1
|
Zhao G, Tang Y, Li Z, Liu G, Zhang D, Hu X, Wang X. Engineering Corynebacterium glutamicum for efficient l-homoserine production. BIORESOURCE TECHNOLOGY 2025; 431:132617. [PMID: 40328352 DOI: 10.1016/j.biortech.2025.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/05/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
l-homoserine is an important precursor in synthesizing the essential amino acids derived from l-aspartate and other valuable bio-based products, and is widely used in cosmetics, food, and pharmaceutical industries. However, the yield of l-homoserine in Corynebacterium glutamicum is limited. In this study, we successfully engineered a C. glutamicum to efficiently produce l-homoserine. First, a l-threonine-producing strain TWZ023 was optimized by knocking out thrB, resulting in the strain HWZ006 which could produce 20.8 g/L l-homoserine with a yield of 0.231 g/g glucose. Then, the 240th Arg residue of homoserine kinase (HK) in TWZ023 was identified as an important site for l-homoserine binding. Subsequently, the optimal mutant strain R240I was screened through site-directed saturation mutagenesis of HK in TWZ023, it could produce 26.8 g/L l-homoserine with a yield of 0.298 g/g glucose. The HK-homoserine binding mechanism was analyzed by using molecular docking, further providing some potential mutation sites. The final strain R240I/pXTuf-Cgl2344 was obtained by optimizing the efflux of l-homoserine, it could produce 29.9 g/L l-homoserine with a yield of 0.332 g/g glucose in shake flasks. In a 15 L fermenter, the final strain produced 78.3 g/L with a yield of 0.28 g/g glucose. These metabolic engineering strategies used in this study have fundamentally enhanced the ability of C. glutamicum to produce l-homoserine.
Collapse
Affiliation(s)
- Guihong Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yaqun Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zihan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Geer Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dezhi Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang K, Song X, Cui B, Wang Y, Luo W. Metabolic Engineering of Escherichia coli for Efficient Production of Ectoine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:646-654. [PMID: 39723826 DOI: 10.1021/acs.jafc.4c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, Escherichia coli offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in E. coli. In this study, we aimed to enhance ectoine production in E. coli BL21(DE3) through systematic metabolic engineering strategies. We investigated the effects of the ectABC gene cluster sequence, plasmid copy number, and key gene copy number on ectoine synthesis. Using the original ectABC sequence with the high-copy-number plasmid pRSFDuet-1 resulted in the highest level of ectoine production. Knocking out genes encoding homoserine dehydrogenase and diaminopimelate decarboxylase reduced competing pathways, further increasing ectoine yield. Overexpression of aspartate semialdehyde dehydrogenase, aspartate kinase I (thrA*), aspartate aminotransferase, and aspartate ammonia-lyase (aspA) was performed, and optimal gene copy numbers were determined. When the copy numbers of thrA* and aspA were both three, ectoine synthesis improved, reaching 1.91 g/L. Enhancing the oxaloacetate pool by overexpressing phosphoenolpyruvate carboxylase (ppc) or introducing pyruvate carboxylase (pyc) from Corynebacterium glutamicum further increased ectoine production to 4.99 g/L. Balancing NADPH and ATP levels through cofactor engineering contributed to additional production improvements. Combining these strain engineering strategies, we ultimately constructed strain C24, which produced 35.33 g/L ectoine in a 5 L fermenter with a glucose conversion rate of 0.21 g/g. These results demonstrate that targeted metabolic engineering can significantly enhance ectoine production in E. coli, providing a foundation for industrial-scale production.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xitong Song
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Boya Cui
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Wei Luo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Niu K, Zheng R, Zhang M, Chen MQ, Kong YM, Liu ZQ, Zheng YG. Adjustment of the main biosynthesis modules to enhance the production of l-homoserine in Escherichia coli W3110. Biotechnol Bioeng 2025; 122:223-232. [PMID: 39425492 DOI: 10.1002/bit.28861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
l-homoserine is an important platform compound of many valuable products. Construction of microbial cell factory for l-homoserine production from glucose has attracted a great deal of attention. In this study, l-homoserine biosynthesis pathway was divided into three modules, the glucose uptake and upstream pathway, the downstream pathway, and the energy supply module. Metabolomics of the chassis strain HS indicated that the supply of ATP was inadequate, therefore, the energy supply module was firstly modified. By balancing the ATP supply module, the l-homoserine production increased by 66% to 12.55 g/L. Further, the results indicated that the upstream pathway was blocked, and increasing the culture temperature to 37°C could solve this problem and the l-homoserine production reached 21.38 g/L. Then, the downstream synthesis pathways were further strengthened to balance the fluxes, and the l-homoserine production reached the highest reported level of 32.55 g/L in shake flasks. Finally, fed-batch fermentation in a 5-L bioreactor was conducted, and l-homoserine production could reach to 119.96 g/L after 92 h cultivation, with the yield of 0.41 g/g glucose and productivity of 1.31 g/L/h. The study provides a well research foundation for l-homoserine production by microbial fermentation with the capacity for industrial application.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Miao Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mao-Qin Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Ming Kong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Jin X, Wang S, Wang Y, Qi Q, Liang Q. Metabolic engineering strategies for L-Homoserine production in Escherichia coli. Microb Cell Fact 2024; 23:338. [PMID: 39702271 DOI: 10.1186/s12934-024-02623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
L-Homoserine, serves as a non-essential precursor for the essential amino acids derived from L-aspartate in both animals and humans. It finds widespread applications across the food, cosmetics, pharmaceutical, and animal feed industries. Microbial fermentation, primarily utilizing Escherichia coli, is the dominant approach for L-Homoserine production. However, despite recent advancements in fermentative processes employing E. coli strains, low production efficiency remains a significant barrier to its commercial viability. This review explores the biosynthesis, secretion, and regulatory mechanisms of L-Homoserine in E. coli while assessing various metabolic engineering strategies aimed at improving production efficiency.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Sumeng Wang
- Qingdao Agricultural University, Qingdao, 266100, China
| | - Yanbing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China.
| |
Collapse
|
5
|
Sun Y, Wu J, Xu J, Yang L. Metabolic Engineering of Escherichia coli for the Production of l-Homoserine. CHEM & BIO ENGINEERING 2024; 1:223-230. [PMID: 39974203 PMCID: PMC11835149 DOI: 10.1021/cbe.3c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2025]
Abstract
l-Homoserine embodies significant functional properties as an amino acid of utmost importance, showcasing remarkable utility within the industrial realm. As synthetic biology and biotechnology continue to advance, the synthesis of l-homoserine through microbial fermentation emerges as a compelling and eco-conscious approach. This Review summarized the recent progress in systematic metabolic engineering strategies for improving l-homoserine production in Escherichia coli, including blocking the competing and degrading pathways, strengthening the key enzymes and precursors, and genetic modification of transport systems. We discussed and compared these systematic metabolism strategies, which have laid a solid foundation for the microbial industrial production of l-homoserine.
Collapse
Affiliation(s)
- Yijie Sun
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jianping Wu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jiaqi Xu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Lirong Yang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| |
Collapse
|
6
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
7
|
François JM. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnol Adv 2023; 69:108259. [PMID: 37734648 DOI: 10.1016/j.biotechadv.2023.108259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The essential sulphur-containing amino acid, methionine, is becoming a mass-commodity product with an annual production that exceeded 1,500,000 tons in 2018. This amino acid is today almost exclusively produced by chemical process from fossil resources. The environmental problems caused by this industrial process, and the expected scarcity of oil resources in the coming years, have recently accelerated the development of bioprocesses for producing methionine from renewable carbon feedstock. After a brief description of the chemical process and the techno-economic context that still justify the production of methionine by petrochemical processes, this review will present the current state of the art of biobased alternatives aiming at a sustainable production of this amino acid and its hydroxyl analogues from renewable carbon feedstock. In particular, this review will focus on three bio-based processes, namely a purely fermentative process based on the metabolic engineering of the natural methionine pathway, a mixed process combining the production of the O-acetyl/O-succinyl homoserine intermediate of this pathway by fermentation followed by an enzyme-based conversion of this intermediate into L-methionine and lately, a hybrid process in which the non-natural chemical synthon, 2,4-dihydroxybutyric acid, obtained by fermentation of sugars is converted by chemo-catalysis into hydroxyl methionine analogues. The industrial potential of these three bioprocesses, as well as the major technical and economic obstacles that remain to be overcome to reach industrial maturity are discussed. This review concludes by bringing up the assets of these bioprocesses to meet the challenge of the "green transition", with the accomplishment of the objective "zero carbon" by 2050 and how they can be part of a model of Bioeconomy enhancing local resources.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, 31077 Toulouse, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|
8
|
Liu Z, Cai M, Zhou S, You J, Zhao Z, Liu Z, Xu M, Rao Z. High-efficient production of L-homoserine in Escherichia coli through engineering synthetic pathway combined with regulating cell division. BIORESOURCE TECHNOLOGY 2023; 389:129828. [PMID: 37806363 DOI: 10.1016/j.biortech.2023.129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.
Collapse
Affiliation(s)
- Zhifei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Siquan Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zuyi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China.
| |
Collapse
|
9
|
Cai M, Liu Z, Zhao Z, Wu H, Xu M, Rao Z. Microbial production of L-methionine and its precursors using systems metabolic engineering. Biotechnol Adv 2023; 69:108260. [PMID: 37739275 DOI: 10.1016/j.biotechadv.2023.108260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
L-methionine is an essential amino acid with versatile applications in food, feed, cosmetics and pharmaceuticals. At present, the production of L-methionine mainly relies on chemical synthesis, which conflicts with the concern over serious environmental problems and sustainable development goals. In recent years, microbial production of natural products has been amply rewarded with the emergence and rapid development of system metabolic engineering. However, efficient L-methionine production by microbial fermentation remains a great challenge due to its complicated biosynthetic pathway and strict regulatory mechanism. Additionally, the engineered production of L-methionine precursors, L-homoserine, O-succinyl-L-homoserine (OSH) and O-acetyl-L-homoserine (OAH), has also received widespread attention because they can be catalyzed to L-methionine via a high-efficiently enzymatic reaction in vitro, which is also a promising alternative to chemical route. This review provides a comprehensive overview on the recent advances in the microbial production of L-methionine and its precursors, highlighting the challenges and potential solutions for developing L-methionine microbial cell factories from the perspective of systems metabolic engineering, aiming to offer guidance for future engineering.
Collapse
Affiliation(s)
- Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhifei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hongxuan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
10
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun BY, Wang FQ, Zhao J, Tao XY, Liu M, Wei DZ. Engineering Escherichia coli for l-homoserine production. J Basic Microbiol 2023; 63:168-178. [PMID: 36284486 DOI: 10.1002/jobm.202200488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 02/03/2023]
Abstract
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Liu X, Peng Y, Xu Y, He G, Liang J, Masanja F, Yang K, Xu X, Deng Y, Zhao L. Responses of digestive metabolism to marine heatwaves in pearl oysters. MARINE POLLUTION BULLETIN 2023; 186:114395. [PMID: 36455501 DOI: 10.1016/j.marpolbul.2022.114395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Marine heatwaves (MHWs) have increased in intensity and frequency in global oceans, causing deleterious effects on many marine organisms and ecosystems they support. Bivalves are among the most vulnerable taxonomic groups to intensifying MHWs, yet little is known about the underlying mechanisms. Here, we investigated the impact of MHWs on the digestive metabolism of pearl oysters (Pinctada maxima). Two moderate and severe scenarios of MHWs were performed by increasing seawater temperature respectively from 24 °C to 28 °C and 32 °C for 3 days. When subjected to MHWs and with increasing intensity, pearl oysters significantly enhanced their digestive enzymatic activities, such as lipase and amylase. LC-MS-based metabolomics revealed negative responses in the lipid metabolism (e.g., steroid biosynthesis, glycerophospholipid metabolism, and sphingolipid metabolism), the amino acid metabolism (e.g., glutamate, histidine, arginine, and proline), and the B-vitamins metabolism. These findings indicate that the digestive metabolism of marine bivalves can likely succumb to intensifying MHWs events.
Collapse
Affiliation(s)
- Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yalan Peng
- Zhuhai Central Station of Marine Environmental Monitoring, Ministry of Natural Resources, Zhuhai, China.
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | | | - Ke Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xin Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
13
|
Alkim C, Farias D, Fredonnet J, Serrano-Bataille H, Herviou P, Picot M, Slama N, Dejean S, Morin N, Enjalbert B, François JM. Toxic effect and inability of L-homoserine to be a nitrogen source for growth of Escherichia coli resolved by a combination of in vivo evolution engineering and omics analyses. Front Microbiol 2022; 13:1051425. [PMID: 36583047 PMCID: PMC9792984 DOI: 10.3389/fmicb.2022.1051425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
L-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of E. coli. However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid. Sequencing of this evolved strain identified only four genomic modifications, including a 49 bp truncation starting from the stop codon of thrL. This mutation resulted in a modified thrL locus carrying a thrL* allele encoding a polypeptide 9 amino acids longer than the thrL encoded leader peptide. Remarkably, the replacement of thrL with thrL* in the original strain MG1655 alleviated L-homoserine inhibition to the same extent as strain 4E, but did not allow growth with this amino acid as a nitrogen source. The loss of L-homoserine toxic effect could be explained by the rapid conversion of L-homoserine into threonine via the thrL*-dependent transcriptional activation of the threonine operon thrABC. On the other hand, the growth of E. coli on a mineral medium with L-homoserine required an activation of the threonine degradation pathway II and glycine cleavage system, resulting in the release of ammonium ions that were likely recaptured by NAD(P)-dependent glutamate dehydrogenase. To infer about the direct molecular targets of L-homoserine toxicity, a transcriptomic analysis of wild-type MG1655 in the presence of 10 mM L-homoserine was performed, which notably identified a potent repression of locomotion-motility-chemotaxis process and of branched-chain amino acids synthesis. Since the magnitude of these effects was lower in a ΔthrL mutant, concomitant with a twofold lower sensitivity of this mutant to L-homoserine, it could be argued that growth inhibition by L-homoserine is due to the repression of these biological processes. In addition, L-homoserine induced a strong upregulation of genes in the sulfate reductive assimilation pathway, including those encoding its transport. How this non-canonical amino acid triggers these transcriptomic changes is discussed.
Collapse
Affiliation(s)
- Ceren Alkim
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Daniele Farias
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Fredonnet
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Pauline Herviou
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Marc Picot
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Nawel Slama
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Nicolas Morin
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Brice Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France,*Correspondence: Jean M. François,
| |
Collapse
|
14
|
Cai M, Zhao Z, Li X, Xu Y, Xu M, Rao Z. Development of a nonauxotrophic L-homoserine hyperproducer in Escherichia coli by systems metabolic engineering. Metab Eng 2022; 73:270-279. [PMID: 35961600 DOI: 10.1016/j.ymben.2022.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
L-Homoserine is a valuable amino acid as a platform chemical in the synthesis of various important compounds. Development of microbial strains for high-level L-homoserine production is an attractive research direction in recent years. Herein, we converted a wild-type Escherichia coli to a non-auxotrophic and plasmid-free hyperproducer of L-homoserine using systematically metabolic engineer strategies. First, an initial strain was obtained through regulating L-homoserine degradation pathway and enhancing synthetic flow. To facilitate L-homoserine production, flux-control genes were tuned by optimizing the copy numbers in chromosome, and transport system was modified to promote L-homoserine efflux. Subsequently, a strategy of cofactors synergistic utilization was proposed and successfully applied to achieve L-homoserine hyperproduction. The final engineered strain could efficiently produce 85.29 g/L L-homoserine, which was the highest production level ever reported from a plasmid-free, antibiotic-free, inducer-free and nonauxotrophic strain. These strategies used here can be considered for developing microbial cell factory of other L-aspartate derivatives.
Collapse
Affiliation(s)
- Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiangfei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyi Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Liu L, Ma X, Bilal M, Wei L, Tang S, Luo H, Zhao Y, Wang Z, Duan X. Toxicity and inhibition mechanism of gallic acid on physiology and fermentation performance of Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:76. [PMID: 38647760 PMCID: PMC10992115 DOI: 10.1186/s40643-022-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Gallic acid is a natural phenolic acid that has a stress inhibition effect on Escherichia coli. This study by integrates fermentation characteristics and transcriptional analyses to elucidate the physiological mechanism of E. coli 3110 response to gallic acid. Compared with the control (without stress), the cell growth was severely retarded, and irregular cell morphology appeared in the case of high levels of gallic acid stress. The glucose consumption of E. coli was reduced successively with the increase of gallic acid content in the fermentation medium. After 20 h of gallic acid stress, cofactor levels (ATP, NAD+ and NADH) of E. coli 3110 were similarly decreased, indicating a more potent inhibitory effect of gallic acid on E. coli. The transcriptional analysis revealed that gallic acid altered the gene expression profiles related to five notable differentially regulated pathways. The genes related to the two-component system were up-regulated, while the genes associated with ABC-transporter, energy metabolism, carbon metabolism, and fatty acid biosynthesis were down-regulated. This is the first report to comprehensively assess the toxicity of gallic acid on E. coli. This study has implications for the efficient production of phenolic compounds by E. coli and provides new ideas for the study of microbial tolerance to environmental stress and the identification of associated tolerance targets.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xiaolong Ma
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Linlin Wei
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shijie Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
16
|
Vo TM, Park S. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metab Eng 2022; 73:104-113. [PMID: 35803501 DOI: 10.1016/j.ymben.2022.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Efficient microbial cell factory for the production of homoserine from glucose has been developed by iterative and rational engineering of Escherichia coli W3110. The whole pathway from glucose to homoserine was divided into three groups, namely, glucose transport and glycolysis ('up-stream'), TCA and glyoxylate cycles ('mid-stream'), and homoserine module (conversion of aspartate to homoserine and its secretion; 'down-stream'), and the carbon flux in each group as well as between the groups were accelerated and balanced. Altogether, ∼18 genes were modified for active and consistent production of homoserine during both the actively-growing and non-growing stages of cultivation. Finally, fed-batch, two-stage bioreactor experiments, separating the growth from the production stage, were conducted for 61 h, which gave the high titer of 110.8 g/L, yield of 0.64 g/g glucose and volumetric productivity of 1.82 g/L/h, with an insignificant amount of acetate (<0.5 g/L) as the only noticeable byproduct. The metabolic engineering strategy employed in this study should be applicable for the biosynthesis of other amino acids or chemicals derived from aspartic acid.
Collapse
Affiliation(s)
- Toan Minh Vo
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
| |
Collapse
|
17
|
Li N, Zeng W, Zhou J, Xu S. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:27. [PMID: 35287716 PMCID: PMC8922893 DOI: 10.1186/s13068-022-02114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND O-Acetyl-L-homoserine (OAH) is an important potential platform chemical. However, low levels of production of OAH are greatly limiting its industrial application. Furthermore, as a common and safe amino acid-producing strain, Corynebacterium glutamicum has not yet achieved efficient production of OAH. RESULTS First, exogenous L-homoserine acetyltransferase was introduced into an L-homoserine-producing strain, resulting in the accumulation of 0.98 g/L of OAH. Second, by comparing different acetyl-CoA biosynthesis pathways and adding several feedstocks (acetate, citrate, and pantothenate), the OAH titer increased 2.3-fold to 3.2 g/L. Then, the OAH titer further increased by 62.5% when the expression of L-homoserine dehydrogenase and L-homoserine acetyltransferase was strengthened via strong promoters. Finally, the engineered strain produced 17.4 g/L of OAH in 96 h with acetate as the supplementary feedstock in a 5-L bioreactor. CONCLUSIONS This is the first report on the efficient production of OAH with C. glutamicum as the chassis, which would provide a good foundation for industrial production of OAH.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
18
|
Guo K, Zhao Z, Luo L, Wang S, Zhang R, Xu W, Qiao G. Untargeted GC-MS metabolomics reveals the metabolic responses in the gills of Chinese mitten crab (Eriocheir sinensis) subjected to air-exposure stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113159. [PMID: 35032728 DOI: 10.1016/j.ecoenv.2021.113159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Desiccation is a common stress experienced by crabs during aquaculture and transportation. In China, the crustacean, Chinese mitten crab (Eriocheir sinensis), is economically important. However, little is known about the molecular pathways underlying physiological stress. Here, by using untargeted gas chromatography-mass spectrometry metabolomics, we investigated the metabolic responses of the gills of E. sinensis subjected to air-exposure stress by six biological replicates of the control group (CG) and the air-exposure stress group (AG). Metabolomic analysis identified 43 differential metabolites in the AG versus the CG that could be potential biomarkers of desiccation stress. In addition, integrated analysis of key metabolic pathways revealed the involvement of histidine metabolism; glycine, serine and threonine metabolism; the pentose phosphate pathway; the citrate cycle (TCA cycle); and nicotinate and nicotinamide metabolism. These findings indicated the special physiological responses to air-exposure stresses in this species.
Collapse
Affiliation(s)
- Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wei Xu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
19
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
20
|
Česnik Katulić M, Sudar M, Hernández K, Qi Y, Charnock SJ, Vasić-Rački Đ, Clapés P, Findrik Blažević Z. Cascade Synthesis of l-Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morana Česnik Katulić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Karel Hernández
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yuyin Qi
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Simon J. Charnock
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Đurdica Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Zvjezdana Findrik Blažević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| |
Collapse
|
21
|
Mu Q, Zhang S, Mao X, Tao Y, Yu B. Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route. Metab Eng 2021; 67:321-329. [PMID: 34329706 DOI: 10.1016/j.ymben.2021.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
L-Homoserine is a nonessential chiral amino acid and the precursor of L-threonine and L-methionine. It has great potential to be used in the pharmaceutical, agricultural, cosmetic, and fragrance industries. However, the current low efficiency in the fermentation process of L-homoserine drives up the cost and therefore limits applications. Here, we systematically analyzed the L-homoserine production network in Escherichia coli to design a redox balance route for L-homoserine fermentation from glucose. Production of L-homoserine from L-aspartate via reduction of the tricarboxylic acid cycle intermediate oxaloacetate lacks reducing power. This deficiency could be corrected by activating the glyoxylate shunt and driving the flux from fumarate to L-aspartate with excess reducing power. This redox balance route decreases cell growth pressure and the theoretical yield of L-homoserine is 1.5 mol/mol of glucose without carbon loss. We fine-tuned the flux from fumarate to L-aspartate, deleted competitive and degradative pathways, enhanced L-homoserine efflux, and generated 84.1 g/L L-homoserine with 1.96 g/L/h productivity and 0.50 g/g glucose yield in a fed-batch fermentation. This study proposes a novel balanced redox metabolic network strategy for highly efficient production of L-homoserine and its derivative amino acids.
Collapse
Affiliation(s)
- Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianjun Mao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Zhang Y, Wei M, Zhao G, Zhang W, Li Y, Lin B, Li Y, Xu Q, Chen N, Zhang C. High-level production of l-homoserine using a non-induced, non-auxotrophic Escherichia coli chassis through metabolic engineering. BIORESOURCE TECHNOLOGY 2021; 327:124814. [PMID: 33592493 DOI: 10.1016/j.biortech.2021.124814] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
l-Homoserine is a valuable non-proteinogenic amino acid used in the synthesis of various important compounds. Microbial fermentation has potential value for producing l-homoserine on a large scale, but suffers from a low yield and the need for expensive additives. In this study, a non-induced, non-auxotrophic, plasmid-free Escherichia coli chassis for the high-efficiency production of l-homoserine was constructed. Initially, the l-homoserine degradation pathway was dynamically attenuated. Subsequently, systems metabolic engineering strategies were employed, including reinforcing the synthetic flux, improving NADPH generation, and elevating l-homoserine efflux. The constructed strain HOM-14, produced 60.1 g/L l-homoserine without additional supplements or inducers, which achieved the highest fermentative production efficiency of l-homoserine till date. Moreover, common byproducts, such as acetate, did not accumulate. The strategies presented here can be applied in the further engineering of chassis for the scale-up production of l-homoserine and derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Minhua Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjie Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingzi Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Beibei Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
23
|
Ting WW, Tan SI, Ng IS. Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00342-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Orthogonal T7 RNA polymerase (T7RNAP) and T7 promoter is a powerful genetic element to mediate protein expression in different cells. Among all, Escherichia coli possess advantages of fast growth rate, easy for culture and comprehensive elements for genetic engineering. As E. coli W3110 owns the benefits of more heat shock proteins and higher tolerance to toxic chemicals, further execution of T7-based system in W3110 as cell factory is a conceivable strategy.
Results
Three novel W3110 strains, i.e., W3110:IL5, W3110::L5 and W3110::pI, were accomplished by chromosome-equipped T7RNAP. At first, the LacZ and T7RNAP with isopropyl-β-D-thiogalactopyranoside (IPTG) induction showed higher expression levels in W3110 derivatives than that in BL21(DE3). The plasmids with and without lacI/lacO repression were used to investigate the protein expression of super-fold green fluorescence protein (sfGFP), carbonic anhydrase (CA) for carbon dioxide uptake and lysine decarboxylase (CadA) to produce a toxic chemical cadaverine (DAP). All the proteins showed better expression in W3110::L5 and W3110::pI, respectively. As a result, the highest cadaverine production of 36.9 g/L, lysine consumption of 43.8 g/L and up to 100% yield were obtained in W3110::pI(−) with plasmid pSU-T7-CadA constitutively.
Conclusion
Effect of IPTG and lacI/lacO regulator has been investigated in three chromosome-based T7RNAP E. coli strains. The newly engineered W3110 strains possessed similar protein expression compared to commercial BL21(DE3). Furthermore, W3110::pI displays higher production of sfGFP, CA and CadA, due to it having the highest sensitivity to IPTG, thus it represents the greatest potential as a cell factory.
Collapse
|
24
|
Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.01477-20. [PMID: 32801175 PMCID: PMC7531971 DOI: 10.1128/aem.01477-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/01/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, the bottlenecks that sequentially limit l-homoserine biosynthesis were identified and resolved, based on rational and efficient metabolic-engineering strategies, coupled with CRISPR interference (CRISPRi)-based systematic analysis. The metabolomics data largely expanded our understanding of metabolic effects and revealed relevant targets for further modification to achieve better performance. The systematic analysis strategy, as well as metabolomics analysis, can be used to rationally design cell factories for the production of highly valuable chemicals. l-Homoserine, which is one of the few amino acids that is not produced on a large scale by microbial fermentation, plays a significant role in the synthesis of a series of valuable chemicals. In this study, systematic metabolic engineering was applied to target Escherichia coli W3110 for the production of l-homoserine. Initially, a basic l-homoserine producer was engineered through the strategies of overexpressing thrA (encoding homoserine dehydrogenase), removing the degradative and competitive pathways by knocking out metA (encoding homoserine O-succinyltransferase) and thrB (encoding homoserine kinase), reinforcing the transport system, and redirecting the carbon flux by deleting iclR (encoding the isocitrate lyase regulator). The resulting strain constructed by these strategies yielded 3.21 g/liter of l-homoserine in batch cultures. Moreover, based on CRISPR-Cas9/dCas9 (nuclease-dead Cas9)-mediated gene repression for 50 genes, the iterative genetic modifications of biosynthesis pathways improved the l-homoserine yield in a stepwise manner. The rational integration of glucose uptake and recovery of l-glutamate increased l-homoserine production to 7.25 g/liter in shake flask cultivation. Furthermore, the intracellular metabolic analysis further provided targets for strain modification by introducing the anaplerotic route afforded by pyruvate carboxylase to oxaloacetate formation, which resulted in accumulating 8.54 g/liter l-homoserine (0.33 g/g glucose, 62.4% of the maximum theoretical yield) in shake flask cultivation. Finally, a rationally designed strain gave 37.57 g/liter l-homoserine under fed-batch fermentation, with a yield of 0.31 g/g glucose. IMPORTANCE In this study, the bottlenecks that sequentially limit l-homoserine biosynthesis were identified and resolved, based on rational and efficient metabolic-engineering strategies, coupled with CRISPR interference (CRISPRi)-based systematic analysis. The metabolomics data largely expanded our understanding of metabolic effects and revealed relevant targets for further modification to achieve better performance. The systematic analysis strategy, as well as metabolomics analysis, can be used to rationally design cell factories for the production of highly valuable chemicals.
Collapse
|
25
|
Li N, Xu S, Du G, Chen J, Zhou J. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways. J Biotechnol 2020; 314-315:1-7. [DOI: 10.1016/j.jbiotec.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023]
|
27
|
Ruan L, Li L, Zou D, Jiang C, Wen Z, Chen S, Deng Y, Wei X. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:211. [PMID: 31516550 PMCID: PMC6732833 DOI: 10.1186/s13068-019-1554-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. RESULTS Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. CONCLUSIONS This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Liying Ruan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyou Wen
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, 50011 USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, 214122 China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
28
|
Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han G, Jiang H, Liu J, Ma Y. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli. ACS Synth Biol 2019; 8:1153-1167. [PMID: 30973696 DOI: 10.1021/acssynbio.9b00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O-acetylhomoserine (OAH) is a promising platform chemical for the production of l-methionine and other valuable compounds. However, the relative low titer and yield of OAH greatly limit its industrial production and cost-effective application. In this study, we successfully constructed an efficient OAH-producing strain with high titer and yield by combining protein and metabolic engineering strategies in E. coli. Initially, an OAH-producing strain was created by reconstruction of biosynthetic pathway and deletion of degradation and competitive pathways, which accumulated 1.68 g/L of OAH. Subsequently, several metabolic engineering strategies were implemented to improve the production of OAH. The pathway flux of OAH was enhanced by eliminating byproduct accumulation, increasing oxaloacetate supply and promoting the biosynthesis of precursor homoserine, resulting in a 1.79-fold increase in OAH production. Moreover, protein engineering was applied to improve the properties of the rate-limiting enzyme homoserine acetyltransferase (MetXlm) based on evolutionary conservation analysis and structure-guided engineering. The resulting triple F147L-M182I-M240A mutant of MetXlm exhibited a 12.15-fold increase in specific activity, and the optimized expression of the MetXlm mutant led to a 57.14% improvement in OAH production. Furthermore, the precursor acetyl-CoA supply and NADPH generation were also enhanced to facilitate the biosynthesis of OAH by promoting CoA biosynthesis, overexpressing heterogeneous acetyl-CoA synthetase (ACS), and introducing NADP-dependent pyruvate dehydrogenase (PDH). Finally, the engineered strain OAH-7 produced 62.7 g/L of OAH with yield and productivity values of 0.45 g/g glucose and 1.08 g/L/h, respectively, in a 7.5 L fed-batch fermenter, which was the highest OAH production ever reported.
Collapse
Affiliation(s)
- Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoqiang Han
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
29
|
Zhong W, Zhang Y, Wu W, Liu D, Chen Z. Metabolic Engineering of a Homoserine-Derived Non-Natural Pathway for the De Novo Production of 1,3-Propanediol from Glucose. ACS Synth Biol 2019; 8:587-595. [PMID: 30802034 DOI: 10.1021/acssynbio.9b00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering a homoserine-derived non-natural pathway allows heterologous production of 1,3-propanediol (1,3-PDO) from glucose without adding expensive vitamin B12. Due to the lack of efficient enzymes to catalyze the deamination of homoserine and the decarboxylation of 4-hydroxy-2-ketobutyrate, the previously engineered strain can only produce 51.5 mg/L 1,3-PDO using homoserine and glucose as cosubstrates. In this study, we systematically screened the enzymes from different protein families to catalyze the two corresponding reactions and further optimized the selected enzymes by protein engineering. Together with the improvement of homoserine supply by systematic metabolic engineering, an engineered Escherichia coli strain with an optimal combination of aspartate transaminase ( aspC) from E. coli, pyruvate decarboxylase ( pdc) from Zymomonas mobiliz, and alcohol dehydrogenase yqhD from E. coli can produce 0.32 g/L 1,3-PDO from glucose in shake flask cultivation. The titer of 1,3-PDO was further increased to 0.49 g/L or 0.63 g/L by introducing a point mutation of I472A into pdc gene or constructing a fusion protein between aspC and pdc. This study lays the basis for developing a potential process for 1,3-PDO production from sugars without using expensive coenzyme B12.
Collapse
Affiliation(s)
- Weiqun Zhong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenjun Wu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Yang C, Hao R, Du X, Deng Y, Sun R, Wang Q. Metabolomics Responses of Pearl Oysters ( Pinctada fucata martensii) Fed a Formulated Diet Indoors and Cultured With Natural Diet Outdoors. Front Physiol 2018; 9:944. [PMID: 30072917 PMCID: PMC6060569 DOI: 10.3389/fphys.2018.00944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Natural disasters and environmental pollution are the main problems in traditional offshore cultivation. While culturing pearl oysters through industrial farming can avoid these problems, food availability in this case is limited. This study compares the metabolomics responses of pearl oysters, Pinctada fucata martensii, fed a formulated diet indoors with those of oysters cultured with natural diet outdoors by using a gas chromatography time-of-flight mass spectrometry (GC-TOF/MS)-based metabolomics approach. The animals were divided into two groups as follows: the experimental group (EG) was fed a formulated diet indoors and the control group (CG) was cultured with natural diet outdoors. After 45 days of feeding, the survival rate of EG was significantly higher than that of CG. The absolute growth rate (AGR) of the total weight of EG did not significantly differ from that of CG, but the AGRs of the shell length, shell height, and shell width of CG were significantly higher than those of EG. EG showed significantly higher amylase activities than CG, and the hexokinase and glucose-6-phosphate isomerase concentrations of the former were significantly lower than those of the latter. Metabolomics revealed 125 metabolites via mass spectrum matching with a spectral similarity value > 700 in the hepatopancreas, and 48 metabolites were considered to be significantly different between groups (VIP > 1 and P < 0.05). Pathway analysis results indicated that these significantly different metabolites were involved in 34 pathways. Further integrated key metabolic pathway analysis showed that, compared with CG, EG had lower capabilities for cysteine and methionine metabolism, sulfur metabolism, and starch and sucrose metabolism. This study demonstrated that the formulated diet could be an excellent substitute for natural diet; however, its nutrients were insufficient. Effective strategies should be developed to enhance the utilization of formulated diets.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Ruijiao Sun
- Zhejiang Hengxing Food Co., Ltd., Jiaxing, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| |
Collapse
|
31
|
Metabolic engineering of E. coli for the production of O-succinyl-l-homoserine with high yield. 3 Biotech 2018; 8:310. [PMID: 30002999 DOI: 10.1007/s13205-018-1332-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
O-succinyl-l-homoserine (OSH) is a promising platform chemical for the production of C4 chemicals with huge market potential which can be produced by fermentation from glucose. To construct a strain capable of producing OSH with high yield, the metJ (encodes transcriptional repressor) and metI (encodes a subunit of dl-methionine transporter) were deleted in Escherichia coli W3110 to obtain a strain E. coli ∆JI. Then, overexpression of metL (encodes bifunctional aspartate kinase/homoserine dehydrogenase II) and inactivation of metB (encodes cystathionine γ-synthase) were implemented in one step, and the OSH titer of the resulting strain E. coli ∆JIB* TrcmetL was dramatically increased to 7.30 g/L. The feedback regulation was further relieved by progressively overexpressing metAfbr (encodes homoserine O-succinyltransferase), yjeH (encodes l-methionine exporter), and thrAfbr (encodes bifunctional aspartate kinase/homoserine dehydrogenase I) to increase the metabolic flux from aspartate to OSH. The 100% rationally designed strain E. coli ∆JIB* TrcmetL/pTrc-metAfbr -Trc-thrAfbr -yjeH produced 9.31 g/L OSH from 20 g/L glucose (0.466 g/g glucose) in batch fermentation, which represents the highest OSH yield from glucose reported to date. The culture profiles of the newly constructed strains were recorded to investigate their productive properties. The effects of l-methionine addition on the fermentation process of the optimal strain were also studied. Our results demonstrate that tuning the expression level of metL, inactivation of metB, and attenuation of feedback resistance of the crucial enzymes in the biosynthetic pathway are the key factors that impact the OSH production in E. coli.
Collapse
|
32
|
Walther T, Calvayrac F, Malbert Y, Alkim C, Dressaire C, Cordier H, François JM. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine. Metab Eng 2018; 45:237-245. [DOI: 10.1016/j.ymben.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/26/2022]
|
33
|
Sanchez S, Rodríguez-Sanoja R, Ramos A, Demain AL. Our microbes not only produce antibiotics, they also overproduce amino acids. J Antibiot (Tokyo) 2017; 71:ja2017142. [PMID: 29089597 DOI: 10.1038/ja.2017.142] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Fermentative production of amino acids is an important goal of modern biotechnology. Through fermentation, micro-organisms growing on inexpensive carbon and nitrogen sources can produce a wide array of valuable products including amino acids. The amino acid market is $8 billion and mainly impacts the food, pharmaceutical and cosmetics industries. In terms of tons of amino acids produced per year by fermentation, L-glutamate is the most important amino acid produced (3.3 million), followed by L-lysine (2.2 million). The bacteria producing these amino acids are among the top fermentation organisms with respect to titers. Corynebacterium glutamicum is the best producer.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.142.
Collapse
Affiliation(s)
- Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Allison Ramos
- Charles A Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, USA
| | - Arnold L Demain
- Charles A Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, USA
| |
Collapse
|
34
|
Zhu Y, Hua Y, Zhang B, Sun L, Li W, Kong X, Hong J. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD. Microb Cell Fact 2017; 16:2. [PMID: 28049530 PMCID: PMC5209907 DOI: 10.1186/s12934-016-0620-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/20/2016] [Indexed: 12/05/2022] Open
Abstract
Background Indole pyruvic acid (IPA) is a versatile platform intermediate and building block for a number of high-value products in the pharmaceutical and food industries. It also has a wide range of applications, such as drugs for the nervous system, cosmetics, and luminophores. Chemical synthesis of IPA is a complicated and costly process. Moreover, through the biosynthesis route employing l-amino acid oxidase, the byproduct hydrogen peroxide leads the degradation of IPA. TdiD, identified as a specific tryptophan aminotransferase, could be an alternative solution for efficient IPA biosynthesis. Results Escherichia coli strain W3110, which demonstrates basic production when supplied with tryptophan, was engineered for IPA biosynthesis. Several strategies were implemented to improve IPA production. First, through incorporating the codon-optimized tdiD into W3110, IPA levels increased from 41.54 ± 1.26 to 52.54 ± 2.08 mg/L. Second, after verifying the benefit of an increased phenylpyruvate pool, a YL03 strain was constructed based on a previously reported mutant strain of W3110 with a plasmid carrying aroFfbr and pheAfbr to further improve IPA production. The recombinant YL03 strain accumulated IPA at 158.85 ± 5.36 mg/L, which was 3.82-fold higher than that of the wild-type W3110 strain. Third, optimization of tdiDco expression was carried out by replacing the Trc promoter with a series of constitutively active promoters along with increasing the plasmid copy numbers. The highest IPA production was observed in YL08, which achieved 236.42 ± 17.66 mg/L and represented a greater than 5-fold increase as compared to W3110. Finally, the effects of deletion and overexpression of tnaA on IPA biosynthesis were evaluated. The removal of tnaA led to slightly reduced IPA levels, whereas the overexpression of tnaA resulted in a considerable decline in production. Conclusions This study illustrates the feasibility of IPA biosynthesis in E. coli through tdiD. An efficient IPA producing strain, YL08, was developed, which provides a new possibility for biosynthesis of IPA. Although the final production was limited, this study demonstrates a convenient method of IPA synthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0620-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|