1
|
Shahidi F, Saeid A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar Drugs 2025; 23:157. [PMID: 40278278 PMCID: PMC12028762 DOI: 10.3390/md23040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The marine environment, covering over 70% of the Earth's surface, serves as a reservoir of bioactive molecules, including peptides and proteins. Due to the unique and often extreme marine conditions, these molecules exhibit distinctive structural features and diverse functional properties, making them promising candidates for therapeutic applications. Marine-derived bioactive peptides, typically consisting of 3 to 40 amino acid residues-though most commonly, 2 to 20-are obtained from parent proteins through chemical or enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Like peptides, protein hydrolysates from collagen, a dominant protein of such materials, play an important role. Peptide bioactivities include antioxidant, antihypertensive, antidiabetic, antimicrobial, anti-inflammatory, anticoagulant, and anti-cancer effects as well as immunoregulatory and wound-healing activities. These peptides exert their effects through mechanisms such as enzyme inhibition, receptor modulation, and free radical scavenging, among others. Fish, algae, mollusks, crustaceans, microbes, invertebrates, and marine by-products such as skin, bones, and viscera are some of the key marine sources of bioactive proteins and peptides. The advancements in the extraction and purification processes, e.g., enzymatic hydrolysis, ultrafiltration, ion-exchange chromatography, high-performance liquid chromatography (HPLC), and molecular docking, facilitate easy identification and purification of such bioactive peptides in greater purity and activity. Despite their colossal potential, their production, scale-up, stability, and bioavailability are yet to be enhanced for industrial applications. Additional work needs to be carried out for optimal extraction processes, to unravel the mechanisms of action, and to discover novel marine sources. This review emphasizes the enormous scope of marine-derived peptides and proteins in the pharmaceutical, nutraceutical, cosmeceutical, and functional food industries, emphasizing their role in health promotion and risk reduction of chronic diseases.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | | |
Collapse
|
2
|
Suo Q, Wang J, Wu N, Geng L, Zhang Q, Yue Y. Discovery of a novel nanomolar angiotensin-I converting enzyme inhibitory peptide with unusual binding mechanisms derived from Chlorella pyrenoidosa. Int J Biol Macromol 2024; 280:135873. [PMID: 39307496 DOI: 10.1016/j.ijbiomac.2024.135873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) has been cultivated in large quantities and proven to be antihypertensive when consumed orally. However, the antihypertensive peptides derived from C. pyrenoidosa remains scarce. In this study, trypsin was chosen to prepare the hydrolysate of C. pyrenoidosa, which was then fractionated by column chromatography. And ninety-nine peptides were identified by LC-MS/MS, after which 10 peptides were chosen by docking-based virtual screening and demonstrated their ability to inhibit ACE. Among them, LVAKA (LV-5) had the lowest IC50 (26.66 μM). LV-5, LKKAP, and PGLRP were identified as non-competitive ACE inhibitory peptides with significant stability under extreme pH and high temperatures conditions. Both in silico and in-vitro simulated gastrointestinal digestion revealed that these three peptides could release ACE inhibitory peptide fragments upon digestion. Sequence optimization of LV-5 led to the discovery of LRAKA (LR-5), which was identified as a novel nanomolar ACE peptide with an IC50 of 350 nM in-vitro and a potent antihypertensive peptide in-vivo. Moreover, molecular dynamic simulation indicated that LR-5 interacted with an unconventional binding site on ACE. These findings underscore the potential of Chlorella as a source of antihypertensive peptides and suggest a promising future for the use of Chlorella-derived peptides in hypertension management.
Collapse
Affiliation(s)
- Qishan Suo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China.
| |
Collapse
|
3
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jeon YJ. Marine Polyphenols in Cardiovascular Health: Unraveling Structure-Activity Relationships, Mechanisms, and Therapeutic Implications. Int J Mol Sci 2024; 25:8419. [PMID: 39125987 PMCID: PMC11312663 DOI: 10.3390/ijms25158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for significant mortality rates globally that have been raised due to the limitation of the available treatments and prevalence of CVDs. The innovative research and identification of potential preventives for CVDs are essential to alleviate global deaths and complications. The marine environment is a rich source of bioactive substances and provides a unique chemical arsenal against numerous ailments due to its unrivaled biodiversity. Marine polyphenolic compounds (MPCs) are unique because of their structural variety and biologically significant activity. Further, MPCs are well-reported for their valuable biological activities, such as anti-inflammatory, cardioprotective, and antioxidant, demonstrating encouraging results in preventing and treating CVDs. Therefore, investigation of the structure-activity relationship (SAR) between MPCs and CVDs provides insights that reveal how the structural components of these compounds affect their effectiveness. Further, comprehending this correlation is essential for advancing medications and nutraceuticals sourced from marine sources, which could transform the strategy for treating and preventing cardiovascular diseases. Therefore, this study provides a comprehensive analysis of existing research by emphasizing the role of MPCs in CVD treatments and evaluating the SAR between MPCs and CVDs with challenges and future directions.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
| | | | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
4
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
5
|
Wu F, Luo X, Zhang Y, Wang P, Chang Y, He Z, Liu X. Purification, Identification, and Inhibitory Mechanisms of a Novel ACE Inhibitory Peptide from Torreya grandis. Nutrients 2023; 15:2374. [PMID: 37242257 PMCID: PMC10224335 DOI: 10.3390/nu15102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Torreya grandis meal has a high protein content and an appropriate amino acid ratio, making it an excellent protein source for producing ACE inhibitory peptides. To promote its application in food, medicine, and other fields, an alkaline protease hydrolysate of Torreya grandis was used in this study to isolate and identify a novel angiotensin-converting enzyme inhibitory peptide, VNDYLNW (VW-7), using ultrafiltration, gel chromatography purification, LC-MS/MS, and in silico prediction. The results show that the IC50 value of VW-7 was 205.98 µM. The Lineweaver-Burk plot showed that VW-7 had a mixed-type inhibitory effect on ACE. Meanwhile, according to the results of molecular docking, VW-7 demonstrated a strong affinity for ACE (binding energy -10 kcal/mol). VW-7 was bound to ACE through multiple binding sites. In addition, VW-7 could remain active during gastrointestinal digestion in vitro. Nitric oxide (NO) generation in human endothelial cells could rise after receiving a pretreatment with VW-7. These results indicated that Torreya grandis meal protein can be developed into products with antihypertensive function, and VW-7 has broad application prospects in the field of antihypertensive.
Collapse
Affiliation(s)
- Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaohui Luo
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Yongzhu Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Yinzi Chang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.L.); (Y.Z.); (P.W.); (Y.C.); (Z.H.)
| |
Collapse
|
6
|
Lee JH, Kim TK, Yong HI, Cha JY, Song KM, Lee HG, Je JG, Kang MC, Choi YS. Peptides inhibiting angiotensin-I-converting enzyme: Isolation from flavourzyme hydrolysate of Protaetia brevitarsis larva protein and identification. Food Chem 2023; 399:133897. [DOI: 10.1016/j.foodchem.2022.133897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
|
7
|
Zheng H, Zhao Y, Guo L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar Drugs 2022; 20:742. [PMID: 36547889 PMCID: PMC9785976 DOI: 10.3390/md20120742] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Phlorotannins are a type of natural active substance extracted from brown algae, which belong to a type of important plant polyphenol. Phloroglucinol is the basic unit in its structure. Phlorotannins have a wide range of biological activities, such as antioxidant, antibacterial, antiviral, anti-tumor, anti-hypertensive, hypoglycemic, whitening, anti-allergic and anti-inflammatory, etc. Phlorotannins are mainly used in the fields of medicine, food and cosmetics. This paper reviews the research progress of extraction, separation technology and biological activity of phlorotannins, which will help the scientific community investigate the greater biological significance of phlorotannins.
Collapse
Affiliation(s)
- Hongli Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
8
|
VH-4-A Bioactive Peptide from Soybean and Exercise Training Constrict Hypertension in Rats through Activating Cell Survival and AMPKα1, Sirt1, PGC1α, and FoX3α. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227705. [PMID: 36431802 PMCID: PMC9693070 DOI: 10.3390/molecules27227705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Hypertension is a chronic disease related to age, which affects tens of millions of people around the world. It is an important risk factor that causes myocardial infarction, heart failure, stroke, and kidney damage. Bioactive peptide VHVV (VH-4) from soybean has shown several biological activities. Physical exercise is a cornerstone of non-pharmacologic treatment for hypertension and has established itself as an effective and complementary strategy for managing hypertension. The present study evaluates the efficacy of VH-4 supplement and swimming exercise training in preventing hypertension in spontaneously hypertensive rats (SHR). SHR animals were treated with VH-4 (25 mg/kg by intraperitoneal administration) and swimming exercise (1 h daily) for eight weeks, and the hemodynamic parameters, histology, and cell survival pathway protein expression were examined. In SHR rats, increased heart weight, blood pressure, and histological aberrations were observed. Cell survival protein p-PI3K and p-AKT and antiapoptosis proteins Bcl2 and Bcl-XL expression decreased in SHR animals. SIRT1 and FOXO3 were decreased in hypertensive rats. Both bioactive peptide VH-4 treatment and swimming exercise training in hypertensive rats increased the cell survival proteins p-PI3K and p-AKT and AMPKα1, Sirt1, PGC1α, and FoX3α proteins. Soy peptide VH-4, along with exercise, acts synergistically and prevents hypertension by activating cell survival and AMPKα1, Sirt1, PGC1α, and FoX3α proteins.
Collapse
|
9
|
Taniguchi R, Ito C, Keitoku S, Miyake Y, Itoigawa M, Matsui T, Shibata T. Analysis on the Structure of Phlorethols Isolated From the Warm-Temperate Brown Seaweed Sargassum carpophyllum and Their Antioxidant Properties. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The brown seaweed Sargassum carpophyllum J. Agardh is an unused warm-temperate species in the family Sargassaceae that has been expanding its distribution along the coastal areas of Japan in recent years. In this study, 3 types of phlorotannins were identified from the EtOAc fraction of the 80% MeOH extract of S. carpophyllum. From the spectroscopic (1H NMR, 13C NMR, and HMBC) and ESI/MS data and comparison with those of prior literature, it was demonstrated that the compounds are oligomers of phlorethol, which is one of the subclasses of phlorotannins, that is triphlorethol B (phloroglucinol trimer), tetraphlorethol C (phloroglucinol tetramer), and pentaphlorethol A (phloroglucinol pentamer). Among the phlorethols, tetraphlorethol C and pentaphlorethol A were isolated and identified for the first time from a brown seaweed collected from the East China Sea, including the coastal areas of Japan. The identified phlorethols were tested for their antioxidant properties. In the antioxidant assay using liposomes, the phlorethols showed comparable inhibitory effects to epigallocatechin gallate (tea polyphenol) and α-tocopherol (liposoluble vitamin) on lipid peroxidation by 4 mM 2,2′-azobis(2-methylpropionamidine) dihydrochloride. In addition, it was revealed that pentaphlorethol A has a superoxide anion scavenging activity (50% effective concentration: 21 μM) higher than that (50% effective concentration: 46 μM) of ascorbic acid (hydrosoluble vitamin).
Collapse
Affiliation(s)
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Saki Keitoku
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Yoshiaki Miyake
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Aichi, Japan
| | - Masataka Itoigawa
- School of Sport and Health Science, Tokai Gakuen University, Miyoshi, Aichi, Japan
| | - Takuya Matsui
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Seaweed Biorefinery Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
10
|
Purcell D, Packer MA, Hayes M. Angiotensin-I-Converting Enzyme Inhibitory Activity of Protein Hydrolysates Generated from the Macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods 2022; 11:1792. [PMID: 35741988 PMCID: PMC9222848 DOI: 10.3390/foods11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Seaweeds have a long history of use as both food and medicine, especially in Asian cultures. Moreover, there is growing interest in the use of seaweed ingredients and bioactive compounds in pharmaceutical and nutraceutical products. One ailment that seaweed bioactive compounds may impact is hypertension caused by the enzyme Angiotensin Converting Enzyme 1 (ACE-1; EC 3.4.15.1), found within the Renin-Angiotensin Aldosterone System (RAAS), which causes vasoconstriction of blood vessels, including veins and arteries. The aim of this paper is to generate bioactive peptide containing protein hydrolysates from the brown seaweed Laminaria digitata (Hudson) JV Lamouroux 1813. Proteins were extracted from this seaweed by disrupting the seaweed cell wall using a combination of carbohydrases and proteolytic enzymes. Bioactive peptide containing permeates were generated from L. digitata protein hydrolysates, and both hydrolysates and permeates were screened for their ability to inhibit the enzyme ACE-1. The protein content of the permeate fractions was found to be 23.87% compared to the untreated seaweed, which contained 15.08% protein using LECO analysis. Hydrolysis and filtration resulted in a "white" protein powder, and the protein content of this powder increased by 9% compared to the whole seaweed. The total amino acid (TAA) content of the L. digitata protein permeate was 53.65 g/100 g of the sample, and contains over 32% essential amino acids (EAA). Furthermore, the L. digitata permeate was found to inhibit the ACE-1 enzyme by 75% when compared to the commercial drug Captopril© when assayed at a concentration of 1 mg/mL. The inhibition of ACE-1 (the IC50 value) of 590 µg/mL for the L. digitata permeate compares well with Captopril©, which had 100% inhibition of ACE-1, with an IC50 value of 500 µg/mL. This study indicates that there is potential to develop protein powders with ACE-1 inhibitory bioactivities from the brown seaweed L. digitata using enzymatic hydrolysis as a cell disruption and protein extraction/hydrolysate generation procedure.
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand;
| | | | - Maria Hayes
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
| |
Collapse
|
11
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
12
|
Therapeutic Potential of Seaweed-Derived Bioactive Compounds for Cardiovascular Disease Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are closely related to hypertension, type 2 diabetes mellitus, obesity, and hyperlipidemia. Many studies have reported that an unhealthy diet and sedentary lifestyle are critical factors that enhance these diseases. Recently, many bioactive compounds isolated from marine seaweeds have been studied for their benefits in improving human health. In particular, several unique bioactive metabolites such as polyphenols, polysaccharides, peptides, carotene, and sterol are the most effective components responsible for these activities. This review summarizes the current in vitro, in vivo, and clinical studies related to the protective effects of bioactive compounds isolated from seaweeds against cardiovascular disorders, including anti-diabetic, anti-hypertensive, anti-hyperlipidemia, and anti-obesity effects. Therefore, this present review summarizes these concepts and provides a basis for further in-depth research.
Collapse
|
13
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Ryu B, Kim YS, Jeon YJ. Seaweeds and Their Natural Products for Preventing Cardiovascular Associated Dysfunction. Mar Drugs 2021; 19:md19090507. [PMID: 34564168 PMCID: PMC8470597 DOI: 10.3390/md19090507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD), which involves the onset and exacerbation of various conditions including dyslipidemia, activation of the renin-angiotensin system, vascular endothelial cell damage, and oxidative stress, is a leading cause of high mortality rates and accounts for one-third of deaths worldwide. Accordingly, as dietary changes in daily life are thought to greatly reduce the prevalence of CVD, numerous studies have been conducted to examine the potential use of foods and their bioactive components for preventing and treating CVD. In particular, seaweeds contain unique bioactive metabolites that are not found in terrestrial plants because of the harsh environment in which they survive, leading to in vitro and in vivo studies of their prevention and treatment effects. This review summarizes studies that focused on the beneficial effects of seaweeds and their natural products targeting markers involved in a cascade of mechanisms related to CVD pathogenesis. The purpose of this review is to describe the potential of seaweeds and their natural products for preventing and treating CVD based on in vivo and in vitro studies. This review provides a basis for future research in the field of marine drugs.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| | - Young-Sang Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| |
Collapse
|
15
|
Han EJ, Jayawardena TU, Jang JH, Fernando IPS, Jee Y, Jeon YJ, Lee DS, Lee JM, Yim MJ, Wang L, Kim HS, Ahn G. Sargachromenol Purified from Sargassum horneri Inhibits Inflammatory Responses via Activation of Nrf2/HO-1 Signaling in LPS-Stimulated Macrophages. Mar Drugs 2021; 19:497. [PMID: 34564159 PMCID: PMC8466374 DOI: 10.3390/md19090497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we isolated sargachromenol (SC) from Sargassum horneri and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. SC did not show cytotoxicity at all concentrations and effectively increased the cell viability by reducing the nitric oxide (NO) and intracellular reactive oxygen species (ROS) production in LPS-stimulated RAW 264.7 macrophages. In addition, SC decreased the mRNA expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and inflammatory mediators (iNOS and COX-2). Moreover, SC suppressed the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and mitogen-activated protein kinase (MAPK) signaling, whereas activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling in LPS-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effect of SC was abolished by the inhibition of HO-1 in LPS-stimulated RAW 264.7 macrophages. According to the results, this study suggests that the antioxidant capacity of SC leads to its anti-inflammatory effect and it potentially may be utilized in the nutraceutical and pharmaceutical sectors.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (T.U.J.); (Y.-J.J.)
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
| | | | - Youngheun Jee
- Department of Veterinary Medicine, Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (T.U.J.); (Y.-J.J.)
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Jeong-Min Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
16
|
Lu YA, Jiang Y, Yang HW, Hwang J, Jeon YJ, Ryu B. Diphlorethohydroxycarmalol Isolated from Ishige okamurae Exerts Vasodilatory Effects via Calcium Signaling and PI3K/Akt/eNOS Pathway. Int J Mol Sci 2021; 22:1610. [PMID: 33562632 PMCID: PMC7914902 DOI: 10.3390/ijms22041610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is released by endothelial cells in the blood vessel wall to enhance vasodilation. Marine polyphenols are known to have protective effects against vascular dysfunction and hypertension. The present study is the first to investigate how diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae affects calcium levels, resulting in enhanced vasodilation. We examined calcium modulation with the well-known receptors, acetylcholine receptor (AchR) and vascular endothelial growth factor 2 (VEGFR2), which are related to NO formation, and further confirmed the vasodilatory effect of DPHC. We confirmed that DPHC stimulated NO production by increasing calcium levels and endothelial nitric oxide synthase (eNOS) expression. DPHC affected AchR and VEGFR2 expression, thereby influencing transient calcium intake. Specific antagonists, atropine and SU5416, were used to verify our findings. Furthermore, based on the results of in vivo experiments, we treated Tg(flk:EGFP) transgenic zebrafish with DPHC to confirm its vasodilatory effect. In conclusion, the present study showed that DPHC modulated calcium transit through AchR and VEGFR2, increasing endothelial-dependent NO production. Thus, DPHC, a natural marine component, can efficiently ameliorate cardiovascular diseases by improving vascular function.
Collapse
Affiliation(s)
- Yu An Lu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Jin Hwang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| |
Collapse
|
17
|
ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Kim TH, Lee HS, Oh SJ, Hwang CW, Jung WK. Phlorotannins ameliorate extracellular matrix production in human vocal fold fibroblasts and prevent vocal fold fibrosis via aerosol inhalation in a laser-induced fibrosis model. J Tissue Eng Regen Med 2020; 14:1918-1928. [PMID: 33049121 DOI: 10.1002/term.3140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Vocal fold fibrosis is an abnormal condition characterized by unfavorable changes in the organization of the extracellular matrix in vocal fold lamina propria. To prevent and treat vocal fold fibrosis, a number of synthetic drugs, such as mitomycin C and the glucocorticoid family, are used after surgery, but these are known to have some side effects. Therefore, using both in vitro and in vivo studies, this study investigated whether phlorotannins extracted from Ecklonia cava have the potential to prevent vocal fold fibrosis with minimal side effects. The results show that phlorotannins suppressed both the expression of the fibrotic phenotypic marker and cell migration by inhibiting the activation of the mitogen-activated protein kinase (MAPK) and Smad2/3 signaling pathways in human vocal fold fibroblasts stimulated by transforming growth factor-β. Additionally, phlorotannins exhibited antifibrotic efficacy without an excessive inflammatory response in a laser-induced fibrosis rabbit model when delivered as an aerosol via inhalation. Based on these results, phlorotannins should be considered a promising candidate for use in the prevention of vocal fold fibrosis.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Sun-Ju Oh
- Department of Pathology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chi-Woo Hwang
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
19
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Kim HS, Lee W, Jayawardena TU, Kang N, Kang MC, Ko SC, Lee JM, Yim MJ, Lee DS, Jeon YJ. Potential Precursor of Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity and Structural Properties of Peptide from Peptic Hydrolysate of Cutlassfish Muscle. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1773595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun-Soo Kim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Janghang-eup, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Istitute of Biological Resources, Sangju, Republic of Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Nalae Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Korea
| | - Min Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Korea
| | - Seok-Chun Ko
- National Marine Bio-resources and Information Center, National Marine Biodiversity Institute of Korea, Seochun, Republic of Korea
| | - Jeong Min Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Janghang-eup, Republic of Korea
| | - Mi-Jin Yim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Janghang-eup, Republic of Korea
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Janghang-eup, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
21
|
Raji V, Loganathan C, Sadhasivam G, Kandasamy S, Poomani K, Thayumanavan P. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: An in vitro and in silico studies. Int J Biol Macromol 2020; 148:696-703. [PMID: 31954795 DOI: 10.1016/j.ijbiomac.2020.01.140] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
The isolation and purification of active components from the brown algae Sargassum.wightii is highly limited. In the present study, fucoxanthin was purified from S. wightii using simple methods. Ethyl acetate fraction obtained by Soxhlet extraction contained high concentration of fucoxanthin. Fucoxanthin-rich fraction was further subjected to open silica column chromatography and thin layer chromatography to obtain purified fucoxanthin. Purified fucoxanthin showed in vitro antioxidant activity. Fucoxanthin showed inhibition of angiotensin I-converting enzyme (ACE) with half maximal inhibitory value of 822.64 ± 17.69 μM. Kinetic analysis revealed mixed non-competitive inhibition with inhibitory constant of 600 μM for fucoxanthin against ACE. Molecular docking analysis showed the interaction of fucoxanthin with amino acids and zinc ion present in the active site of the human ACE. Molecular dynamics analysis demonstrated the stability of the fucoxanthin and ACE complex in in silico. These results show that S. wightii may be used as food ingredient to overcome hypertension.
Collapse
Affiliation(s)
- Vijayan Raji
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | - Gnanavel Sadhasivam
- Research and Project Centre for Chemical and Biological Science, Chemkovil, Mettur Dam, Salem, Tamil Nadu 636402, India
| | | | - Kumaradhas Poomani
- Department of Physics, Periyar University, Salem, Tamil Nadu 636011, India
| | | |
Collapse
|
22
|
Fernando IPS, Ryu B, Ahn G, Yeo IK, Jeon YJ. Therapeutic potential of algal natural products against metabolic syndrome: A review of recent developments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Wang L, Cui YR, Yang HW, Lee HG, Ko JY, Jeon YJ. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. FISHERIES AND AQUATIC SCIENCES 2019; 22:11. [DOI: 10.1186/s41240-019-0126-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/17/2019] [Indexed: 01/04/2025]
|
25
|
Lee HS, Jeong M, Ko S, Heo S, Kang HW, Kim SW, Hwang CW, Lee KD, Oak C, Jung MJ, Oh J, Park WS, Choi I, Jung W. Fabrication and biological activity of polycaprolactone/phlorotannin endotracheal tube to prevent tracheal stenosis: An in vitro and in vivo study. J Biomed Mater Res B Appl Biomater 2019; 108:1046-1056. [DOI: 10.1002/jbm.b.34456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hyoung Shin Lee
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Min‐Seon Jeong
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Seok‐Chun Ko
- National Marine Bio‐Resources and Information CenterNational Marine Biodiversity Institute of Korea Seochun Chungcheongnam‐do Republic of Korea
| | - Seong‐Yeong Heo
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Hyun Wook Kang
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Chi Woo Hwang
- Department of Molecular BiologyKosin University College of Medicine Busan Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Chulho Oak
- Department of Internal MedicineKosin University College of Medicine Busan Republic of Korea
| | - Min Jung Jung
- Department of PathologyKosin University College of Medicine Busan Republic of Korea
| | - Junghwan Oh
- Department of Otolaryngology‐Head and Neck SurgeryKosin University College of Medicine Busan Republic of Korea
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University, School of Medicine Chuncheon Gangwon Republic of Korea
| | - Il‐Whan Choi
- Department of MicrobiologyInje University College of Medicine Busan Republic of Korea
| | - Won‐Kyo Jung
- Marine‐Integrated Bionics Research CenterPukyong National University Busan Republic of Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National University Busan Republic of Korea
| |
Collapse
|
26
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
27
|
Ko SC, Ding Y, Kim J, Ye BR, Kim EA, Jung WK, Heo SJ, Lee SH. Bromophenol (5-bromo-3,4-dihydroxybenzaldehyde) isolated from red alga Polysiphonia morrowii inhibits adipogenesis by regulating expression of adipogenic transcription factors and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Phytother Res 2018; 33:737-744. [PMID: 30570192 DOI: 10.1002/ptr.6266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to investigate the effect of 5-bromo-3,4-dihydroxybenzaldehyde (BD) isolated from Polysiphonia morrowii on adipogenesis and differentiation of 3T3-L1 preadipocytes into mature adipocytes and its possible mechanism of action. Levels of lipid accumulation and triglyceride were significantly lower in BD treated cells than those in untreated cells. In addition, BD treatment reduced protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding proteins α, and sterol regulatory element-binding protein 1 compared with control (no treatment). It also reduced expression levels of adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. AMP-activated protein kinase activation was found to be one specific mechanism involved in the effect of BD. These results demonstrate that BD possesses inhibitory effect on adipogenesis through activating AMP-activated protein kinase signal pathway.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yuling Ding
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Junseong Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Bo-Ram Ye
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Eun-A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
- Department of Marine Biology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
28
|
Tanna B, Mishra A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr Rev Food Sci Food Saf 2018; 17:1613-1624. [PMID: 33350143 DOI: 10.1111/1541-4337.12396] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
Functional foods are nutritional compounds which also provide health and medicinal benefits. Daily food intake has much impact on the quality of life, and therefore inclusion of functional foods is now essential to our diet. Nutraceuticals are neither food nor drug but are added to food to provide extra nutritional and physiological properties. Though nutraceutical compounds provide minimal actions, their regular involvement in the diet can provide major and long-term health benefits. Global demand for additional and sustainable biomass for the production of important metabolites with nutraceutical potential has resulted in renewed interest in seaweeds. Seaweeds have been consumed from ancient times in Asian areas, and in recent times they have been demonstrated to possess many medicinal effects. Seaweeds are considered a rich source of various nutritional ingredients and metabolites that have pharmaceutical properties. It has been observed that total protein, from terrestrial plants such as soybean and wheat, produces an allergic response on consumption. Therefore, seaweed proteins can be considered a promising source for food industries. Overall, seaweeds are a rich source of PUFAs, metabolites, proteins, sulfated polysaccharides, vitamins, and minerals, which are all responsible for different bioactivities; they are therefore considered a promising functional food (nutraceutical). In this review we discuss the nutraceutical potential of seaweeds regarding different metabolites (primary and secondary), variation in composition, probable biological applications, limitations, research gaps, and future prospects.
Collapse
Affiliation(s)
- Bhakti Tanna
- Div. of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Inst., G. B. Marg, Bhavnagar, Gujarat, India.,Acad. of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Avinash Mishra
- Div. of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Inst., G. B. Marg, Bhavnagar, Gujarat, India.,Acad. of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
29
|
Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar Drugs 2018; 16:md16070237. [PMID: 30011911 PMCID: PMC6070913 DOI: 10.3390/md16070237] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Hypertension and obesity are two significant factors that contribute to the onset and exacerbation of a cascade of mechanisms including activation of the sympathetic and renin-angiotensin systems, oxidative stress, release of inflammatory mediators, increase of adipogenesis and thus promotion of systemic dysfunction that leads to clinical manifestations of cardiovascular diseases. Seaweeds, in addition to their use as food, are now unanimously acknowledged as an invaluable source of new natural products that may hold noteworthy leads for future drug discovery and development, including in the prevention and/or treatment of the cardiovascular risk factors. Several compounds including peptides, phlorotannins, polysaccharides, carotenoids, and sterols, isolated from brown, red and green macroalgae exhibit significant anti-hypertensive and anti-obesity properties. This review will provide a comprehensive overview of the recent advances on bioactive pure compounds isolated from different seaweed sources focusing on their potential use as drugs to treat or prevent hypertension and obesity. On the other hand, although it is obvious that macroalgae represent promising sources of antihypertensive and anti-obesity compounds, it is also clear that further efforts are required to fully understand their cellular mechanisms of action, to establish structure-inhibition relationships and mainly to evaluate them in pre-clinical and clinical trials.
Collapse
|
30
|
Vijayan R, Chitra L, Penislusshiyan S, Palvannan T. Exploring bioactive fraction of Sargassum wightii: In vitro elucidation of angiotensin-I-converting enzyme inhibition and antioxidant potential. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Raji Vijayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu India
| | | | | |
Collapse
|