1
|
Maharjan A, Singhvi M, Kim BS. Cell-free biocatalysis for co-production of nicotinamide mononucleotide and ethanol from Saccharomyces cerevisiae and recombinant Escherichia coli. Enzyme Microb Technol 2025; 184:110585. [PMID: 39813904 DOI: 10.1016/j.enzmictec.2025.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate. The optimal cell-free enzyme concentration and substrate concentration were investigated to maximize NMN production. The results showed that combined cell-free enzymes led to increased NMN and ethanol yields, with a maximum production of 1.5 mM NMN (2.7-fold) and ethanol production of 0.45 g/L achieved (1.6-fold) compared to individual cell-free enzymes. Furthermore, the study demonstrated that the protein concentration affected NMN production, with optimal production achieved at 5 g/L. This study demonstrates the potential of integrating multiple metabolic pathways in a single cell-free system, paving the way for the development of more efficient and sustainable bioproduction processes.
Collapse
Affiliation(s)
- Anoth Maharjan
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
2
|
Torbica AM, Vujasinović V, Miljić U, Radivojević G, Filipčev B, Miljić M, Radosavljević M. Successful Strategy in Creating Low-FODMAP Wholegrain Bread-Simple and Global. Foods 2025; 14:304. [PMID: 39856969 PMCID: PMC11764468 DOI: 10.3390/foods14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Fermentable oligo-, di-, and monosaccharides as well as polyols (FODMAPs) came into focus following recent clinical studies confirming that they worsen the symptoms of several gastrointestinal disorders suffered by 40% of the general population. Currently; only the low-FODMAP diet is a valuable strategy to help relieve IBS symptoms; however; it is only a temporary solution due to the nutritional deficiency caused by avoiding high-FODMAP foods. At the same time; bakery products are an important part of the human diet worldwide and the key contributors to the high intake of FODMAPs; especially in their wholegrain form. Previous research has shown that reducing FODMAPs content has negative effects on the structures of dough and bread; as well as on sensory quality. Our innovative low-FODMAP wholegrain bakery products provide a unique solution for achieving a high-dietary-fiber intake without compromising the sensory appeal. The novelty of our work is that these experiments were the first to be performed based on known but unexploited facts about the superiority of the baker's yeast enzymatic complex. A crucial reduction in FODMAP content (by more than 75%) was achieved via a simple alteration to the bread formulation (6% baker's yeast and the addition of baking powder) and key process parameter values (40 °C and 60 min dough fermentation time) in conventional breadmaking technology.
Collapse
Affiliation(s)
- Aleksandra M. Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Uroš Miljić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Milorad Miljić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| |
Collapse
|
3
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
5
|
Aminian A, Motamedian E. Investigating ethanol production using the Zymomonas mobilis crude extract. Sci Rep 2023; 13:1165. [PMID: 36670195 PMCID: PMC9860009 DOI: 10.1038/s41598-023-28396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cell-free systems have become valuable investigating tools for metabolic engineering research due to their easy access to metabolism without the interference of the membrane. Therefore, we applied Zymomonas mobilis cell-free system to investigate whether ethanol production is controlled by the genes of the metabolic pathway or is limited by cofactors. Initially, different glucose concentrations were added to the extract to determine the crude extract's capability to produce ethanol. Then, we investigated the genes of the metabolic pathway to find the limiting step in the ethanol production pathway. Next, to identify the bottleneck gene, a systemic approach was applied based on the integration of gene expression data on a cell-free metabolic model. ZMO1696 was determined as the bottleneck gene and an activator for its enzyme was added to the extract to experimentally assess its effect on ethanol production. Then the effect of NAD+ addition at the high concentration of glucose (1 M) was evaluated, which indicates no improvement in efficiency. Finally, the imbalance ratio of ADP/ATP was found as the controlling factor by measuring ATP levels in the extract. Furthermore, sodium gluconate as a carbon source was utilized to investigate the expansion of substrate consumption by the extract. 100% of the maximum theoretical yield was obtained at 0.01 M of sodium gluconate while it cannot be consumed by Z. mobilis. This research demonstrated the challenges and advantages of using Z. mobilis crude extract for overproduction.
Collapse
Affiliation(s)
- Amirhossein Aminian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
6
|
Cell-Free Escherichia coli Synthesis System Based on Crude Cell Extracts: Acquisition of Crude Extracts and Energy Regeneration. Processes (Basel) 2022. [DOI: 10.3390/pr10061122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell-free synthetic biology is advancing with unprecedented control and design. The development of cell-free biosynthesis involves both pure enzyme and crude enzyme systems. The relatively cheap crude enzyme system is more suitable for the scientific research needs of ordinary laboratories. The key factor in giving full play to the advantages of the system is to obtain high-quality cell crude extract and its energy regeneration system, but there is no systematic report on the development history of these two aspects. Therefore, in this paper, the development history of the process of obtaining crude extract from cell-free biosynthesis was carried out based on Escherichia coli, which is widely used at present, and the energy regeneration system was briefly introduced. Finally, the challenges of current cell-free synthetic systems are discussed.
Collapse
|
7
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
8
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
9
|
Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production. Trends Biotechnol 2020; 38:766-778. [DOI: 10.1016/j.tibtech.2019.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/26/2023]
|
10
|
A Machine Learning Approach for Efficient Selection of Enzyme Concentrations and Its Application for Flux Optimization. Catalysts 2020. [DOI: 10.3390/catal10030291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The metabolic engineering of pathways has been used extensively to produce molecules of interest on an industrial scale. Methods like gene regulation or substrate channeling helped to improve the desired product yield. Cell-free systems are used to overcome the weaknesses of engineered strains. One of the challenges in a cell-free system is selecting the optimized enzyme concentration for optimal yield. Here, a machine learning approach is used to select the enzyme concentration for the upper part of glycolysis. The artificial neural network approach (ANN) is known to be inefficient in extrapolating predictions outside the box: high predicted values will bump into a sort of “glass ceiling”. In order to explore this “glass ceiling” space, we developed a new methodology named glass ceiling ANN (GC-ANN). Principal component analysis (PCA) and data classification methods are used to derive a rule for a high flux, and ANN to predict the flux through the pathway using the input data of 121 balances of four enzymes in the upper part of glycolysis. The outcomes of this study are i. in silico selection of optimum enzyme concentrations for a maximum flux through the pathway and ii. experimental in vitro validation of the “out-of-the-box” fluxes predicted using this new approach. Surprisingly, flux improvements of up to 63% were obtained. Gratifyingly, these improvements are coupled with a cost decrease of up to 25% for the assay.
Collapse
|
11
|
Ajjolli Nagaraja A, Fontaine N, Delsaut M, Charton P, Damour C, Offmann B, Grondin-Perez B, Cadet F. Flux prediction using artificial neural network (ANN) for the upper part of glycolysis. PLoS One 2019; 14:e0216178. [PMID: 31067238 PMCID: PMC6505829 DOI: 10.1371/journal.pone.0216178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
The selection of optimal enzyme concentration in multienzyme cascade reactions for the highest product yield in practice is very expensive and time-consuming process. The modelling of biological pathways is a difficult process because of the complexity of the system. The mathematical modelling of the system using an analytical approach depends on the many parameters of enzymes which rely on tedious and expensive experiments. The artificial neural network (ANN) method has been successively applied in different fields of science to perform complex functions. In this study, ANN models were trained to predict the flux for the upper part of glycolysis as inferred by NADH consumption, using four enzyme concentrations i.e., phosphoglucoisomerase, phosphofructokinase, fructose-bisphosphate-aldolase, triose-phosphate-isomerase. Out of three ANN algorithms, the neuralnet package with two activation functions, “logistic” and “tanh” were implemented. The prediction of the flux was very efficient: RMSE and R2 were 0.847, 0.93 and 0.804, 0.94 respectively for logistic and tanh functions using a cross validation procedure. This study showed that a systemic approach such as ANN could be used for accurate prediction of the flux through the metabolic pathway. This could help to save a lot of time and costs, particularly from an industrial perspective. The R-code is available at: https://github.com/DSIMB/ANN-Glycolysis-Flux-Prediction.
Collapse
Affiliation(s)
- Anamya Ajjolli Nagaraja
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | | | - Mathieu Delsaut
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Philippe Charton
- DSIMB, INSERM, UMR S-1134, Laboratory of ExcellenceLABEX GR, Faculty of Sciences and Technology, University of La Reunion & University Paris Diderot, Paris, France
| | - Cedric Damour
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Bernard Offmann
- Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286 CNRS, UFR Sciences et Techniques, chemin de la Houssinière, France
| | - Brigitte Grondin-Perez
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Frederic Cadet
- DSIMB, INSERM, UMR S-1134, Laboratory of ExcellenceLABEX GR, Faculty of Sciences and Technology, University of La Reunion & University Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
13
|
Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
High-yield production of D-1,2,4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system. J Biotechnol 2019; 292:76-83. [PMID: 30703470 DOI: 10.1016/j.jbiotec.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 11/21/2022]
Abstract
Approaches using metabolic engineering to produce D-1, 2, 4-butanetriol (BT) from renewable biomass in microbial systems have achieved initial success. However, due to the lack of incomplete understanding of the complex branch pathway, the efficient fermentation system for BT production was difficult to develop. Here we reconstituted a cell-free system in vitro using purified enzymes to produce BT from d-xylose. The factors that influencing the efficiency of cell-free system, including enzyme concentration, reaction buffer, pH, temperature, metal ion additives and cofactors were first identified to define optimal reaction conditions and essential components for the cascade reaction. Meanwhile, a natural cofactor recycling system was found in cell-free system. Finally, we were able to convert 18 g/L xylose to 6.1 g/L BT within 40 h with a yield of 48.0%. The feasibility of cell-free system to produce BT in corncob hydrolysates was also determined.
Collapse
|
15
|
Loan TD, Easton CJ, Alissandratos A. Recombinant cell-lysate-catalysed synthesis of uridine-5'-triphosphate from nucleobase and ribose, and without addition of ATP. N Biotechnol 2018; 49:104-111. [PMID: 30347258 DOI: 10.1016/j.nbt.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Nucleoside triphosphates (NTPs) are important synthetic targets with diverse applications in therapeutics and diagnostics. Enzymatic routes to NTPs from simple building blocks are attractive, however the cost and complexity of assembling the requisite mixtures of multiple enzymes hinders application. Here, we describe the use of an engineered E. coli cell-free lysate as an efficient readily-prepared multi-enzyme biocatalyst for the production of uridine triphosphate (UTP) from free ribose and nucleobase. Endogenous lysate enzymes are able to support the nucleobase ribosylation and nucleotide phosphorylation steps, while uridine phosphorylation and the production of ribose phosphates (ribose 1-phosphate, ribose 5-phosphate and phosphoribosyl pyrophosphate) require recombinant enrichment of endogenous activities. Co-expression vectors encoding all required recombinant enzymes were employed for host cell transformation, such that a cell-free lysate with all necessary activities was obtained from a single bacterial culture. ATP required as phosphorylation cofactor was recycled by endogenous lysate enzymes using cheap, readily-prepared acetyl phosphate. Surprisingly, acetyl phosphate initiated spontaneous generation of ATP in the lysate, most likely from the breakdown of endogenous pools of adenosine-containing starting materials (e.g. adenosine cofactors, ribonucleic acids). The sub-stoichiometric amount of ATP produced and recycled in this way was enough to support all ATP-dependent steps without addition of any exogenous cofactor or auxiliary enzyme. Using this approach, equimolar solutions of orotic acid and ribose are transformed near quantitatively into 1.4 g L-1 UTP within 2.5 h, using a low-cost, readily-generated biocatalytic preparation.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
16
|
Wang Y, Ren H, Zhao H. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit Rev Biochem Mol Biol 2018; 53:115-129. [PMID: 29411648 PMCID: PMC6112242 DOI: 10.1080/10409238.2018.1431201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Biocatalysts have been increasingly used in the synthesis of fine chemicals and medicinal compounds due to significant advances in enzyme discovery and engineering. To mimic the synergistic effects of cascade reactions catalyzed by multiple enzymes in nature, researchers have been developing artificial tandem enzymatic reactions in vivo by harnessing synthetic biology and metabolic engineering tools. There is also growing interest in the development of one-pot tandem enzymatic or chemo-enzymatic processes in vitro due to their neat and concise catalytic systems and product purification procedures. In this review, we will briefly summarize the strategies of designing and optimizing in vitro tandem catalytic reactions, highlight a few representative examples, and discuss the future trend in this field.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
- Departments of Chemistry, Biochemistry, and Bioengineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
17
|
Islam MU, Ullah MW, Khan S, Shah N, Park JK. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 2017; 102:1166-1173. [PMID: 28487196 DOI: 10.1016/j.ijbiomac.2017.04.110] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022]
Abstract
Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications.
Collapse
Affiliation(s)
- Mazhar Ul Islam
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Wajid Ullah
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shaukat Khan
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
18
|
Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0146-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Dudley QM, Anderson KC, Jewett MC. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synth Biol 2016; 5:1578-1588. [PMID: 27476989 DOI: 10.1021/acssynbio.6b00154] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-free metabolic engineering (CFME) is advancing a powerful paradigm for accelerating the design and synthesis of biosynthetic pathways. However, as most cell-free biomolecule synthesis systems to date use purified enzymes, energy and cofactor balance can be limiting. To address this challenge, we report a new CFME framework for building biosynthetic pathways by mixing multiple crude lysates, or extracts. In our modular approach, cell-free lysates, each selectively enriched with an overexpressed enzyme, are generated in parallel and then combinatorically mixed to construct a full biosynthetic pathway. Endogenous enzymes in the cell-free extract fuel high-level energy and cofactor regeneration. As a model, we apply our framework to synthesize mevalonate, an intermediate in isoprenoid synthesis. We use our approach to rapidly screen enzyme variants, optimize enzyme ratios, and explore cofactor landscapes for improving pathway performance. Further, we show that genomic deletions in the source strain redirect metabolic flux in resultant lysates. In an optimized system, mevalonate was synthesized at 17.6 g·L-1 (119 mM) over 20 h, resulting in a volumetric productivity of 0.88 g·L-1·hr-1. We also demonstrate that this system can be lyophilized and retain biosynthesis capability. Our system catalyzes ∼1250 turnover events for the cofactor NAD+ and demonstrates the ability to rapidly prototype and debug enzymatic pathways in vitro for compelling metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Quentin M. Dudley
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Kim C. Anderson
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael C. Jewett
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
20
|
Role of Recombinant DNA Technology to Improve Life. Int J Genomics 2016; 2016:2405954. [PMID: 28053975 PMCID: PMC5178364 DOI: 10.1155/2016/2405954] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022] Open
Abstract
In the past century, the recombinant DNA technology was just an imagination that desirable characteristics can be improved in the living bodies by controlling the expressions of target genes. However, in recent era, this field has demonstrated unique impacts in bringing advancement in human life. By virtue of this technology, crucial proteins required for health problems and dietary purposes can be produced safely, affordably, and sufficiently. This technology has multidisciplinary applications and potential to deal with important aspects of life, for instance, improving health, enhancing food resources, and resistance to divergent adverse environmental effects. Particularly in agriculture, the genetically modified plants have augmented resistance to harmful agents, enhanced product yield, and shown increased adaptability for better survival. Moreover, recombinant pharmaceuticals are now being used confidently and rapidly attaining commercial approvals. Techniques of recombinant DNA technology, gene therapy, and genetic modifications are also widely used for the purpose of bioremediation and treating serious diseases. Due to tremendous advancement and broad range of application in the field of recombinant DNA technology, this review article mainly focuses on its importance and the possible applications in daily life.
Collapse
|
21
|
Karim AS, Dudley QM, Jewett MC. Cell-Free Synthetic Systems for Metabolic Engineering and Biosynthetic Pathway Prototyping. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ashty S. Karim
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
| | - Quentin M. Dudley
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
| | - Michael C. Jewett
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
- Northwestern University; Robert H. Lurie Comprehensive Cancer Center; 676 North St. Clair Chicago IL 60611 USA
- Northwestern University; Simpson Querrey Institute for Bionanotechnology; 303 E. Superior Chicago IL 60611 USA
| |
Collapse
|
22
|
Jang JH, Kim Y, Roh TY, Park JK. Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.5.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Forward design of a complex enzyme cascade reaction. Nat Commun 2016; 7:12971. [PMID: 27677244 PMCID: PMC5052792 DOI: 10.1038/ncomms12971] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022] Open
Abstract
Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. Building multi-component enzymatic processes in one pot is challenged by the inherent complexity of each biochemical system. Here, the authors use online mass spectroscopy and engineering systems theory to achieve forward design of a ten-membered reaction cascade.
Collapse
|
24
|
Niu YP, Lin XH, Dong SJ, Yuan QP, Li H. Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress. Int J Biochem Cell Biol 2016; 79:337-344. [PMID: 27613572 DOI: 10.1016/j.biocel.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022]
Abstract
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane is the first target to be attacked by the accumulated ethanol. In such a prominent position, S. cerevisiae cell membrane could reversely provide protection through changing fluidity or elasticity secondary to remodeled membrane components or structure during the fermentation process. However, there is yet to be a direct observation of the real effect of the membrane compositional change. In this study, atomic force microscope-based strategy was performed to determine Young's modulus of S. cerevisiae to directly clarify ethanol stress-associated changes and roles of S. cerevisiae cell membrane fluidity and elasticity. Cell survival rate decreased while the cell swelling rate and membrane permeability increased as ethanol concentration increased from 0% to 20% v/v. Young's modulus decreased continuously from 3.76MPa to 1.53MPa while ethanol stress increased from 0% to 20% v/v, indicating that ethanol stress induced the S. cerevisiae membrane fluidity and elasticity changes. Combined with the fact that membrane composition varies under ethanol stress, to some extent, this could be considered as a forced defensive act to the ethanol stress by S. cerevisiae cells. On the other hand, the ethanol stress induced loosening of cell membrane also caused S. cerevisiae cell to proactively remodel membrane to make cell membrane more agreeable to the increase of environmental threat. Increased ethanol stress made S. cerevisiae cell membrane more fluidized and elastic, and eventually further facilitated yeast cell's survival.
Collapse
Affiliation(s)
- Yuan-Pu Niu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiang-Hua Lin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shi-Jun Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qi-Peng Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
25
|
Ullah MW, Ul-Islam M, Khan S, Kim Y, Jang JH, Park JK. In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv 2016. [DOI: 10.1039/c5ra26704h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ synthesis of bio-cellulose/TiO2 nanocomposite possessing high thermo-mechanical and antibacterial properties and showing uniform distribution and slow release of nanoparticles.
Collapse
Affiliation(s)
- Muhammad Wajid Ullah
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
- Department of Chemical Engineering
| | - Shaukat Khan
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Yeji Kim
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Jae Hyun Jang
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Joong Kon Park
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| |
Collapse
|
26
|
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK. Metabolic engineering of synthetic cell-free systems: Strategies and applications. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr Polym 2015; 132:286-94. [DOI: 10.1016/j.carbpol.2015.06.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
28
|
Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr Polym 2015; 136:908-16. [PMID: 26572428 DOI: 10.1016/j.carbpol.2015.10.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 11/20/2022]
Abstract
This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were thicker and more compact than microbial cellulose. The specific positions of peaks in the X-ray diffraction and nuclear magnetic resonance spectra indicated that bio-cellulose possessed cellulose II polymorphic structure. Bio-cellulose presented superior physico-mechanical properties than microbial cellulose. The water holding capacity of bio-cellulose and microbial cellulose were found to be 188.6 ± 5.41 and 167.4 ± 4.32 times their dry-weights, respectively. Tensile strengths and degradation temperature of bio-cellulose were 17.63 MPa and 352 °C, respectively compared to 14.71 MPa and 327 °C of microbial cellulose. Overall, the results indicated successful synthesis and superior properties of bio-cellulose that advocate its effectiveness for various applications.
Collapse
|
29
|
Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab Eng 2015; 32:133-142. [PMID: 26428449 DOI: 10.1016/j.ymben.2015.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/19/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation.
Collapse
|
30
|
Encapsulated yeast cell-free system: A strategy for cost-effective and sustainable production of bio-ethanol in consecutive batches. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0855-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Anderson MJ, Stark JC, Hodgman CE, Jewett MC. Energizing eukaryotic cell-free protein synthesis with glucose metabolism. FEBS Lett 2015; 589:1723-1727. [PMID: 26054976 DOI: 10.1016/j.febslet.2015.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/18/2022]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms.
Collapse
Affiliation(s)
- Mark J Anderson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL, USA, 60611-3068
- Simpson Querrey Institute, 303 E. Superior St, Suite 11-131 Chicago, IL USA, 60611-2875
| |
Collapse
|
32
|
Costa RL, Oliveira TV, Ferreira JDS, Cardoso VL, Batista FRX. Prospective technology on bioethanol production from photofermentation. BIORESOURCE TECHNOLOGY 2015; 181:330-337. [PMID: 25678298 DOI: 10.1016/j.biortech.2015.01.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
The most important global demand is the energy supply from alternative source. Ethanol may be considered an environmental friendly fuel that has been produced by feedstock. The production of ethanol by microalgae represent a process with reduced environmental impact with efficient CO2 fixation and requiring less arable land. This work studied the production of ethanol from green alga Chlamydomonas reinhardtii through the cellular metabolism in a light/dark cycle at 25 °C in a TAP medium with sulfur depletion. The parameters evaluated were inoculum concentration and the medium supplementation with mixotrophic carbon sources. The combination of C.reinhardtii and Rhodobacter capsulatus through a hybrid or co-culture systems was also investigated as well. C.reinhardtii maintained in TAP-S produced 19.25±4.16 g/L (ethanol). In addition, in a hybrid system, with medium initially supplemented with milk whey permeated and the algal effluent used by R. capsulatus, the ethanol production achieved 19.94±2.67 g/L.
Collapse
Affiliation(s)
- Rosangela Lucio Costa
- School of Chemical Engineering, Federal University of Uberlandia. Av. Joao Naves de Avila 2121, Santa Monica 38408-144, Uberlandia, MG, Brazil
| | - Thamayne Valadares Oliveira
- School of Chemical Engineering, Federal University of Uberlandia. Av. Joao Naves de Avila 2121, Santa Monica 38408-144, Uberlandia, MG, Brazil
| | - Juliana de Souza Ferreira
- School of Chemical Engineering, Federal University of Uberlandia. Av. Joao Naves de Avila 2121, Santa Monica 38408-144, Uberlandia, MG, Brazil
| | - Vicelma Luiz Cardoso
- School of Chemical Engineering, Federal University of Uberlandia. Av. Joao Naves de Avila 2121, Santa Monica 38408-144, Uberlandia, MG, Brazil
| | - Fabiana Regina Xavier Batista
- School of Chemical Engineering, Federal University of Uberlandia. Av. Joao Naves de Avila 2121, Santa Monica 38408-144, Uberlandia, MG, Brazil.
| |
Collapse
|
33
|
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 2015; 10:69-82. [PMID: 25319678 PMCID: PMC4314355 DOI: 10.1002/biot.201400330] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/24/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022]
Abstract
Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L(-1) h(-1) , reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.
Collapse
Affiliation(s)
| | | | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Member, Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Khattak WA, Ul-Islam M, Ullah MW, Khan S, Park JK. Endogenous Hydrolyzing Enzymes: Isolation, Characterization, and Applications in Biological Processes. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
Enhanced bio-ethanol production via simultaneous saccharification and fermentation through a cell free enzyme system prepared by disintegration of waste of beer fermentation broth. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0242-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park JK. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Appl Microbiol Biotechnol 2014; 98:9561-78. [PMID: 25359472 DOI: 10.1007/s00253-014-6154-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.
Collapse
Affiliation(s)
- Waleed Ahmad Khattak
- Department of Chemical Engineering, Kyungpook National University, Daegu, 7020-701, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK. Bio-ethanol production through simultaneous saccharification and fermentation using an encapsulated reconstituted cell-free enzyme system. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Khattak WA, Ul-Islam M, Ullah MW, Khan S, Park JK. Endogenous Hydrolyzing Enzymes: Isolation, Characterization, and Applications in Biological Processes. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_55-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|