarkable pH and thermal stability. Furthermore, the enzyme had a sufficient tolerance for organic solvents after 16 h of preincubation, with laccase activity > 70%. Additionally, the laccase maintained considerable residual activity after pretreatment with 100 mM of chemical agents, including sodium dodecyl sulphate (69.93 ± 0.89%), ethylenediaminetetraacetic acid (93.1 ± 7.85%), NaN3 (96.28 ± 3.34%) and urea (106.03 ± 10.72%). CONCLUSION The laccase's pH and thermal stability; and robust catalytic efficiency in the presence of organic solvents suggest its industrial and biotechnological application potentials for the sustainable development of green chemistry.
Collapse
Affiliation(s)
- Asemahle Gogotya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314 Eastern Cape, Alice, 5700, South Africa
| | - Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314 Eastern Cape, Alice, 5700, South Africa
| | - Tennison O Digban
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314 Eastern Cape, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314 Eastern Cape, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314 Eastern Cape, Alice, 5700, South Africa.
| |
Collapse
|
11
|
Radveikienė I, Vidžiūnaitė R, Meškienė R, Meškys R, Časaitė V. Characterization of a Yellow Laccase from Botrytis cinerea 241. J Fungi (Basel) 2021; 7:jof7020143. [PMID: 33671199 PMCID: PMC7922139 DOI: 10.3390/jof7020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022] Open
Abstract
Typical laccases have four copper atoms, which form three different copper centers, of which the T1 copper is responsible for the blue color of the enzyme and gives it a characteristic absorbance around 610 nm. Several laccases have unusual spectral properties and are referred to as yellow or white laccases. Only two yellow laccases from the Ascomycota phylum have been described previously, and only one amino acid sequence of those enzymes is available. A yellow laccase Bcl1 from Botrytis cinerea strain 241 has been identified, purified and characterized in this work. The enzyme appears to be a dimer with a molecular mass of 186 kDa. The gene encoding the Bcl1 protein has been cloned, and the sequence analysis shows that the yellow laccase Bcl1 is phylogenetically distinct from other known yellow laccases. In addition, a comparison of amino acid sequences, and 3D modeling shows that the Bcl1 laccase lacks a conservative tyrosine, which is responsible for absorption quenching at 610 nm in another yellow asco-laccase from Sclerotinia sclerotiorum. High thermostability, high salt tolerance, broad substrate specificity, and the ability to decolorize dyes without the mediators suggest that the Bcl1 laccase is a potential enzyme for various industrial applications.
Collapse
Affiliation(s)
- Ingrida Radveikienė
- Life Sciences Center, Department of Bioanalysis, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania;
- Correspondence: (I.R.); (V.Č.)
| | - Regina Vidžiūnaitė
- Life Sciences Center, Department of Bioanalysis, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania;
| | - Rita Meškienė
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
| | - Rolandas Meškys
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
| | - Vida Časaitė
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
- Correspondence: (I.R.); (V.Č.)
| |
Collapse
|
12
|
Ezike TC, Ezugwu AL, Udeh JO, Eze SOO, Chilaka FC. Purification and characterisation of new laccase from Trametes polyzona WRF03. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00566. [PMID: 33299811 PMCID: PMC7701954 DOI: 10.1016/j.btre.2020.e00566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
Trametes polyzona WRF03 produced high yield of true laccase. Trametes polyzona WRF03 laccase was relatively pH and temperature stable. Fe2+, sodium azide and sodium cyanide greatly inhibited laccase activity. Trametes polyzona WRF03 laccase decolorised many classes of synthetic dyes.
The molecular screening for laccase specific gene sequences in Trametes polyzona WRF03 (TpWRF03) using designed oligonucleotide primers analogous to the conserved sequences on the copper-binding regions of known laccases showed positive amplification with an amplicon size corresponding to 1500 bp. The purified TpWRF03 laccase (TpL) is a monomer with a molecular weight corresponding to 66 kDa. The enzyme had an optimal pH of 4.5 and temperature of 55 °C. TpL was most stable within pH of 5.5–6.5 and at a temperature range of 40–50 °C. Sodium azide, sodium cyanide and Fe2+ greatly inhibited the enzyme activity. TpL showed more than 50 % decolourisation efficiency on coomassie brilliant blue (72.35 %) and malachite green (57.84 %) but displayed low decolourisation efficiency towards Azure B (1.78 %) and methylene blue (0.38 %). The results showed that TpWRF03 produces high-yield of true laccase with robust properties for biotechnological applications.
Collapse
Affiliation(s)
| | - Arinze Linus Ezugwu
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jerry Okwudili Udeh
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | | |
Collapse
|
13
|
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 2020; 104:4675-4703. [PMID: 32274562 DOI: 10.1007/s00253-020-10476-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Collapse
|
14
|
Mot AC, Coman C, Hadade N, Damian G, Silaghi-Dumitrescu R, Heering H. "Yellow" laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. PLoS One 2020; 15:e0225530. [PMID: 31961889 PMCID: PMC6974248 DOI: 10.1371/journal.pone.0225530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
Yellow laccases lack the typical blue type 1 Cu absorption band around 600 nm; however, multi-copper oxidases with laccase properties have been reported. We provide the first evidence that the yellow laccase isolated from Sclerotinia sclerotiorum is obtained from a blue form by covalent, but nevertheless reversible modification with a phenolic product. After separating the phenolics from the extracellular medium, a typical blue laccase is obtained. With ABTS as model substrate for this blue enzyme, a non-natural purple adduct is formed with a spectrum nearly identical to that of the 1:1 adduct of an ABTS radical and Tyr. This modification significantly increases the stability and substrate affinity of the enzyme, not by acting primarily as bound mediator, but by structural changes that also alters the type 1 Cu site. The HPLC-MS analyses of the ABTS adduct trypsin digests revealed a distinct tyrosine within a unique loop as site involved in the modification of the blue laccase form. Thus, S. sclerotiorum yellow laccase seems to be an intrinsically blue multi-copper oxidase that boosts its activity and stability with a radical-forming aromatic substrate. This particular case could, at least in part, explain the enigma of the yellow laccases.
Collapse
Affiliation(s)
- Augustin C. Mot
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Cristina Coman
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Niculina Hadade
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Hendrik Heering
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Sadeghian I, Rezaie Z, Rahmatabadi SS, Hemmati S. Biochemical insights into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Pinto PA, Fraga I, Bezerra RM, Dias AA. Phenolic and non-phenolic substrates oxidation by laccase at variable oxygen concentrations: Selection of bisubstrate kinetic models from polarographic data. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Mehandia S, Sharma S, Arya SK. Isolation and characterization of an alkali and thermostable laccase from a novel Alcaligenes faecalis and its application in decolorization of synthetic dyes. ACTA ACUST UNITED AC 2019; 25:e00413. [PMID: 31890646 PMCID: PMC6933146 DOI: 10.1016/j.btre.2019.e00413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022]
Abstract
Production and purification of laccase from Alcaligenes faecalis. Purified laccase from Alcaligenes faecalis active & stable at high temperature and pH. Laccase had remarkable specificity to an extensive range of probable substrate and tolerant to various metal ions. Efficiently decolorization of different synthetic dyes by laccase.
A laccase producing new bacterial strain (Alcaligenes faecalis XF1) was isolated from green site of Chandigarh (India) by standard screening method. Nutrient broth medium containing 0.2 mM CuSO4 was used for the production of laccase. Maximum production (110 U/ml) was achieved after four days of incubation. The extracellular laccase from the medium was purified by simple salt precipitation and ion exchange technique to get 3.8 fold purified protein with 1637.8 U/mg specific activity. Purified laccase (named as LAC1*) revealed its optimum activity at pH 8.0 and 80 °C temperature, and displayed remarkable stability in the range of 70–90 °C and in the pH range (pH 7.0–9.0). The single bands on SDS-PAGE represents the purity of LAC1* with molecular weight of ∼71 kDa. The kinetic parameters for 2,6-DMP oxidation was Km, Vmax and kcat were 480 μM, 110 U/mL and 1375 s−1. Enzyme activity of the LAC1* was significantly enhanced by Cu2+, Mg2+, Mn2+, SDS and NaCl, and was slightly inhibited in the presence of conventional inhibitors like cysteine, EDTA and sodium azide. Extracellular nature and significant stability of LAC1* under extreme conditions of temperature, pH, heavy metals, halides and detergents confined its suitability for various biotechnological and industrial applications which required these qualities of laccase. So after recognizing all these properties the purified laccase was studied for its application in decolorization of industrial dyes.
Collapse
Affiliation(s)
- Seema Mehandia
- Department of Biochemistry, Panjab University Chandigarh, India
- Department of Biotecnology, UIET, Panjab University Chandigarh, India
| | - S.C. Sharma
- Department of Biochemistry, Panjab University Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotecnology, UIET, Panjab University Chandigarh, India
- Corresponding author.
| |
Collapse
|
18
|
Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int J Biol Macromol 2019; 144:586-595. [PMID: 31830449 DOI: 10.1016/j.ijbiomac.2019.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Laccase from previously reported hardwood degrading fungus, Tricholoma giganteum AGDR1, was isolated, identified at molecular level, biochemically characterized and also utilized for pesticide degradation. Laccase gene is comprised of 3752 bp, which encompassed 742-bp of 5' flanking upstream sequence with 12 introns and 12 exons. Mature enzyme possesses 391 amino acids and signal peptide, which is determined to be monomeric protein with an apparent molecular weight of 41 kDa and 6.45 pI. Higher optimal activities were observed at 45 °C and pH 3.0 and surprisingly, it exhibited more than 20% of relative activity at pH 1.5. Purified laccase was tolerant to 100 mM of metals (i.e. Se, Pb, Cu, Cr and Cd), organic solvents (ethyl acetate, methanol, ethanol and acetone) and potent inhibitors (hydroxylamine, thiourea, NaF and Na-azide) as compared to reported laccases. It was able to degrade 29%, 7% and 72% of chlorpyrifos, profenofos and thiophanate methyl within 15 h, respectively. Molecular docking analysis revealed that higher binding efficacy of these pesticides is observed with H83, H320, A95, V384, and P366 which are presented near to the catalytic site. Based on the results, T. giganteum AGDR1 laccase can be applied for the potential remediation and industrial applications under harsh conditions.
Collapse
|
19
|
Akpinar M, Urek RO. Purification, Biochemical Characterization and Decolorization Efficiency of Laccases from Peach and Cherry Cultures of Pleutorus eryngii: A Comparative Study. Protein Pept Lett 2019; 27:623-634. [PMID: 31721687 DOI: 10.2174/0929866526666191112145521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Laccases (Lacs) are used potentially in industrial and biotechnological applications such as decolorization of dyes, degradation of industrial effluents, delignification, etc. thanks to their large varieties of substrate specificities and excellent catalytic efficiencies. The efficient utilizations of Lacs in these applications mostly depend on the identifying their biochemical properties. OBJECTIVE The goal of this research is to investigate the purification, biochemical characterization and decolorization efficiencies of Lacs. METHODS Pleurotus eryngii was incubated on peach (PC) and cherry (CC) wastes under optimized solid state fermentation conditions. Then, the enzymes extracts were purified by ammonium sulfate precipitation, anion exchange chromatography, gel filtration, respectively. Lacs fractions were subjected to electrophoretic analyses as well as their structural and kinetic characteristics. Also, the effects of selected chemical agents on purified Lacs activities and determination of decolorization efficiencies were studied. RESULTS As the results of purification processes of Lacs from both cultures, 3.94-fold purification was obtained for PC, while it was 5.34 for CC. The electrophoretic results of purified Lacs illustrated the single bands of protein (30±1 kDa) in accordance with the results after gel filtration. The Km values of Lacs from PC and CC were respectively detected as 1.1381 and 0.329 mM for ABTS. The selected agents partially/completely inhibited Lac activities. The highest decolorization efficiencies of purified Lacs from PC and CC were separately obtained as 53 and 11.8%. CONCLUSION The results clearly indicated that the performances of Lacs from both cultures in decolorization application are different from each other depending their activities, biochemical and kinetic characteristics.
Collapse
Affiliation(s)
- Merve Akpinar
- Chemistry Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Buca-Izmir, Turkey
| | - Raziye Ozturk Urek
- Chemistry Department, Biochemistry Division, Faculty of Science, Dokuz Eylül University, Buca-Izmir, Turkey
| |
Collapse
|
20
|
Zhuo R, Zhang J, Yu H, Ma F, Zhang X. The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways. CHEMOSPHERE 2019; 234:733-745. [PMID: 31234090 DOI: 10.1016/j.chemosphere.2019.06.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 05/07/2023]
Abstract
Fungal laccases have shown great potential in industrial and environmental applications. They are generally produced as laccase isoenzymes. Thus, to further study the properties of different laccase isoenzymes and their performance in bio-remediation is essential for a deep understanding of laccase function and application. In this study, three Pleurotus ostreatus HAUCC 162 laccase isoenzymes were heterologously expressed, and the effects of different inhibitors, metal ions, and organic solvents on the activity of recombinant laccases were evaluated. In the dye decolorization test, LACC6 showed the highest ability to remove Malachite green (MG), Remazol Brilliant Blue R (RBBR), Bromophenol blue (BB), and Methyl orange (MO) among the three recombinant laccases. Removal rates within 24 h were 91.5%, 84.9%, 79.1%, and 73.1% for MG (100 mg/L), RBBR (100 mg/L), BB (100 mg/L), and MO (100 mg/L), respectively. The MG and RBBR transformation pathways were proposed by using High Performance Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Based on the results of this work, the production of recombinant LACC6 or improving the portion of LACC6 in the crude extracellular laccase may advance synthetic dye removal.
Collapse
Affiliation(s)
- Rui Zhuo
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Institute of Plant and Microbiology, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jingwen Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
21
|
Agrawal K, Verma P. Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Wu MH, Lin MC, Lee CC, Yu SM, Wang AHJ, Ho THD. Enhancement of laccase activity by pre-incubation with organic solvents. Sci Rep 2019; 9:9754. [PMID: 31278318 PMCID: PMC6611822 DOI: 10.1038/s41598-019-45118-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Laccases that are tolerant to organic solvents are powerful bio-catalysts with broad applications in biotechnology. Most of these uses must be accomplished at high concentration of organic solvents, during which proteins undergo unfolding, thereby losing enzyme activity. Here we show that organic-solvent pre-incubation provides effective and reversible 1.5- to 4.0-fold enhancement of enzyme activity of fungal laccases. Several organic solvents, including acetone, methanol, ethanol, DMSO, and DMF had an enhancement effect among all laccases studied. The enhancement was not substrate-specific and could be observed by using both phenolic and non-phenolic substrates. Laccase preincubated with organic solvents was sensitive to high temperature but remained stable at 25 °C, for an advantage for long-term storage. The acetone-pre-incubated 3-D structure of DLac, a high-efficiency fungal laccase, was determined and confirmed that the DLac protein structure remains intact and stable at a high concentration of organic solvent. Moreover, the turnover rates of fungal laccases were improved after organic-solvent pre-incubation, with DLac showing the highest enhancement among the fungal laccases examined. Our investigation sheds light on improving fungal laccase usage under extreme conditions and extends opportunities for bioremediation, decolorization, and organic synthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC.,Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC.,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC. .,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
23
|
Palazzolo MA, Postemsky PD, Kurina-Sanz M. From agro-waste to tool: biotechnological characterization and application of Ganoderma lucidum E47 laccase in dye decolorization. 3 Biotech 2019; 9:213. [PMID: 31114737 DOI: 10.1007/s13205-019-1744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
The culture of fungal species from agro-waste allows for the sustainable preparation of valuable biotechnological products and contributes to establish the Circular Economy concept. The Ganoderma lucidum species is well known as producer of laccases (EC 1.10.3.2), which serves as a tool to oxidize chemicals. When producing G. lucidum E47 basidiomes with edible purposes out of rice crop residues, its laccase remains as by-product. In this work, we report the biotechnological characterization and application of the laccase recovered from spent cultures of the G. lucidum E47 strain. We detected at least one polypeptide (ca. 59 kDa) which displays attractive activity and stability values when used in the range of 18-45 °C in mildly acidic environment (pH 4.8-5.8). These parameters can be enhanced in the presence of organic cosolvents such as butyl acetate and methyl iso-butyl ketone, but the opposite effect is observed with solvents of lower log P. The best activity-stability performance is reached when the biocatalyst is used in pH 4.8 buffer with 5% (v/v) butyl acetate at 37 °C. The laccase was capable of decolorizing xanthene, azo and triarylmethane dyes, exhibiting excellent selectivity on bromocresol green and bromocresol purple. Furthermore, the biocatalyst displayed an attractive activity when assessed for the decolorization of bromocresol green in a proof-of-concept effluent biotreatment.
Collapse
|
24
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
25
|
Ike PTL, Birolli WG, Dos Santos DM, Porto ALM, Souza DHF. Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8675-8684. [PMID: 30706277 DOI: 10.1007/s11356-019-04197-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Laccases produced by Leucoagaricus gongylophorus act in lignocellulose degradation and detoxification processes. Therefore, the use of L. gongylophorus laccase (Lac1Lg) was proposed in this work for degradation of anthracene and others polycyclic aromatic hydrocarbons without the use of mediators. Degradation reactions were performed in buffer aqueous solution with 10 ppm of anthracene and other PAHs, Tween-20 in 0.25% v/v and a laccase preparation of 50 U. The optimum condition (pH 6.0 and 30 °C) was determined by response surface methodology with an excellent coefficient of determination (R2) of 0.97 and an adjusted coefficient of determination (R2adj) of 0.93. In addition, the employment of the mediator ABTS decreased the anthracene biodegradation from 44 ± 1% to 30 ± 1%. This optimum pH of 6.0 suggests that the reaction occurs by a hydrogen atom transfer mechanism. Additionally, in 24 h Lac1Lg biodegraded 72 ± 1% anthracene, 40 ± 3% fluorene and 25 ± 3% phenanthrene. The yellow laccase from L. gongylophorus biodegraded anthracene and produced anthrone and anthraquinone, which are interesting compounds for industrial applications. Moreover, this enzyme also biodegraded the PAHs phenanthrene and fluorene justifying the study of Lac1Lg for bioremediation of these compounds in the environment.
Collapse
Affiliation(s)
- Priscila Tomie Leme Ike
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
- Instituto Federal do Paraná, Rua Antonio Carlos Rodrigues, 453, Porto Seguro, Paranaguá, PR, 87703-539, Brazil
| | - Willian Garcia Birolli
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Danilo Martins Dos Santos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| | - Dulce Helena Ferreira Souza
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
26
|
Chang CH, Hsiung HA, Hong KL, Huang CT. Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol 2018; 18:81. [PMID: 30587177 PMCID: PMC6307218 DOI: 10.1186/s12896-018-0492-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal. Results The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction. Conclusions We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol. Electronic supplementary material The online version of this article (10.1186/s12896-018-0492-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ching-Hsiang Chang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hao-An Hsiung
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kai-Lin Hong
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
27
|
Zhang Y, Dong W, Lv Z, Liu J, Zhang W, Zhou J, Xin F, Ma J, Jiang M. Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Mol Biotechnol 2018; 60:681-689. [PMID: 30030754 DOI: 10.1007/s12033-018-0103-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Laccase CotA from Bacillus subtilis 168 was successfully displayed on the membrane of Escherichia coli cells using poly-γ-glutamate synthetase A protein (PgsA) from B. subtilis as an anchoring matrix. Further analyses demonstrated that the fusion protein PgsA/CotA efficiently translocates to the cell surface of E. coli with an enzymatic activity of 65 U/108 cells. Surface-displayed CotA was shown to possess improved enzymatic properties compared with those of the wild-type CotA, including higher thermal stability (above 90% activity at 70 °C and nearly 40% activity at 90 °C after 5-h incubation) and stronger inhibitor tolerance (approximately 80 and 65% activity when incubated with 200 and 400 mM NaCl, respectively). Furthermore, the whole-cell system was demonstrated to have high enzymatic activity against anthraquinone dye, Acid Blue 62, triphenylmethane dye, Malachite Green, and azo dye, Methyl Orange with the decolorization percentages of 91, 45, and 75%, after 5-h incubation, respectively.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ziyao Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenmin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
28
|
Importance of a Laccase Gene (Lcc1) in the Development of Ganoderma tsugae. Int J Mol Sci 2018; 19:ijms19020471. [PMID: 29415422 PMCID: PMC5855693 DOI: 10.3390/ijms19020471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, a novel laccase gene (Lcc1) from Ganoderma tsugae was isolated and its functions were characterized in detail. The results showed that Lcc1 has the highest expression activity during mycelium development and fruit body maturation based on the analysis of Lcc1 RNA transcripts at different developmental stages of G. tsugae. To investigate the exact contribution of Lcc1 to mycelium and fruit body development in G. tsugae, Lcc1 transgenic strains were constructed by targeted gene replacement and over-expression approaches. The results showed that the lignin degradation rate in Lcc1 deletion mutant was much lower than the degradation efficiency of the wild-type (WT), over-expression and rescue strains. The lignin degradation activity of G. tsugae is dependent on Lcc1 and the deletion of Lcc1 exerted detrimental influences on the development of mycelium branch. Furthermore, the study uncovered that Lcc1 deletion mutants generated much shorter pale grey fruit bodies, suggesting that Lcc1 contributes directly to pigmentation and stipe elongation during fruit body development in G. tsugae. The information obtained in this study provides a novel and mechanistic insight into the specific role of Lcc1 during growth and development of G. tsugae.
Collapse
|
29
|
Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 2017; 7:73. [PMID: 28357784 PMCID: PMC5371579 DOI: 10.1186/s13568-017-0368-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Laccases have gained significant attention due to their emerging applications including bioremediation, biomass degradation and biofuel cells. One of the prerequisites for the industrial application of laccases is their sufficient availability. However, expression levels of recombinantly expressed laccases are often low. In this study Mrl2, a new laccase from the basidiomycete Moniliophthora roreri, was cloned in Pichia pastoris and produced in an optimized fed-batch process at an exceptionally high yield of 1.05 g l−1. With a redox potential of 0.58 V, Mrl2 belongs to mid-redox potential laccases. However, Mrl2 demonstrated high kcat values of 316, 20, 74, and 36 s−1 towards 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol, respectively. Mrl2 remained stable above pH 6 and in the presence of many metal ions, which is important for application in bioremediation. Mrl2 was investigated for the ability to degrade endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSDAIs) at neutral pH value. The enzyme accepted and converted estrone, 17β-estradiol, estriol, the synthetic contraceptive 17α-ethinyl estradiol and bisphenol A at pH 7 faster than high-potential laccases from Trametes versicolor. For example, within 30 min Mrl2 removed more than 90% bisphenol A, 17ß-estradiol, 17α-ethinyl estradiol and estriol, respectively. The concentration of the recalcitrant drug diclofenac dropped by 56% after 20 h incubation with Mrl2.
Collapse
|
30
|
Efficient secretion of three fungal laccases fromSaccharomyces cerevisiaeand their potential for decolorization of textile industry effluent-A comparative study. Biotechnol Prog 2017; 34:69-80. [DOI: 10.1002/btpr.2559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/18/2017] [Indexed: 11/07/2022]
|
31
|
Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization. Enzyme Res 2017; 2017:5947581. [PMID: 28421142 PMCID: PMC5379127 DOI: 10.1155/2017/5947581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Collapse
|
32
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
33
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
34
|
Campos PA, Levin LN, Wirth SA. Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Ademakinwa AN, Agboola FK. Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. J Genet Eng Biotechnol 2016; 14:143-151. [PMID: 30647608 PMCID: PMC6299892 DOI: 10.1016/j.jgeb.2016.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/09/2016] [Accepted: 05/08/2016] [Indexed: 12/01/2022]
Abstract
The study investigated the biochemical characteristics and kinetic parameters of laccase from a newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decay plant litters. This was with a view to identifying the type of laccase and its possible suitability for biotechnological applications. The fungal strain was identified as A. pullulans NAC8 by sequencing of its 5.8S rRNA and adjacent internally transcribed sequences (ITS) 1 and 2. A. pullulans NAC8 laccase was purified 2.0-fold with a yield of 59.3% and specific activity of 9.34 μmol/min/mg protein. The kinetic parameters KM , V max, k cat and k cat/KM for laccase with guaiacol as substrate were 1.05 ± 0.12 mM, 12.67 ± 0.55 μmol/ml/min, 25.3 × 10-1 s-1 and 2.4 × 103 M-1 s-1 respectively. Laccase exhibited maximum activity at 45 °C and optimum pH of 4.5. The enzyme showed stability at a temperature range of 45-55 °C after a 2 h incubation. The molecular weight determined on SDS-PAGE was 68.4 kDa. The enzyme was stable at 10% of all organic solvents used but displayed a loss of activity at 50%. 2.5 mM thioglycolic acid (TGA) and 0.05 mM sodium azide inactivated the enzyme. The substrate specificity was guaiacol > catechol > tannic acid > gallic acid. There was no peak observed at 610 nm and the ratio of absorbance at 280 nm and 610 was 26. This suggests a yellow laccase. The biochemical properties of A. pullulans NAC8 yellow laccase makes it potentially useful in several biotechnological applications.
Collapse
Affiliation(s)
| | - Femi Kayode Agboola
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
36
|
Balakumaran PA, Förster J, Zimmermann M, Charumathi J, Schmitz A, Czarnotta E, Lehnen M, Sudarsan S, Ebert BE, Blank LM, Meenakshisundaram S. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris. BMC Biotechnol 2016; 16:20. [PMID: 26897180 PMCID: PMC4761204 DOI: 10.1186/s12896-016-0251-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/11/2016] [Indexed: 01/28/2023] Open
Abstract
Background Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. Results At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h−1 to 0.16 h−1 were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by 13C-metabolic flux analysis. Conclusion Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Förster
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Martin Zimmermann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jayachandran Charumathi
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai, 600025, India.
| | - Andreas Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Eik Czarnotta
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mathias Lehnen
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Suresh Sudarsan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Birgitta E Ebert
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | |
Collapse
|
37
|
Ike PTL, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto ALM, Souza DHF. Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. SPRINGERPLUS 2015; 4:654. [PMID: 26543788 PMCID: PMC4628026 DOI: 10.1186/s40064-015-1464-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022]
Abstract
In this work we have identified, using mass spectrometry, two laccases produced by Leucoagaricus gongylophorus. One of them, Lac1Lg, was isolated, purified and characterized. Lac1Lg, a monomeric enzyme, was studied using ABTS and syringaldazine substrates. Lac1Lg presented kcat/Km almost threefold higher for syringaldazine than for ABTS, showing a higher catalytic efficiency of Lac1Lg for syringaldazine. The interference of several metal ions and substances in the laccase activity were evaluated. Lac1Lg did not absorb at 600 nm, which is a characteristic of so-called yellow laccases. Lac1Lg also was able to oxidize non-phenolic substrate (anthracene) in the absence of an exogenous mediator, showing that the enzyme has potential to explore in biotechnological processes. Our Lac1Lg three-dimensional molecular model, constructed using homology modeling, showed that the Lac1Lg catalytic site is very closed to blue laccases.
Collapse
Affiliation(s)
| | - Ariele C. Moreira
- />Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Douglas Ferreira
- />Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | | | - Dulce Helena F. Souza
- />Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP Brazil
| |
Collapse
|
38
|
Forootanfar H, Faramarzi MA. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 2015; 31:1443-63. [DOI: 10.1002/btpr.2173] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/30/2015] [Indexed: 12/07/2022]
Affiliation(s)
- Hamid Forootanfar
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy; Kerman University of Medical Sciences; Kerman Iran
| | - Mohammad Ali Faramarzi
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center; Tehran University of Medical Sciences; Tehran 1417614411 Iran
| |
Collapse
|
39
|
Guan ZB, Shui Y, Song CM, Zhang N, Cai YJ, Liao XR. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9515-9523. [PMID: 25847445 DOI: 10.1007/s11356-015-4426-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
Fungal laccases are typically unstable at high pH and temperature conditions, which limit their application in the decolorization of textile wastewater. By contrast, the highly stable bacterial laccases can function within a wider pH range and at high temperatures, thus have significant potential in treatment for textile wastewater. In our previous work, a thermo-alkali-stable CotA-laccase gene was cloned from Bacillus pumilus W3 and overexpressed in Escherichia coli. In this study, the robust CotA-laccase achieved efficient secretory expression in Bacillus subtilis WB600 by screening a suitable signal peptide. A maximum CotA-laccase yield of 373.1 U/mL was obtained at optimum culture conditions in a 3-L fermentor. Furthermore, the decolorization and detoxification of textile industry effluent by the purified recombinant CotA-laccase in the presence and absence of redox mediators were investigated. Among the potential mediators that enhanced effluent decolorization, acetosyringone (ACS) was the most effective. The toxicity of the CotA-laccase-ACS-treated effluent was greatly reduced compared with that of the crude effluent. To the best of our knowledge, this study is the first to report on the heterologous expression of CotA-laccase in B. subtilis. The recombinant strain B. subtilis WB600-5 has a great potential in the industrial production of this bacterial enzyme, and the CotA-laccase-ACS system is a promising candidate for the biological treatment of industrial textile effluents.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
40
|
Yang J, Ng TB, Lin J, Ye X. A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. Int J Biol Macromol 2015; 77:344-9. [PMID: 25825077 DOI: 10.1016/j.ijbiomac.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
A novel laccase gene Lac1 and its cDNA were cloned from a white-rot fungus Cerrena sp. and characterized. The 1554-bp cDNA of Lac1 encoded a mature protein with 497 amino acids, preceded by a signal peptide of 20 amino acids. An unconventional intron splice site and incomplete splicing variants of Lac1 were observed. Lac1 was heterologously expressed in the yeast host Pichia pastoris, and a maximal laccase activity of 6.3UmL(-1) in the fermentation broth was achieved after fermentation for 9 days. The recombinant protein rLac1 was purified, and its enzymatic properties and functional characteristics were investigated. When ABTS was used as the substrate, the enzyme was most active at pH 3.5 and 55°C, and stable at pH 4-10 and 20-60°C. The Km and kcat values of rLac1 toward ABTS were 28.9 μM and 332.4s(-1), respectively. Furthermore, rLac1 was tolerant to common metal ions up to 100mM concentration and capable of decolorizing structurally different dyes in the absence of a redox mediator. Hence, Lac1 may be useful for industrial applications, such as dye decolorization and bioremediation.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juan Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian 350116, China.
| |
Collapse
|
41
|
Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, Lee JK. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 2015; 10:e0120156. [PMID: 25781945 PMCID: PMC4363317 DOI: 10.1371/journal.pone.0120156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
A modified thermal asymmetric interlaced polymerase chain reaction was performed to obtain the first yeast laccase gene (YlLac) from the isolated yeast Yarrowia lipolytica. The 1557-bp full-length cDNA of YlLac encoded a mature laccase protein containing 519 amino acids preceded by a signal peptide of 19 amino acids, and the YlLac gene was expressed in the yeast Pichia pastoris. YlLac is a monomeric glycoprotein with a molecular mass of ~55 kDa as determined by polyacrylamide-gel electrophoresis. It showed a higher catalytic efficiency towards 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (kcat/Km = 17.5 s(-1) μM(-1)) and 2,6-dimethoxyphenol (kcat/Km = 16.1 s(-1) μM(-1)) than other reported laccases. The standard redox potential of the T1 site of the enzyme was found to be 772 mV. The highest catalytic efficiency of the yeast recombinant laccase, YlLac, makes it a good candidate for industrial applications: it removes phenolic compounds in acid-pretreated woody biomass (Populus balsamifera) and enhanced saccharification.
Collapse
Affiliation(s)
- Dayanand Kalyani
- Department of Chemical Engineering, Konkuk University, Seoul, Korea
| | | | - Jinglin Li
- Department of Chemical Engineering, Konkuk University, Seoul, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, India
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, Korea
| |
Collapse
|
42
|
Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: Recombinant enzyme characterization and dye decolorization. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Zhuo R, He F, Zhang X, Yang Y. Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra R. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Purification of a thermostable laccase from Leucaena leucocephala using a copper alginate entrapment approach and the application of the laccase in dye decolorization. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Fermentation optimization, cloning and sequence analysis of the laccase gene from Shiraia sp. SUPER-H168. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0893-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Illner S, Plagemann R, Saling P, Kragl U. Eco-efficiency analysis as a reaction-engineering tool—Case study of a laccase-initiated oxidative C–N coupling. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai YJ, Liao XR. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
49
|
Daroch M, Houghton CA, Moore JK, Wilkinson MC, Carnell AJ, Bates AD, Iwanejko LA. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzyme Microb Technol 2014; 58-59:1-7. [PMID: 24731818 DOI: 10.1016/j.enzmictec.2014.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/15/2022]
Abstract
Here we describe the identification, purification and characterisation of glycosylated yellow laccase proteins from the basidiomycete fungus Stropharia aeruginosa. Biochemical characterisation of two yellow laccases, Yel1p and Yel3p, show that they are both secreted, monomeric, N-glycosylated proteins of molecular weight around 55kDa with substrate specificities typical of laccases, but lacking the absorption band at 612nm typical of the blue laccase proteins. Low coverage, high throughput 454 transcriptome sequencing in combination with inverse-PCR was used to identify cDNA sequences. One of the cDNA sequences has been assigned to the Yel1p protein on the basis of identity between the translated protein sequence and the peptide data from the purified protein, and the full length gene sequence has been obtained. Biochemical properties, substrate specificities and protein sequence data have been used to discuss the unusual spectroscopic properties of S. aeruginosa proteins in the context of recent theories about the differences between yellow and blue laccases.
Collapse
Affiliation(s)
- Maurycy Daroch
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Catharine A Houghton
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jonathan K Moore
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Mark C Wilkinson
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Andrew J Carnell
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Lesley A Iwanejko
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, Department of Musculoskeletal Biology, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, United Kingdom.
| |
Collapse
|
50
|
Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 2013; 30:201-11. [DOI: 10.1007/s11274-013-1440-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|