1
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intl1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, China.
| |
Collapse
|
2
|
Wang Y, Jiménez DJ, Zhang Z, van Elsas JD. Functioning of a tripartite lignocellulolytic microbial consortium cultivated under two shaking conditions: a metatranscriptomic study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:54. [PMID: 36991472 DOI: 10.1186/s13068-023-02289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Background
In a previous study, shaking speed was found to be an important factor affecting the population dynamics and lignocellulose-degrading activities of a synthetic lignocellulolytic microbial consortium composed of the bacteria Sphingobacterium paramultivorum w15, Citrobacter freundii so4, and the fungus Coniochaeta sp. 2T2.1. Here, the gene expression profiles of each strain in this consortium were examined after growth at two shaking speeds (180 and 60 rpm) at three time points (1, 5 and 13 days).
Results
The results indicated that, at 60 rpm, C. freundii so4 switched, to a large extent, from aerobic to flexible (aerobic/microaerophilic/anaerobic) metabolism, resulting in continued slow growth till late stage. In addition, Coniochaeta sp. 2T2.1 tended to occur to a larger extent in the hyphal form, with genes encoding adhesion proteins being highly expressed. Much like at 180 rpm, at 60 rpm, S. paramultivorum w15 and Coniochaeta sp. 2T2.1 were key players in hemicellulose degradation processes, as evidenced from the respective CAZy-specific transcripts. Coniochaeta sp. 2T2.1 exhibited expression of genes encoding arabinoxylan-degrading enzymes (i.e., of CAZy groups GH10, GH11, CE1, CE5 and GH43), whereas, at 180 rpm, some of these genes were suppressed at early stages of growth. Moreover, C. freundii so4 stably expressed genes that were predicted to encode proteins with (1) β-xylosidase/β-glucosidase and (2) peptidoglycan/chitinase activities, (3) stress response- and detoxification-related proteins. Finally, S. paramultivorum w15 showed involvement in vitamin B2 generation in the early stages across the two shaking speeds, while this role was taken over by C. freundii so4 at late stage at 60 rpm.
Conclusions
We provide evidence that S. paramultivorum w15 is involved in the degradation of mainly hemicellulose and in vitamin B2 production, and C. freundii so4 in the degradation of oligosaccharides or sugar dimers, next to detoxification processes. Coniochaeta sp. 2T2.1 was held to be strongly involved in cellulose and xylan (at early stages), next to lignin modification processes (at later stages). The synergism and alternative functional roles presented in this study enhance the eco-enzymological understanding of the degradation of lignocellulose in this tripartite microbial consortium.
Collapse
|
3
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
4
|
Del Álamo AC, Pariente MI, Molina R, Martínez F. Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128002. [PMID: 34896717 DOI: 10.1016/j.jhazmat.2021.128002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 05/25/2023]
Abstract
Hospital wastewater represents an important source of pharmaceutical active compounds (PhACs) as contaminants of emerging concern for urban wastewater treatment plants. This work evaluates a fungal biological treatment of a hospital effluent before discharging in the municipal sewer system. This treatment was performed in rotating biological contactors (RBCs) covered with wooden planks in order to promote the attachment of the fungal biomass. These bioreactors, initially inoculated with Trametes versicolor as white rot fungi, have created biofilms of a diversified population of fungal (wood-decaying fungi belonging to Basidiomycota and Ascomycetes) and bacterial (Beta-proteobacteria, Firmicutes, and Acidobacteria) microorganisms. The mixed fungal/bacterial community achieved a stable performance in terms of carbon, nitrogen, and phosphorous reductions for 75 days of continuous operation. Moreover, a remarkable removal of pharmaceutical micropollutants was accomplished especially for antibiotics (98.4 ± 0.7, 83 ± 8% and 76 ± 10 for azithromycin, metronidazole and sulfamethoxazole, respectively). Previous studies have proven a high efficiency of fungi for the removal of microcontaminants as a result of advanced bio-oxidation processes mediated by oxidizing hydroxyl radicals. This study evidences the development of a stable fungal-bacterial mixed culture over wooden-modified RBCs for in-situ removal of pharmaceutical compounds of hospital wastewater under non-sterile conditions and non-strict temperature control, avoiding periodical fungal inoculation due to destabilization and displacement of fungal cultures by indigenous wastewater bacteria.
Collapse
Affiliation(s)
- A Cruz Del Álamo
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
| | - M I Pariente
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain.
| | - F Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
| |
Collapse
|
5
|
Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia. Appl Microbiol Biotechnol 2021; 105:7981-7995. [PMID: 34596724 PMCID: PMC8502130 DOI: 10.1007/s00253-021-11591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/05/2022]
Abstract
In this study, we examined a synthetic microbial consortium, composed of two selected bacteria, i.e., Citrobacter freundii so4 and Sphingobacterium multivorum w15, next to the fungus Coniochaeta sp. 2T2.1, with respect to their fate and roles in the degradation of wheat straw (WS). A special focus was placed on the effects of pH (7.2, 6.2, or 5.2), temperature (25 versus 28 °C), and shaking speed (60 versus 180 rpm). Coniochaeta sp. 2T2.1 consistently had a key role in the degradation process, with the two bacteria having additional roles. Whereas temperature exerted only minor effects on the degradation, pH and shaking speed were key determinants of both organismal growth and WS degradation levels. In detail, the three-partner degrader consortium showed significantly higher WS degradation values at pH 6.2 and 5.2 than at pH 7.2. Moreover, the two bacteria revealed up to tenfold enhanced final cell densities (ranging from log8.0 to log9.0 colony forming unit (CFU)/mL) in the presence of Coniochaeta sp. 2T2.1 than when growing alone or in a bacterial bi-culture, regardless of pH range or shaking speed. Conversely, at 180 rpm, fungal growth was clearly suppressed by the presence of the bacteria at pH 5.2 and pH 6.2, but not at pH 7.2. In contrast, at 60 rpm, the presence of the bacteria fostered fungal growth. In these latter cultures, oxygen levels were significantly lowered as compared to the maximal levels found at 180 rpm (about 5.67 mg/L, ~ 62% of saturation). Conspicuous effects on biomass appearance pointed to a fungal biofilm–modulating role of the bacteria. Key points • Coniochaeta sp. 2T2.1 has a key role in wheat straw (WS) degradation. • Bacterial impact shifts when conditions change. • pH and shaking speed are key drivers of the growth dynamics and WS degradation.
Collapse
|
6
|
Heydari S, Siavoshi F, Sarrafnejad A, Malekzadeh R. Coniochaeta fungus benefits from its intracellular bacteria to form biofilm and defend against other fungi. Arch Microbiol 2021; 203:1357-1366. [PMID: 33386870 DOI: 10.1007/s00203-020-02122-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
During cultivation of a gastric fungus, Coniochaeta polymorpha, growth of Nocardia colonies on top of the fungal culture raised the question whether bacteria originated from inside of fungus. In this study, the likelihood of intracellular origin of bacteria as well as interaction of two microorganisms was assessed. Fluorescence and electron microscopy showed occurrence of several bacterial cells in fungal cytoplasm. A thick biofilm was observed on the surface of co-culture compared with thin one on bacterial and none on fungal monocultures. Field emission scanning electron microscopy (FESEM) micrographs of co-culture showed a dense network of fungal and bacterial cells embedded in a slime-like layer. Dual cultures revealed antagonistic activity of both fungus and bacteria against three Candida species. These findings indicate that Nocardia isolate identified in this study originated from the inside of fungus C. polymorpha. Intracellular bacteria could benefit the fungal host by producing a rigid biofilm and an antifungal compound.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Tavares MP, Morgan T, Gomes RF, Rodrigues MQRB, Castro-Borges W, de Rezende ST, de Oliveira Mendes TA, Guimarães VM. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis. J Proteomics 2021; 236:104121. [PMID: 33540065 DOI: 10.1016/j.jprot.2021.104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
The phytopathogenic fungus Chrysoporthe cubensis has a great capacity to produce highly efficient enzymes for the hydrolysis of lignocellulosic biomass. The bioinfosecretome of C. cubensis was identified by computational predictions of secreted proteins combined with protein analysis using 1D-LC-MS/MS. The in silico secretome predicted 562 putative genes capable of encoding secreted proteins, including 273 CAZymes. Proteomics analysis confirmed the existence of 313 proteins, including 137 CAZymes classified as Glycosyl Hydrolases (GH), Polysaccharide Lyases (PL), Carbohydrate Esterases (CE) and Auxiliary Activities enzymes (AA), which indicates the presence of classical and oxidative cellulolytic mechanisms. The enzymes diversity in the extract shows fungal versatility to act in complex biomasses. This study provides an insight into the lignocellulose-degradation mechanisms by C. cubensis and allows the identification of the enzymes that are potentially useful in improving industrial process of bioconversion of lignocellulose. SIGNIFICANCE: Chrysoporthe cubensis is an important deadly canker pathogen of commercially cultivated Eucalyptus species. The effective depolymerisation of the recalcitrant plant cell wall performed by this fungus is closely related to its high potential of lignocellulolytic enzymes secretion. Since the degradation of biomass occurs in nature almost exclusively by enzyme secretion systems, it is reasonable to suggest that the identification of C. cubensis lignocellulolytic enzymes is relevant in contributing to new sustainable alternatives for industrial solutions. As far as we know, this work is the first accurate proteomic evaluation of the enzymes secreted by this species of fungus. The integration of the gel-based proteomic approach, the bioinformatic prediction of the secretome and the analyses of enzymatic activity are powerful tools in the evaluation of biotechnological potential of C. cubensis in producing carbohydrate-active enzymes. In addition, analysis of the C. cubensis secretome grown in wheat bran draws attention to this plant pathogen and its extracellular enzymatic machinery, especially regarding the identification of promising new enzymes for industrial applications. The results from this work allowed for explanation and reinforce previous research that revealed C. cubensis as a strong candidate to produce enzymes to hydrolyse sugarcane bagasse and similar substrates.
Collapse
Affiliation(s)
- Murillo Peterlini Tavares
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Túlio Morgan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Riziane Ferreira Gomes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | | - William Castro-Borges
- Department of Biological Science, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - Sebastião Tavares de Rezende
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Valéria Monteze Guimarães
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
8
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
9
|
Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine S, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 2019; 20:976. [PMID: 31830917 PMCID: PMC6909477 DOI: 10.1186/s12864-019-6358-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. RESULTS Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. CONCLUSIONS This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.
Collapse
Affiliation(s)
- Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Present address: Colorado State University, College of Agricultural Sciences, 301 University Ave, Fort Collins, CO, 80523, USA.
| | - Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Horticultural Crops Research, USDA ARS, Corvallis, OR, USA
| | - Lisa M Bramer
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mary Lipton
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel Purvine
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie Nicora
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
10
|
Mondo SJ, Jiménez DJ, Hector RE, Lipzen A, Yan M, LaButti K, Barry K, van Elsas JD, Grigoriev IV, Nichols NN. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:229. [PMID: 31572496 PMCID: PMC6757388 DOI: 10.1186/s13068-019-1569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/13/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.
Collapse
Affiliation(s)
- Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521 USA
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102 USA
| | - Nancy N. Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| |
Collapse
|
11
|
Nichols NN, Hector RE, Frazer SE. Genetic transformation of Coniochaeta sp. 2T2.1, key fungal member of a lignocellulose-degrading microbial consortium. Biol Methods Protoc 2019; 4:bpz001. [PMID: 32395621 DOI: 10.1093/biomethods/bpz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Coniochaeta sp. strain 2T2.1 is a key member of a microbial consortium that degrades lignocellulosic biomass. Due to its ecological niche and ability to also grow in pure culture on wheat straw, protocols for transformation and antibiotic selection of the strain were established. Hygromycin was found to be a reliable selectable transformation marker, and the mammalian codon-optimized green fluorescent protein was expressed and used to visualize fluorescence in transformed cells of strain 2T2.1.
Collapse
Affiliation(s)
- Nancy N Nichols
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| | - Ronald E Hector
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| | - Sarah E Frazer
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| |
Collapse
|
12
|
Guo H, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review. BIORESOURCE TECHNOLOGY 2018; 265:532-541. [PMID: 29884341 DOI: 10.1016/j.biortech.2018.05.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
13
|
Novel Collophorina and Coniochaeta species from Euphorbia polycaulis, an endemic plant in Iran. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1382-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Guo H, Chang Y, Lee DJ. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. BIORESOURCE TECHNOLOGY 2018; 252:198-215. [PMID: 29329774 DOI: 10.1016/j.biortech.2017.12.062] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
To realize lignocellulosic biorefinery is of global interest, with enzymatic saccharification presenting an essential stage to convert polymeric sugars to mono-sugars for fermentation use. This mini-review summarizes qualitatively the research focuses discussed the review articles presented in the past 22 months and other relevant papers. The research focuses on pretreatment with improved efficiency, enhanced enzyme production with high yields and high extreme tolerance, feasible combined saccharification and fermentation processes, detailed mechanisms corresponding to the enzymatic saccharification in lignocellulosic biorefinery, and the costs are discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yingju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Behera B, Sethi B, Mishra R, Dutta S, Thatoi H. Microbial cellulases - Diversity & biotechnology with reference to mangrove environment: A review. J Genet Eng Biotechnol 2017; 15:197-210. [PMID: 30647656 PMCID: PMC6296582 DOI: 10.1016/j.jgeb.2016.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022]
Abstract
Cellulose is an abundant natural biopolymer on earth, found as a major constituent of plant cell wall in lignocellulosic form. Unlike other compounds cellulose is not easily soluble in water hence enzymatic conversion of cellulose has become a key technology for biodegradation of lignocellulosic materials. Microorganisms such as aerobic bacteria, fungi, yeast and actinomycetes produce cellulase that degrade cellulose by hydrolysing the β-1, 4-glycosidic linkages of cellulose. In contrast to aerobic bacteria, anaerobic bacteria lack the ability to effectively penetrate into the cellulosic material which leads to the development of complexed cellulase systems called cellulosome. Among the different environments, the sediments of mangrove forests are suitable for exploring cellulose degrading microorganisms because of continuous input of cellulosic carbon in the form of litter which then acts as a substrate for decomposition by microbe. Understanding the importance of cellulase, the present article overviews the diversity of cellulolytic microbes from different mangrove environments around the world. The molecular mechanism related to cellulase gene regulation, expression and various biotechnological application of cellulase is also discussed.
Collapse
Affiliation(s)
- B.C. Behera
- Department of Biotechnology, North Orissa University, Baripada 757003, Odisha, India
| | - B.K. Sethi
- Department of Biotechnology, MITS School of Biotechnology, Bhubaneswar 751024, India
| | - R.R. Mishra
- Department of Biotechnology, MITS School of Biotechnology, Bhubaneswar 751024, India
| | - S.K. Dutta
- Department of Zoology, North Orissa University, Baripada 757003, Odisha, India
| | - H.N. Thatoi
- Department of Biotechnology, North Orissa University, Baripada 757003, Odisha, India
| |
Collapse
|
16
|
Draft Genome Sequence of Coniochaeta ligniaria NRRL 30616, a Lignocellulolytic Fungus for Bioabatement of Inhibitors in Plant Biomass Hydrolysates. GENOME ANNOUNCEMENTS 2017; 5:5/4/e01476-16. [PMID: 28126934 PMCID: PMC5270693 DOI: 10.1128/genomea.01476-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, we report the first draft genome sequence (42.38 Mb containing 13,657 genes) of Coniochaeta ligniaria NRRL 30616, an ascomycete with biotechnological relevance in the bioenergy field given its high potential for bioabatement of toxic furanic compounds in plant biomass hydrolysates and its capacity to degrade lignocellulosic material.
Collapse
|
17
|
Markad VL, Adav SS, Ghole VS, Sze SK, Kodam KM. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash. CHEMOSPHERE 2016; 160:104-113. [PMID: 27371791 DOI: 10.1016/j.chemosphere.2016.06.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/25/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding.
Collapse
Affiliation(s)
- Vijaykumar L Markad
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Vikram S Ghole
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kisan M Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
18
|
Adav SS, Ravindran A, Sze SK. Study of Phanerochaete chrysosporium Secretome Revealed Protein Glycosylation as a Substrate-Dependent Post-Translational Modification. J Proteome Res 2014; 13:4272-80. [DOI: 10.1021/pr500385y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sunil S. Adav
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Anita Ravindran
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| |
Collapse
|
19
|
Adav SS, Ravindran A, Sze SK. Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition. J Proteome Res 2013; 12:2715-31. [PMID: 23647126 DOI: 10.1021/pr4000762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | | | |
Collapse
|