1
|
Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit Rev Biotechnol 2024; 44:337-351. [PMID: 36779332 DOI: 10.1080/07388551.2023.2166809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Industrial-Scale Production of Mycotoxin Binder from the Red Yeast Sporidiobolus pararoseus KM281507. J Fungi (Basel) 2022; 8:jof8040353. [PMID: 35448584 PMCID: PMC9029514 DOI: 10.3390/jof8040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Collapse
|
3
|
Liu J, Zhang J, Zhang Y, Wang Y, Wang M, Li Z, Wang G, Su X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022; 237:122956. [PMID: 34736681 DOI: 10.1016/j.talanta.2021.122956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
In this paper, we proposed a dual-signal fluorometric and colorimetric system based on silicon quantum dots (SiQDs) and 4-nitrophenol (4-NP) for pH and urease sensing. SiQDs with fluorescence emission of 460 nm were prepared via aqueous-phase synthesis. As the pH of the system gradually increased, the absorption band of 4-NP at 400 nm increased and a color reaction from colorless to yellow occurred. The absorption of 4-NP overlapped quiet well with the fluorescence excitation spectrum of SiQDs, which can effectively quench the fluorescence of SiQDs. Therefore, the change of fluorescence and absorption intensities could be used to quantify pH value. The fluorometric and colorimetric pH-sensing systems both exhibited a linear respond to pH ranging from 6.0 to 7.8 with an interval of 0.2 pH unit. Urease could specifically hydrolyze urea to generate carbon dioxide and ammonia, causing an obvious increase of the pH value. Thus, urease could also be detected quantitatively by the above dual-signal pH sensing system. The linear ranges of the fluorometric and colorimetric methods for urease detection were both 2-40 U L-1. The limits of detection were 1.67 and 1.07 U L-1, respectively. More importantly, this established dual-signal system has been successfully exploited in the detection of urease in real samples with satisfactory recoveries. Compared with other traditional single-signal assay strategies, the results obtained by dual-signal methods are more accurate and reliable.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ziwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, PR China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
4
|
Li X, Li M, Guo J, Liu X, Liao X, Shi B. Collagen peptide provides Streptomyces coelicolor CGMCC 4.7172 with abundant precursors for enhancing undecylprodigiosin production. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Effective and ecofriendly converting biomass to chemicals is important for sustainable engineering based on the foreseeable shortage of fossil resources. Undecylprodigiosin (UP) is a promising antibiotic, but the direct feeding of pure precursor amino acids makes it costly for large-scale production. Here, collagen peptide (CP), a renewable animal-derived biomass contains abundant precursor amino acids of UP. CP can act as carbon and nitrogen source for the growth of Streptomyces coelicolor CGMCC 4.7172. The plant biomasses including soybean meal, wheat bran, and malt extract were unsuitable for UP prodution. However, 365.40 µg/L UP was detected after 24 h in the media containing CP, and its highest concentration reached 1198.01 µg/L. UP was also detected in the media containing meat hydrolysates of domestic animals, but its initial production time was delayed, and final concentration was lower than that in the medium containing CP only. Compared the fermentation performances of CP and other proteins, CP has a special superiority for UP production. These results revealed that UP biosynthesis may be dependent on amino acid availability of substrates and CP is beneficial for UP production because of its specific amino acid composition.
Graphical abstract
Collapse
|
5
|
Foong LC, Loh CWL, Ng HS, Lan JCW. Recent development in the production strategies of microbial carotenoids. World J Microbiol Biotechnol 2021; 37:12. [DOI: 10.1007/s11274-020-02967-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
|
6
|
Chang M, Zhang T, Guo X, Liu Y, Liu R, Jin Q, Wang X. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Mapelli-Brahm P, Barba FJ, Remize F, Garcia C, Fessard A, Mousavi Khaneghah A, Sant'Ana AS, Lorenzo JM, Montesano D, Meléndez-Martínez AJ. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Mathimaran A, Kumar A. Changes in morphogenesis and carotenogenesis to influence polygalacturonase secretion in Aspergillus carbonarius mutant. Arch Microbiol 2020; 202:1285-1293. [PMID: 32128608 DOI: 10.1007/s00203-020-01838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Mycelial morphogenesis and the production of fungal secretory proteins are still largely unknown. A mutant strain of Aspergillus carbonarius UV-10046 produced abundant polygalacturonase (PG) along with partially saturated canthaxanthin (PSC) at low pH conditions. In the present study, the relationship between PG secretion and PSC biosynthesis was studied using carotenogenic inhibitors and SDS-PAGE electrophoresis. Also the correlation between morphogenesis and PG secretion was investigated by analysing through microscopic studies. From the results, it was observed that secretion of PG was positively influenced by the PSC biosynthesis. The results also showed that the mutant with hairy mycelial structure resulted in higher PG activity when compared to the wild type that lacks hyper branching. From the results, it was confirmed that a mutation might have occurred in the isoprenoid pathway that has helped mutant for survival at acidic conditions. Further, an alteration in the morphogenesis and hyper branching development caused over secretion of PG enzyme in the mutant.
Collapse
Affiliation(s)
- Ahila Mathimaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | - Anbarasu Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu, 613403, India.
| |
Collapse
|
9
|
Li L, Chen S, Gao M, Ding B, Zhang J, Zhou Y, Liu Y, Yang H, Wu Q, Chen F. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Appl Microbiol Biotechnol 2019; 103:8393-8402. [DOI: 10.1007/s00253-019-10114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
|
10
|
Gong G, Liu L, Zhang X, Tan T. Multi-omics metabolism analysis on irradiation-induced oxidative stress to Rhodotorula glutinis. Appl Microbiol Biotechnol 2018; 103:361-374. [PMID: 30343426 DOI: 10.1007/s00253-018-9448-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/29/2018] [Accepted: 10/07/2018] [Indexed: 01/07/2023]
Abstract
Oxidative stress is induced in many organisms by various natural abiotic factors including irradiation. It has been demonstrated that it significantly improves growth rate and lipid production of Rhodotorula glutinis. However, the specific mechanism of how irradiation influences the metabolism of R. glutinis remains still unavailable. To investigate and better understand the mechanisms involved in irradiation-induced stress resistance in R. glutinis, a multi-omics metabolism analysis was implemented. The results confirmed that irradiation indeed not only improved cell biomass but also accelerated the production of carotenoids and lipids, especially neutral lipid. Compared with the control, metabolome profiling in the group exposed to irradiation exhibited an obvious difference in the activation of the tricarboxylic acid cycle and triglyceride (TAG) production. The results of proteome analysis (data are available via ProteomeXchange with identifier PXD009678) showed that 423 proteins were changed significantly, and proteins associated with protein folding and transport, the Hsp40 and Sec12, were obviously upregulated, indicating that cells responded to irradiation by accelerating the protein folding and transport of correctly folded proteins as well as enhanced the degradation of misfolded proteins. A significant upregulation of the carotenoid biosynthetic pathway was observed which revealed that increased carotenoid content is a cellular defense mechanism against oxidative stress generated by irradiation. Therefore, the results of comprehensive omics analysis provide intensive insights on the response mechanism of R. glutinis to irradiation-induced oxidative stress which could be helpful for using irradiation as an effective strategy to enhance the joint production of the neutral lipid and carotene.
Collapse
Affiliation(s)
- Guiping Gong
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Luo Liu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
11
|
Abstract
The production of pigments by edible filamentous fungi is gaining attention as a result of the increased interest in natural sources with added functionality in the food, feed, cosmetic, pharmaceutical and textile industries. The filamentous fungus Neurospora intermedia, used for production of the Indonesian food “oncom”, is one potential source of pigments. The objective of the study was to evaluate the fungus’ pigment production. The joint effect from different factors (carbon and nitrogen source, ZnCl2, MgCl2 and MnCl2) on pigment production by N. intermedia is reported for the first time. The scale-up to 4.5 L bubble column bioreactors was also performed to investigate the effect of pH and aeration. Pigment production of the fungus was successfully manipulated by varying several factors. The results showed that the formation of pigments was strongly influenced by light, carbon, pH, the co-factor Zn2+ and first- to fourth-order interactions between factors. The highest pigmentation (1.19 ± 0.08 mg carotenoids/g dry weight biomass) was achieved in a bubble column reactor. This study provides important insights into pigmentation of this biotechnologically important fungus and lays a foundation for future utilizations of N. intermedia for pigment production.
Collapse
|
12
|
Bu X, Sun L, Shang F, Yan G. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. PLoS One 2017; 12:e0188385. [PMID: 29161329 PMCID: PMC5697841 DOI: 10.1371/journal.pone.0188385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based approach. The results showed that most of the central intermediates associated with amino acids, carbohydrates, glycolysis and TCA cycle intermediates (acetic acid, glycerol, citric acid, pyruvic acid and succinic acid), fatty acids, ergosterol and energy metabolites were produced in a lower amount in recombinant strain, as compared to the parent strain. To increase β-carotene production in recombinant strain, a strategy that exogenous addition of acetate (10 g/l) in exponential phase was developed, which could enhance most intracellular metabolites levels and result in 39.3% and 14.2% improvement of β-carotene concentration and production, respectively, which was accompanied by the enhancement of acetyl-CoA, fatty acids, ergosterol and ATP contents in cells. These results indicated that the amounts of intracellular metabolites in engineered strain are largely consumed by carotenoid formation. Therefore, maintaining intracellular metabolites pool at normal levels is essential for carotenoid biosynthesis. To relieve this limitation, rational supplementation of acetate could be a potential way because it can partially restore the levels of intracellular metabolites and improve the production of carotenoid compounds in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Xiao Bu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Liang Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Fei Shang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, P.R., China
| | - Guoliang Yan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
- * E-mail:
| |
Collapse
|
13
|
Li X, Zeng WC, Zhu DY, Feng JL, Tian CC, Liao XP, Shi B. Investigation of collagen hydrolysate used as carbon and nitrogen source in the fermentation of Bacillus pumilus. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Thanapimmetha A, Suwaleerat T, Saisriyoot M, Chisti Y, Srinophakun P. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture. Bioprocess Biosyst Eng 2016; 40:133-143. [PMID: 27646907 DOI: 10.1007/s00449-016-1681-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/10/2016] [Indexed: 01/25/2023]
Abstract
Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.
Collapse
Affiliation(s)
- Anusith Thanapimmetha
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Tharatron Suwaleerat
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Maythee Saisriyoot
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
15
|
Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
|
17
|
Effect of Medium pH on Rhodosporidium toruloides NCYC 921 Carotenoid and Lipid Production Evaluated by Flow Cytometry. Appl Biochem Biotechnol 2016; 179:776-87. [DOI: 10.1007/s12010-016-2030-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
18
|
A pH shift feeding strategy for increased enduracidin production during fed–batch fermentation by a deep–sea, bacterium, Streptomyces sp. MC079. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0251-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Dias C, Sousa S, Caldeira J, Reis A, Lopes da Silva T. New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. BIORESOURCE TECHNOLOGY 2015; 189:309-318. [PMID: 25898094 DOI: 10.1016/j.biortech.2015.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The optimal medium pH to produce biomass and fatty acids by the red yeast Rhodosporidium toruloides NCYC 921 is 4.0, and to produce carotenoids is 5.0. Based on this difference, a dual-stage pH control fed-batch cultivation strategy for the enhancement of lipids and carotenoids production by this yeast was studied. The results showed that when the yeast growth phase was conducted at pH 4.0, and the products accumulation phase was conducted at pH 5.0, biomass, total fatty acid and total carotenoid productivities were significantly improved comparing with the yeast fed batch cultivations carried out at fixed medium pH (4 or 5). Under dual-stage pH control conditions, the biomass, carotenoids and lipids productivities attained 2.35 g/Lh, 0.29 g/Lh and 0.40 g/Lh, respectively. It was also observed that the oxygen played a major role in the yeast carotenoid production.
Collapse
Affiliation(s)
- Carla Dias
- Laboratório Nacional de Energia e Geologia-LNEG, I.P., Unidade de Bioenergia, BBRI-Infraestrutura de Investigação em Biomassa e Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Sofia Sousa
- Laboratório Nacional de Energia e Geologia-LNEG, I.P., Unidade de Bioenergia, BBRI-Infraestrutura de Investigação em Biomassa e Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - João Caldeira
- Laboratório Nacional de Energia e Geologia-LNEG, I.P., Unidade de Bioenergia, BBRI-Infraestrutura de Investigação em Biomassa e Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Alberto Reis
- Laboratório Nacional de Energia e Geologia-LNEG, I.P., Unidade de Bioenergia, BBRI-Infraestrutura de Investigação em Biomassa e Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Teresa Lopes da Silva
- Laboratório Nacional de Energia e Geologia-LNEG, I.P., Unidade de Bioenergia, BBRI-Infraestrutura de Investigação em Biomassa e Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal.
| |
Collapse
|
20
|
Li X, Lin Y, Chang M, Jin Q, Wang X. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. BIORESOURCE TECHNOLOGY 2015; 181:275-82. [PMID: 25661306 DOI: 10.1016/j.biortech.2015.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 05/23/2023]
Abstract
Arachidonic acid (ARA) yield and productivity of Mortierella alpina mutant D20 were enhanced by integrating a fed-batch culture combined with a two-stage pH control strategy. Following a kinetic analysis of the whole fermentation process, a two-stage pH control strategy was developed in which the pH was maintained at 5.5 for the first 48 h and then shifted to 6.5 till the end of fermentation. Using this strategy, a maximum ARA production of 8.12 g/L was achieved. On the basis of pH control, the effects of fed-batch cultures on ARA productivity were further investigated. A maximum ARA productivity of 1.40 g/L/d was obtained with a two-stage constant-speed glucose feeding strategy, starting with a glucose concentration of 50 g/L. This strategy was simple and economical to operate, and it may be possible to apply this approach for large-scale industrial production of ARA.
Collapse
Affiliation(s)
- Xiangyu Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ye Lin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
21
|
Dong Y, Xu R, Wang L, Zhang J, Bai C, Sun A, Wei D. A combined feeding strategy for enhancing mycophenolic acid production by fed-batch fermentation in Penicillium brevicompactum. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Sun L, Shang F, Duan CQ, Yan GL. Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|