1
|
Alshamy R, El-Nikhely N, Nematalla H, Elkewedi M, Mahran EA, Saeed H. Pseudomonas aeruginosa Recombinant L-asparaginase: PEGylation with Low Molecular Weight Polyethylene Glycol, Molecular Dynamics Simulation, In vitro and In vivo Serum half-life and Biochemical Characterization. Curr Pharm Biotechnol 2025; 26:617-629. [PMID: 38994625 DOI: 10.2174/0113892010309260240624072408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Microbial L-asparaginase (L-ASNase, EC 3.5.1.1) is a pivotal biopharmaceutical drug-protein that catalyzes the hydrolysis of the non-essential amino acid L-asparagine (L-Asn) into L-aspartic acid (L-Asp) and ammonia , resulting in deplenishing the cellular L-Asn pool, which leads to the ultimate death of the L-asparagine synthetase (L-ASNS) deficient cancerous cells. OBJECTIVE This study aimed to investigate the impact of conjugating low molecular weight polyethylene glycol to recombinant P. aeruginosa L-ASNase by examining the pharmacokinetic properties, affinity towards the substrate, and enzyme stability prior to and following the reaction. METHODS The recombinant P. aeruginosa L-ASNase was affinity purified and then PEGylated by attaching polyethylene glycol (MW= 330 Da) site-specifically to the protein's N-terminus end. After which, the PEGylated L-ASNase was examined by SDS-PAGE (15%), FTIR, and UV/Vis spectrophotometry and subsequently biochemically characterized. RESULTS The Km and Vmax values of free P. aeruginosa rL-ASNase were determined to be 0.318 ±1.76 mM and 2915 μmol min-1 and following the PEGylation, they were found to be 0.396 ±1.736 mM and 3193 μmol min-1, respectively. Polyethylene glycol (330 Da) has markedly enhanced LASNase thermostability at 37, 45, 50, and 55°C, as opposed to the free enzyme, which retained 19.5% after 1 h of incubation at 37°C. The PEGylated L-ASNase was found to be stable upon incubation with human serum for 28 h, in contrast to the sharp decline in the residual bioactivity of the free rL-ASNase after 4 h incubation. Accordingly, an in vivo study was used for validation, and it demonstrated that PEGylated rL-ASNase exhibited longer bioactivity for 24 h, while the free form's activity vanished entirely from the rats' blood sera after 8 h. Molecular dynamics simulation indicated that PEG (330 Da) has affected the hydrodynamic volume of L-ASNase and increased its structural stability. Docking analysis has explored the position of PEG with respect to binding sites and predicted a similar binding affinity to that of the free enzyme. CONCLUSION For the first time, recombinant L-ASNase was modified by covalently attaching PEG (330 Da). The resultant novel proposed PEGylated rL-ASNase with remarkably increased stability and prolonged in vivo half-life duration, could be considered an alternative to mitigate the high molecular weight of PEGylation's drawbacks.
Collapse
Affiliation(s)
- Rawan Alshamy
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hisham Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Mohamed Elkewedi
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Abdallah Mahran
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Nasu E, Kawakami N, Takamura S, Hotta A, Arai R, Miyamoto K. Thermally Reversible Gel-Sol Transition of Hydrogels via Dissociation and Association of an Artificial Protein Nanocage. Biomacromolecules 2024; 25:2358-2366. [PMID: 38445465 DOI: 10.1021/acs.biomac.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Oligomeric protein nanocages often disassemble into their subunits and reassemble by external stimuli. Thus, using these nanocages as cross-linkers for hydrogel network structures is a promising approach to allow hydrogels to undergo stimuli-responsive gel-sol transitions or self-healing. Here, we report hydrogels that show a reversible gel-sol transition resulting from the heat-induced dissociation and reassociation of protein nanocages. The hydrogel contained the 60-mer artificial protein nanocage, TIP60, as a supramolecular cross-linker for polyethylene glycol network structures. The hydrogel showed a gel-to-sol transition upon heating at a temperature above the melting point of TIP60 and immediately returned to a gel state upon cooling to room temperature. During the heating and cooling treatment of the hydrogel, small-angle X-ray scattering analysis suggested the dissociation and reassociation of TIP60. Furthermore, we demonstrated redox-responsive cargo release from TIP60 in the hydrogel. These results showed the potential of TIP60 as a component of multi-stimuli-responsive hydrogels.
Collapse
Affiliation(s)
- Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Shuhei Takamura
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Atsushi Hotta
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
3
|
Santos JHPM, Feitosa VA, Meneguetti GP, Carretero G, Coutinho JAP, Ventura SPM, Rangel-Yagui CO. Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability. BIOSENSORS 2022; 12:94. [PMID: 35200354 PMCID: PMC8869816 DOI: 10.3390/bios12020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30-40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 °C and 25 °C.
Collapse
Affiliation(s)
- João H. P. M. Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Valker A. Feitosa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Giovanna P. Meneguetti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Gustavo Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil;
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.P.C.); (S.P.M.V.)
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.P.C.); (S.P.M.V.)
| | - Carlota O. Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
| |
Collapse
|
4
|
Karamitros CS, Somody CM, Agnello G, Rowlinson S. Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase. Front Bioeng Biotechnol 2021; 9:793985. [PMID: 34976980 PMCID: PMC8718881 DOI: 10.3389/fbioe.2021.793985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N’-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.
Collapse
|
5
|
Freire RKB, Mendonça CMN, Ferraro RB, Moguel IS, Tonso A, Lourenço FR, Santos JHPM, Sette LD, Pessoa Junior A. Glutaminase-free L-asparaginase production by Leucosporidium muscorum isolated from Antarctic marine-sediment. Prep Biochem Biotechnol 2020; 51:277-288. [PMID: 32921254 DOI: 10.1080/10826068.2020.1815053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
L-asparaginase (ASNase) is an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Commercial bacterial ASNases increase patient survival, but the consequent immunological reactions remain a challenge. Yeasts ASNase is closer to human congeners and could lead to lower side effects. Among 134 yeast strains isolated from marine-sediments in King George Island, Antarctica, nine were L-asparaginase producing yeasts and glutaminase-free. Leucosporidium muscorum CRM 1648 yielded the highest ASNase activity (490.41 U.L-1) and volumetric productivity (5.12 U.L-1 h-1). Sucrose, yeast extract and proline were the best carbon and nitrogen sources to support growth and ASNase production. A full factorial design analysis pointed the optimum media condition for yeast growth and ASNase yield: 20 g L-1 sucrose, 15 g L-1 yeast extract and 20 g L-1 proline, which resulted in 4582.5 U L-1 and 63.64 U L-1 h-1 of ASNase and volumetric productivity, respectively. Analysis of temperature, pH, inoculum and addition of seawater indicated the best condition for ASNase production by this yeast: 12-15 °C, pH 5.5-6.5 and seawater >25% (v/v). Inoculum concentration seems not to interfere. This work is pioneer on the production of ASNase by cold-adapted yeasts, highlighting the potential of these microbial resources as a source of glutaminase-free L-asparaginase for commercial purposes.
Collapse
Affiliation(s)
- Rominne Karla Barros Freire
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos Miguel Nóbrega Mendonça
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Bertelli Ferraro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ignacio Sánchez Moguel
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, State University Julio de Mesquita Filho (UNESP), Rio Claro, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Zambrano G, Chino M, Renzi E, Di Girolamo R, Maglio O, Pavone V, Lombardi A, Nastri F. Clickable artificial heme-peroxidases for the development of functional nanomaterials. Biotechnol Appl Biochem 2020; 67:549-562. [PMID: 33463759 DOI: 10.1002/bab.1969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 11/08/2022]
Abstract
Artificial metalloenzymes as catalysts are promising candidates for their use in different technologies, such as bioremediation, biomass transformation, or biosensing. Despite this, their practical exploitation is still at an early stage. Immobilized natural enzymes have been proposed to enhance their applicability. Immobilization may offer several advantages: (i) catalyst reuse; (ii) easy separation of the enzyme from the reaction medium; (iii) better tolerance to harsh temperature and pH conditions. Here, we report an easy immobilization procedure of an artificial peroxidase on different surfaces, by means of click chemistry. FeMC6*a, a recently developed peroxidase mimic, has been functionalized with a pegylated aza-dibenzocyclooctyne to afford a "clickable" biocatalyst, namely FeMC6*a-PEG4@DBCO, which easily reacts with azide-functionalized molecules and/or nanomaterials to afford functional bioconjugates. The clicked biocatalyst retains its structural and, to some extent, its functional behaviors, thus housing high potential for biotechnological applications.
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Emilia Renzi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy.,Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| |
Collapse
|
7
|
Yao CL, Lin CC, Chu IM, Lai YT. Development of a Surfactant-Containing Process to Improve the Removal Efficiency of Phenol and Control the Molecular Weight of Synthetic Phenolic Polymers Using Horseradish Peroxidase in an Aqueous System. Appl Biochem Biotechnol 2020; 191:45-58. [PMID: 31940119 DOI: 10.1007/s12010-020-03245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Che-Chi Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| |
Collapse
|
8
|
Santos JHPM, Carretero G, Ventura SPM, Converti A, Rangel-Yagui CO. PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study. J Mater Chem B 2019. [DOI: 10.1039/c9tb00590k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEGylation of cytochrome-c preserves activity and increases thermal stability, favoring the protein application as a biosensor.
Collapse
Affiliation(s)
- João H. P. M. Santos
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Gustavo Carretero
- Department of Biochemistry
- Institute of Chemistry
- University of São Paulo
- 05508-000 São Paulo
- Brazil
| | - Sónia P. M. Ventura
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering
- Pole of Chemical Engineering
- Genoa University
- 16145 Genoa
- Italy
| | - Carlota O. Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology
- University of São Paulo
- 05508-000 São Paulo
- Brazil
| |
Collapse
|
9
|
Santos JHPM, Torres-Obreque KM, Meneguetti GP, Amaro BP, Rangel-Yagui CO. Protein PEGylation for the design of biobetters: from reaction to purification processes. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Chemical Modification of Sweet Potato β-amylase by Mal-mPEG to Improve Its Enzymatic Characteristics. Molecules 2018; 23:molecules23112754. [PMID: 30356009 PMCID: PMC6278334 DOI: 10.3390/molecules23112754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
The sweet potato β-amylase (SPA) was modified by 6 types of methoxy polyethylene glycol to enhance its specific activity and thermal stability. The aims of the study were to select the optimum modifier, optimize the modification parameters, and further investigate the characterization of the modified SPA. The results showed that methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) was the optimum modifier of SPA; Under the optimal modification conditions, the specific activity of Mal-mPEG5000-SPA was 24.06% higher than that of the untreated SPA. Mal-mPEG5000-SPA was monomeric with a molecular weight of about 67 kDa by SDS-PAGE. The characteristics of Mal-mPEG5000-SPA were significantly improved. The Km value, Vmax and Ea in Mal-mPEG5000-SPA for sweet potato starch showed that Mal-mPEG5000-SPA had greater affinity for sweet potato starch and higher speed of hydrolysis than SPA. There was no significant difference of the metal ions’ effect on Mal-mPEG5000-SPA and SPA.
Collapse
|
11
|
SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency. Int J Biol Macromol 2018; 111:1032-1039. [DOI: 10.1016/j.ijbiomac.2018.01.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
|
12
|
Synthesis and Characterization of Highly Stabilized Polymer–Trypsin Conjugates with Autolysis Resistance. Catalysts 2016. [DOI: 10.3390/catal7010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|