1
|
Suthar S, Joshi D, Patel H, Patel D, Kikani BA. Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5. World J Microbiol Biotechnol 2024; 40:385. [PMID: 39557691 DOI: 10.1007/s11274-024-04188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.
Collapse
Affiliation(s)
- Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
2
|
Ghevondyan D, Soghomonyan T, Hovhannisyan P, Margaryan A, Paloyan A, Birkeland NK, Antranikian G, Panosyan H. Detergent-resistant α-amylase derived from Anoxybacillus karvacharensis K1 and its production based on whey. Sci Rep 2024; 14:12682. [PMID: 38830978 DOI: 10.1038/s41598-024-63606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), β-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 μmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with β-glucosidase for 24 h.
Collapse
Affiliation(s)
- Diana Ghevondyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Tigran Soghomonyan
- Laboratory of Protein Technologies, Scientific and Production Center "Armbiotechnology" NAS RA, 0056, Yerevan, Armenia
| | - Pargev Hovhannisyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway
- Department of Microbiology, Biocenter, University of Wuerzburg, 97074, Wuerzburg, Germany
| | - Armine Margaryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Ani Paloyan
- Laboratory of Protein Technologies, Scientific and Production Center "Armbiotechnology" NAS RA, 0056, Yerevan, Armenia
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway
| | - Garabed Antranikian
- Center of Biobased Solutions (CBBS), Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Hovik Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Dobariya A, Mankad GP, Ramavat H, Singh SP. Efficacy of the Fruit and Vegetable Peels as Substrates for the Growth and Production of α-Amylases in Marine Actinobacteria. Appl Biochem Biotechnol 2023; 195:7603-7623. [PMID: 37067678 DOI: 10.1007/s12010-023-04422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/18/2023]
Abstract
Enzymes from haloalkaliphilic microorganisms have recently focused attention on their potential and suitability in various applications. In this study, the growth and production of extracellular amylases in the marine actinomycetes, using kitchen waste as the raw starch source, have been investigated. Actinobacteria were isolated from the seawater of the Kachhighadi Coast near Dwarika, Gujarat. Seven Actinobacterial isolates of pre-monsoon, monsoon, and post-monsoon seasons belonging to different strains of Nocardiopsis genera were screened and selected for amylase production. The amylase production was initially assessed on the solid media supplemented with the extracts of different fruits and vegetable peels as a substrate by agar plate assay. The strains Kh-2(13), Kh-2(1), and Kh-3(12) produced maximum amylase with potato peel as a substrate, while no significant differences were found with the media containing other peels. Nevertheless, all strains produced amylases at a significant level with other raw substrates as well. For the optimization of the growth and enzyme production, the selected two isolates Kh-2(13) and Kh-3(12) of the monsoon and winter seasons were cultivated in a liquid medium under the submerged fermentation conditions, with potato peel as a substrate. In both organisms, the optimum amylase production was observed in the stationary phase of growth. For amylase production, the effect of different physical and chemical parameters was evaluated. The optimum growth and amylase production was achieved in 2% inoculum size, at pH 8.0, 28℃, and 5% salt concentration. On the basis of the amylase production index (API) (a ratio of the amylase units and cell growth), both isolates produced significant amylase with the only extract of potato peels, without any other supplements. The trends further indicated that while additional complex sources, such as yeast extract and peptone can enhance the cell growth of the actinobacteria, the amylase production remained unaltered. The study projects the significance of waste raw materials for the production of enzymes in extremophilic microorganisms.
Collapse
Affiliation(s)
- Ankita Dobariya
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Gira P Mankad
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Hasti Ramavat
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India.
| |
Collapse
|
4
|
Slavić MŠ, Kojić M, Margetić A, Stanisavljević N, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. Int J Biol Macromol 2023; 249:126055. [PMID: 37524287 DOI: 10.1016/j.ijbiomac.2023.126055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60-80 °C and is active and stable over a wide pH range (4.0-9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
Collapse
Affiliation(s)
- Marinela Šokarda Slavić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| | - Milan Kojić
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Republic of Serbia; University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Aleksandra Margetić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Nemanja Stanisavljević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Lazar Gardijan
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Nataša Božić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Zoran Vujčić
- University of Belgrade, Faculty of Chemistry, Department of Biochemistry, Belgrade, Republic of Serbia
| |
Collapse
|
5
|
da Rosa DF, Macedo AJ. The genus Anoxybacillus: an emerging and versatile source of valuable biotechnological products. Extremophiles 2023; 27:22. [PMID: 37584877 DOI: 10.1007/s00792-023-01305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Thermophilic and alkaliphilic microorganisms are unique organisms that possess remarkable survival strategies, enabling them to thrive on a diverse range of substrates. Anoxybacillus, a genus of thermophilic and alkaliphilic bacteria, encompasses 24 species and 2 subspecies. In recent years, extensive research has unveiled the diverse array of thermostable enzymes within this relatively new genus, holding significant potential for industrial and environmental applications. The biomass of Anoxybacillus has demonstrated promising results in bioremediation techniques, while the recently discovered metabolites have exhibited potential in medicinal experiments. This review aims to provide an overview of the key experimental findings related to the biotechnological applications utilizing bacteria from the Anoxybacillus genus.
Collapse
Affiliation(s)
- Deisiane Fernanda da Rosa
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
6
|
Omeroglu MA, Baltaci MO, Adiguzel A. Anoxybacillus: an overview of a versatile genus with recent biotechnological applications. World J Microbiol Biotechnol 2023; 39:139. [PMID: 36995480 DOI: 10.1007/s11274-023-03583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The Bacillaceae family members are considered to be a good source of microbial factories for biotechnological processes. In contrast to Bacillus and Geobacillus, Anoxybacillus, which would be thermophilic and spore-forming group of bacteria, is a relatively new genus firstly proposed in the year of 2000. The development of thermostable microbial enzymes, waste management and bioremediation processes would be a crucial parameter in the industrial sectors. There has been increasing interest in Anoxybacillus strains for biotechnological applications. Therefore, various Anoxybacillus strains isolated from different habitats have been explored and identified for biotechnological and industrial purposes such as enzyme production, bioremediation and biodegradation of toxic compounds. Certain strains have ability to produce exopolysaccharides possessing biological activities including antimicrobial, antioxidant and anticancer. This current review provides past and recent discoveries regarding Anoxybacillus strains and their potential biotechnological applications in enzyme industry, environmental processes and medicine.
Collapse
Affiliation(s)
- Mehmet Akif Omeroglu
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey
| | - Mustafa Ozkan Baltaci
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| | - Ahmet Adiguzel
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| |
Collapse
|
7
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
8
|
Sharif S, Shah AH, Fariq A, Jannat S, Rasheed S, Yasmin A. Optimization of amylase production using response surface methodology from newly isolated thermophilic bacteria. Heliyon 2023; 9:e12901. [PMID: 36747954 PMCID: PMC9898621 DOI: 10.1016/j.heliyon.2023.e12901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Present study was aimed at screening and characterizing thermostable amylase-producing bacteria from water and sediment samples of unexplored hot spring of Tatta Pani Kotli Azad Kashmir. Four thermophilic isolates were characterized on morphological, biochemical, physiological basis and were authenticated by molecular analysis. By 16S rDNA sequencing, isolates were identified as Anoxybacillus mongoliensis (MBT001), Anoxybacillus flavithermus (MBT002), Bacillus (MBT004). Among all identified strains, MBT003 showed maximum homology with both Anoxybacillus mongoliensis and Anoxybacillus flavithermus. Amylase activity was analyzed qualitatively in starch agar and quantitatively by DNS method. The optimal enzyme production was observed and authenticated by Response Surface Methodology at 7 pH, 70 °C, 1.25% substrate concentration, 300 μL of inocula volume after 48 h of incubation. Optimum amylase activity (4.4 U/mL) and stability (3.3 U/mL) was observed with 1.5% soluble starch at 70 °C. Maximum activity (3.7 U/mL) and stability (1.5 U/mL) was found at pH 8. Enzyme activity was increased in the presence of MgSO4 and CaCl2. Amylase was stable with surfactants and commercial detergents for 30 min. Supplementation of the enzyme with commercial detergent improved the washing ability of the detergent. This investigation has revealed that these thermostable bacteria are excellent source of amylase which can be used commercially for generating economic activity on sustainable basis.
Collapse
Affiliation(s)
- Sobia Sharif
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Asad Hussain Shah
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
- School of Life Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michal Smith Building, Oxford Road Manchester, UK
- Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Anila Fariq
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Sammyia Jannat
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Sajida Rasheed
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Azra Yasmin
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
9
|
Kikani BA, Suthar S, Joshi D. Nanomaterials: An efficient support to immobilize microbial α–amylases for improved starch hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Sadikhusain Suthar
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Disha Joshi
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| |
Collapse
|
10
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
11
|
Kizhakedathil MPJ, C SD. Acid stable α-amylase from Pseudomonas balearica VITPS19-Production, purification and characterization. ACTA ACUST UNITED AC 2021; 30:e00603. [PMID: 33747801 PMCID: PMC7966826 DOI: 10.1016/j.btre.2021.e00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 02/21/2021] [Indexed: 12/04/2022]
Abstract
α – Amylase was produced from a rhizobacteria Pseudomonas balearica VITPS19. One factor at a time method (OFAT) was employed to optimize the α –amylase production. Three step purification of α – amylase from the fermentation broth. Determining the optimal conditions for enzyme activity. Estimation of the enzymatic kinetic parameters of the α-amylase.
In the present study, α-amylase from Pseudomonas balearica VITPS19 isolated from Kolathur, Tamil Nadu, India was studied. Initially, one factor at a time (OFAT) approach was used to optimize the medium parameters like pH, temperature, carbon and nitrogen sources and the presence of metal ions to enhance the amylase activity. After the optimization, 6.5-fold increase in the enzyme production was observed. Enzyme purification was carried out in three stages. The molecular weight of purified α-amylase was estimated to be 47 kDa.The optimum activity for the purified enzyme was observed at pH 6 in 0.1 M phosphate buffer at 25 ± 2 °C and the activity is enhanced in the presence of ions like Mn2+, Mo6+, Na+, Mg2+and Zn2+ and was inhibited in the presence of Hg2+ ions. Compounds such as Sodium dodecyl sulfate (SDS), Ethylenediaminetetraacetic acid (EDTA), urea and β- mercaptoethanol reduced the amylase activity. The Km and Vmax of the α-amylase was estimated to be 45.23 mM and 20.83 U/mL, respectively.
Collapse
Affiliation(s)
- Moni Philip Jacob Kizhakedathil
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore - 632014, Tamil Nadu, India
| | - Subathra Devi C
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
12
|
Molecular strategies to enhance stability and catalysis of extremophile-derived α-amylase using computational biology. Extremophiles 2021; 25:221-233. [PMID: 33754213 DOI: 10.1007/s00792-021-01223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
α-Amylase is the most significant glycoside hydrolase having applications in various industries. It cleaves the α,1-4 glucosidic linkages of polysaccharides like starch, glycogen to yield a small polymer of glucose in α-anomeric configuration. α-Amylase is produced by all the three domains of life but microorganisms are preferred sources for industrial-scale production due to several advantages. Enormous studies and research have been done in this field in the past few decades. Still, it is requisite to work on enzyme stability and catalysis, as it loses its functionality in extreme. As the enzyme loses its structural and catalytic property under extreme environmental conditions, it is mandatory to confer some potential strategies for enhancing enzyme behaviour in such conditions. This limitation of an enzyme can be overcome up to some extent by extremophiles. They serve as an excellent source of α-amylase with outstanding features. This review is an attempt to encapsulate some structure-based strategies for improving enzyme behaviour thereby enabling researchers to selectively amend any of the strategies as per requirement during upstream and downstream processing for higher enzyme yield and stability. Thus, it will provide some cutting-edge strategies for tailoring α-amylase producing organism and enzyme with the help of several computational biology tools.
Collapse
|
13
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
14
|
Desai RP, Dave D, Suthar SA, Shah S, Ruparelia N, Kikani BA. Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup. Int J Biol Macromol 2020; 169:228-238. [PMID: 33338531 DOI: 10.1016/j.ijbiomac.2020.12.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
Robust amylases with stability and catalysis at multitude of extremities are the need of an hour. Enzyme immobilization may prove beneficial at commercial scale to achieve such attributes. In the present study, a commercially available amylase was immobilized on graphene oxide (GO) - magnetite (Fe3O4) nanoparticles through covalent bonding. The structural and morphological characterizations were conducted by XRD, SEM and TEM. Further, FTIR and TGA confirmed the interaction between amylase, GO and nanoparticles. The variables, such as concentrations of GO (1.3 mg), Fe3O4 (58 μg), and amylase (4.5 mg) were optimized by the response surface methodology using central composite design. High loading capacity of 77.58 μg amylase over 1 μg GO-magnetite nanoparticles was achieved under optimum conditions. Biochemically, the pH optimum remained unaltered, i.e., pH 7, whereas, the alkalitolerance was increased by ~20% in relative activities upon immobilization. The half-life of soluble amylase was 13 h, which enhanced to 20 h upon immobilization in 20 mM phosphate buffer, pH 7 at 50 °C. Besides, the thermodynamic parameters supported the stability trends. The immobilized amylase could be used for 11 subsequent cycles. The mentioned attributes and the dextrose equivalent values during the production of high maltose containing syrup highlighted its commercialization.
Collapse
Affiliation(s)
- Rucha P Desai
- Department of Physical Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Dolly Dave
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Sadikhusain A Suthar
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Shivani Shah
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Nidhi Ruparelia
- Department of Physical Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India.
| |
Collapse
|
15
|
Matpan Bekler F, Güven K, Gül Güven R. Purification and characterization of novel α-amylase from Anoxybacillus ayderensis FMB1. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1856097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatma Matpan Bekler
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Kemal Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Reyhan Gül Güven
- Department of Science Teaching, Faculty of Education, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
16
|
Apostolidi ME, Kalantzi S, Hatzinikolaou DG, Kekos D, Mamma D. Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech 2020; 10:311. [PMID: 32582508 DOI: 10.1007/s13205-020-02305-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
An extracellular acid stable α-amylase from Paecilomyces variotii ATHUM 8891 (PV8891 α-amylase) was purified to homogeneity applying ammonium sulfate fractionation, ion exchange and gel filtration chromatography and exhibited a reduced molecular weight of 75 kDa. The purified enzyme was optimally active at pH 5.0 and 60 °C and stable in acidic pH (3.0-6.0). K m, v max and k cat for starch hydrolysis were found 1.1 g L-1, 58.5 μmole min-1 (mg protein)-1, and 73.1 s-1, respectively. Amylase activity was marginally enhanced by Ca2+ and Fe2+ ions while Cu2+ ions strongly inhibited it. Thermodynamic parameters determined for starch hydrolysis (Ε α, ΔH*, ΔG*, ΔS*, Δ G E - S ∗ and Δ G E - T ∗ ) suggests an effective capacity of PV8891 α-amylase towards starch hydrolysis. Thermal stability of PV8891 α-amylase was assessed at different temperatures (30-80 οC). Thermodynamic parameters ( E a d , ΔH*, ΔG*, ΔS*) as well as the integral activity of a continuous system for starch hydrolysis by the PV8891 α-amylase revealed satisfactory thermostability up to 60 °C. The acidic nature and its satisfactory performance at temperatures lower than the industrially used amylases may represent potential applications of PV8891 α-amylase in starch processing industry.
Collapse
|
17
|
Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t
1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t
1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.
Collapse
|
18
|
Kikani BA, Kourien S, Rathod U. Stability and Thermodynamic Attributes of Starch Hydrolyzing α‐Amylase of
Anoxybacillus rupiensis
TS‐4. STARCH-STARKE 2019. [DOI: 10.1002/star.201900105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- Department of Biological SciencesP.D. Patel Institute of Applied SciencesCharotar University of Science and Technology Changa 388 421 Gujarat India
- Department of MicrobiologyM. & N. Virani Science College Rajkot 360 005 Gujarat India
| | - Susen Kourien
- Department of Biological SciencesP.D. Patel Institute of Applied SciencesCharotar University of Science and Technology Changa 388 421 Gujarat India
| | - Upasna Rathod
- Department of MicrobiologyM. & N. Virani Science College Rajkot 360 005 Gujarat India
| |
Collapse
|
19
|
Ademakinwa AN, Agunbiade MO, Ayinla ZA, Agboola FK. Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. Int J Biol Macromol 2019; 140:833-841. [PMID: 31445154 DOI: 10.1016/j.ijbiomac.2019.08.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 02/04/2023]
Abstract
Industrial enzymes such as α-amylase must be thermostable and also easily purified/concentrated. Hence, aqueous two-phase partitioning systems (ATPS) was exploited for the partitioning of α-amylase from Aureobasidium pullulans due to its numerous advantages over conventional purification strategy. A. pullulans α-amylase was partially purified using ATPS via response surface methodology (RSM). The potentials of the ATPS-purified enzyme for possible industrial application such as resistance to thermal inactivation was investigated in comparison with the crude enzyme. PEG-6000 was the polymer of choice for ATPS as it resulted in higher purification factor (PF), %yield (Y), and partition coefficient (PC). At optimum levels (% w/v) of 20, 12 and 7.5 for PEG-6000, sodium citrate and sodium chloride respectively, maximum PF, Y and PC of 4.2, 88%, and 9.9 respectively were obtained. The response model validation and reliability were established based on the closeness between the experimented and predicted values. The kinetic and thermodynamic parameters such as Q10, t1/2, kd, D - value, Ed, [Formula: see text] [Formula: see text] of the ATPS-purified α-amylase indicated that it was thermostable at 50 to 60 °C compared to the crude α-amylase. A thermodynamically stable and ATPS-purified α-amylase from A. pullulans has properties easily applicable for most industrial processes.
Collapse
Affiliation(s)
- A N Ademakinwa
- Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Nigeria; Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - M O Agunbiade
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, South Africa
| | - Z A Ayinla
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic, Troy, NY 12180, USA
| | - F K Agboola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
20
|
Liao SM, Liang G, Zhu J, Lu B, Peng LX, Wang QY, Wei YT, Zhou GP, Huang RB. Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL. Protein Pept Lett 2019; 26:148-157. [PMID: 30652633 PMCID: PMC6416487 DOI: 10.2174/0929866526666190116162958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology. OBJECTIVE In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL. METHODS α-Amylase activity was assayed with soluble starch as the substrate, and the amount of sugar released was determined by DNS method. For AGXA with calcium ions and without calcium ions, optimum temperature (Topt), half-inactivation temperature (T50) and thermal inactivation (halflife, t1/2) was evaluated. The thermal denaturation of the enzymes was determined by DSC and CD methods. 3D structure of AGXA was homology modeled with α-amylase (5A2A) as the template. RESULTS With calcium ions, the values of Topt, T50, t1/2, Tm and ΔH in AGXA were significantly higher than those of AGXA without calcium ions, showing calcium ions had stabilizing effects on α-amylase structure with the increased temperature. Based on DSC measurements AGXA underwent thermal denaturation by adopting two-state irreversible unfolding processes. Based on the CD spectra, AGXA without calcium ions exhibited two transition states upon unfolding, including α- helical contents increasing, and the transition from α-helices to β-sheet structures, which was obviously different in AGXA with Ca2+ ions, and up to 4 Ca2+ ions were located on the inter-domain or intra-domain regions according to the modeling structure. CONCLUSION These results reveal that Ca2+ ions have pronounced influences on the thermostability of AGXA structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guo-Ping Zhou
- Address correspondence to these authors at the Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, 530004, China; E-mail: , Gordon Life Science Institute, 53 South Cottage Road Belmont, MA, 02478, USA; Tel/Fax: +1-9199875774/ +1-9195215550; E-mail:
| | - Ri-Bo Huang
- Address correspondence to these authors at the Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, 530004, China; E-mail: , Gordon Life Science Institute, 53 South Cottage Road Belmont, MA, 02478, USA; Tel/Fax: +1-9199875774/ +1-9195215550; E-mail:
| |
Collapse
|
21
|
Cihan AC, Yildiz ED, Sahin E, Mutlu O. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. World J Microbiol Biotechnol 2018; 34:95. [PMID: 29904894 DOI: 10.1007/s11274-018-2478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022]
Abstract
Among the thermophilic Bacillaceae family members, α-amylase production of 15 bacilli from genus Anoxybacillus was investigated, some of which are biotechnologically important. These Anoxybacillus α-amylase genes displayed ≥ 91.0% sequence similarities to Anoxybacillus enzymes (ASKA, ADTA and GSX-BL), but relatively lower similarities to Geobacillus (≤ 69.4% to GTA, Gt-amyII), and Bacillus aquimaris (≤ 61.3% to BaqA) amylases, all formerly proposed only in a Glycoside Hydrolase 13 (GH13) subfamily. The phylogenetic analyses of 63 bacilli-originated protein sequences among 93 α-amylases revealed the overall relationships within Bacillaceae amylolytic enzymes. All bacilli α-amylases formed 5 clades different from 15 predefined GH13 subfamilies. Their phylogenetic findings, taxonomic relationships, temperature requirements, and comparisonal structural analyses (including their CSR-I-VII regions, 12 sugar- and 4 calcium-binding sites, presence or absence of the complete catalytic machinery, and their currently unassigned status in a valid GH13 subfamiliy) revealed that these five GH13 α-amylase clades related to familly share some common characteristics, but also display differentiative features from each other and the preclassified ones. Based on these findings, we proposed to divide Bacillaceae related GH13 subfamilies into 5 individual groups: the novel a2 subfamily clustered around α-amylase B2M1-A (Anoxybacillus sp.), the a1, a3 and a4 subfamilies (including the representatives E184aa-A (Anoxybacillus sp.), ATA (Anoxybacillus tepidamans), and BaqA,) all of which were composed from the division of the previously grouped single subfamily around α-amylase BaqA, and the undefinite subfamily formerly defined as xy including Bacillus megaterium NL3.
Collapse
Affiliation(s)
- Arzu Coleri Cihan
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| | | | - Ergin Sahin
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Ozal Mutlu
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Goztepe, 34722, Istanbul, Turkey
| |
Collapse
|
22
|
Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs Worldwide: Diversity and Biotechnological Applications. EXTREMOPHILES IN EURASIAN ECOSYSTEMS: ECOLOGY, DIVERSITY, AND APPLICATIONS 2018. [DOI: 10.1007/978-981-13-0329-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Poddar A, Das SK. Microbiological studies of hot springs in India: a review. Arch Microbiol 2017; 200:1-18. [PMID: 28887679 DOI: 10.1007/s00203-017-1429-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The earliest microbiological studies on hot springs in India date from 2003, a much later date compared to global attention in this striking field of study. As of today, 28 out of 400 geothermal springs have been explored following both culturable and non-culturable approaches. The temperatures and pH of the springs are 37-99 °C and 6.8-10, respectively. Several studies have been performed on the description of novel genera and species, characterization of different bio-resources, metagenomics of hot spring microbiome and whole genome analysis of few isolates. 17 strains representing novel species and many thermostable enzymes, including lipase, protease, chitinase, amylase, etc. with potential biotechnological applications have been reported by several authors. Influence of physico-chemical conditions, especially that of temperature, on shaping the hot spring microbiome has been established by metagenomic investigations. Bacteria are the predominant life forms in all the springs with an abundance of phyla Firmicutes, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes, Deinococcus-Thermus and Chloroflexi. In this review, we have discussed the findings on all microbiological studies that have been carried out to date, on the 28 hot springs. Further, the possibilities of extrapolating these studies for practical applications and environmental impact assessment towards protection of natural ecosystem of hot springs have also been discussed.
Collapse
Affiliation(s)
- Abhijit Poddar
- Biosafety Support Unit, Regional Centre for Biotechnology, NPC Building, 5-6 Institutional Area, Lodhi Road, New Delhi, 110003, India.
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
24
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Yavuz S, Kocabay S, Çetinkaya S, Akkaya B, Akkaya R, Yenidunya AF, Bakıcı MZ. Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB. Int J Biol Macromol 2016; 94:106-113. [PMID: 27717786 DOI: 10.1016/j.ijbiomac.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
A thermostable metalloprotease, produced from an environmental strain of Candida kefyr 41 PSB, was purified 16 fold with a 60% yield by cold ethanol precipitation and affinity chromatography (bentonite-acrylamide-cysteine microcomposite). The purified enzyme appeared as a single protein band at 43kDa. Its optimum pH and temperature points were found to be 7.0 and 105°C, respectively. Km and Vmax values of the enzyme were determined to be 3.5mg/mL and 4.4μmolmL-1min-1, 1.65mg/mL and 6.1μmolmL-1min-1, using casein and gelatine as the substrates, respectively. The activity was inhibited by using ethylenediamine tetraacetic acid (EDTA), indicating that the enzyme was a metalloprotease. Stability of the enzyme was investigated by using thermodynamic and kinetic parameters. The thermal inactivation profile of the enzyme conformed to the first order kinetics. The half life of the enzyme at 95, 105, 115, 125 and 135°C was 1310, 610, 220, 150, and 86min, respectively.
Collapse
Affiliation(s)
- Sevgi Yavuz
- Cumhuriyet University Faculty of Engineering, Department of Bioengineering, 58140 Sivas, Turkey
| | - Samet Kocabay
- Inönü University Faculty of Science, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Serap Çetinkaya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey
| | - Birnur Akkaya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey.
| | - Recep Akkaya
- Cumhuriyet University, Vocational School of Health Services, 58140 Sivas, Turkey
| | - Ali Fazil Yenidunya
- Cumhuriyet University Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas, Turkey
| | - Mustafa Zahir Bakıcı
- Cumhuriyet University, Faculty of Medicine, Department of Microbiology, 58140 Sivas, Turkey
| |
Collapse
|
26
|
Parashar D, Satyanarayana T. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. ACTA ACUST UNITED AC 2016; 43:473-84. [DOI: 10.1007/s10295-015-1721-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
Abstract
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 104 s−1 and K cat/K m: 5 × 104 mL−1 mg−1 s−1] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir–Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca2+ independence, and better than the other known bacterial acidic α-amylases.
Collapse
Affiliation(s)
- Deepak Parashar
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| | - T Satyanarayana
- grid.8195.5 0000000121094999 Department of Microbiology University of Delhi South Campus Benito Juarez Road 110021 New Delhi India
| |
Collapse
|
27
|
Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2. Int J Biol Macromol 2016; 85:208-16. [DOI: 10.1016/j.ijbiomac.2015.12.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
|
28
|
Shukla R, Singh S. Characteristics and thermodynamics of α-amylase from thermophilic actinobacterium, Laceyella sacchari TSI-2. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Homaei A, Ghanbarzadeh M, Monsef F. Biochemical features and kinetic properties of α-amylases from marine organisms. Int J Biol Macromol 2015; 83:306-14. [PMID: 26657843 DOI: 10.1016/j.ijbiomac.2015.11.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Abstract
Marine organisms have the ability of producing enzymes with unique properties compared to those of the same enzymes from terrestrial organisms. α-Amylases are among the most important extracellular enzymes found in various groups of organisms such as plants, animals and microorganisms. They play important roles in their carbohydrates metabolism of each organism. Microbial production of α-amylases is more effective than other sources of the enzyme. Many microorganisms are known to produce α-amylase including bacteria, yeasts, fungi and actinomycetes. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. This review deals with what is known about the kinetics, biochemical properties and applications of these enzymes that have only been found in them and not in other α-amylases, and discussing their mechanistic and regulatory implications.
Collapse
Affiliation(s)
- Ahmad Homaei
- Department of Biochemistry, Faculty of Science, Hormozgan University, Bandar Abbas, Iran.
| | - Mehri Ghanbarzadeh
- Department of Marine Biology, Faculty of Science, Hormozgan University, Bandar Abbas, Iran
| | - Ferial Monsef
- Department of Marine Biology, Faculty of Science, Hormozgan University, Bandar Abbas, Iran
| |
Collapse
|
30
|
Kikani BA, Sharma AK, Singh SP. Culture dependent diversity and phylogeny of thermophilic bacilli from a natural hot spring reservoir in the Gir Forest, Gujarat (India). Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy. Int J Biol Macromol 2015; 81:450-60. [PMID: 26297306 DOI: 10.1016/j.ijbiomac.2015.08.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
Abstract
An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications.
Collapse
|
32
|
Anoxybacillus sp. AH1, an α-amylase-producing thermophilic bacterium isolated from Dargeçit hot spring. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Shukla RJ, Singh SP. Production optimization, purification and characterization of α-amylase from thermophilicBacillus licheniformis TSI-14. STARCH-STARKE 2015. [DOI: 10.1002/star.201500046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rushit J. Shukla
- UGC-CAS Department of Biosciences; Saurashtra University; Rajkot India
| | - Satya P. Singh
- UGC-CAS Department of Biosciences; Saurashtra University; Rajkot India
| |
Collapse
|
34
|
Characteristics and Applicability of Phytase of the Yeast Pichia anomala in Synthesizing Haloperoxidase. Appl Biochem Biotechnol 2015; 176:1351-69. [PMID: 25957272 DOI: 10.1007/s12010-015-1650-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
The phytase of the yeast Pichia anomala is a histidine acid phosphatase based on signature sequences and catalytic amino acids identified by site-directed mutagenesis. Among modulators, N-bromosuccinimide and butanedione inhibit phytase, while Ca(2+) and Ni(2+) stimulate slightly. Vanadate exhibits competitive inhibition of phytase, making it bifunctional to act as haloperoxidase. Molecular docking supports vanadate to share its binding site with phytate. The T 1/2, activation energy (E a ), temperature quotient (Q 10), activation energy of thermal inactivation (Ed), and enthalpy (ΔH d (0) ) of the enzyme are 4.0 min (80 °C), 27.72 kJ mol(-1), 2.1, 410.62 kJ mol(-1), and ∼407.8 kJ mol(-1) (65-80 °C), respectively. The free energy of the process (ΔG d (o) ) increases from 49.56 to 71.58 kJ mol(-1) with rise in temperature, while entropy of inactivation (ΔS d (0) ) remains constant at ∼1.36 kJ mol(-1) K(-1). The supplementation of whole wheat dough with rPPHY resulted in 72.5 % reduction in phytic acid content of bread. These characteristics confirm that the phytase has adequate thermostability for its applicability as a food and feed additive.
Collapse
|
35
|
Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. GENOMICS DATA 2015; 4:54-6. [PMID: 26484176 PMCID: PMC4536058 DOI: 10.1016/j.gdata.2015.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.
Collapse
|
36
|
Characterization and Multiple Applications of a Highly Thermostable and Ca2+-Independent Amylopullulanase of the Extreme Thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 2014; 174:2594-615. [DOI: 10.1007/s12010-014-1212-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
37
|
Isolation and production of thermostable α-amylase from thermophilic Anoxybacillus sp. KP1 from Diyadin hot spring in Ağri, Turkey. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0343-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Maalej H, Hmidet N, Ghorbel-Bellaaj O, Nasri M. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0862-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Sharma A, Satyanarayana T. Characteristics of a High Maltose-Forming, Acid-Stable, and Ca2+-Independent α-amylase of the Acidophilic Bacillus acidicola. Appl Biochem Biotechnol 2013; 171:2053-64. [DOI: 10.1007/s12010-013-0501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
40
|
Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias R, Chan KG. Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 2013; 97:1475-88. [PMID: 23324802 DOI: 10.1007/s00253-012-4663-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
Abstract
The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|