1
|
Cayetano RDA, Kim GB, Park J, Yang YH, Jeon BH, Jang M, Kim SH. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. BIORESOURCE TECHNOLOGY 2022; 344:126309. [PMID: 34798247 DOI: 10.1016/j.biortech.2021.126309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of anaerobic digestion could be increased by promoting microbial retention through biofilm development. The inclusion of certain types of biofilm carriers has differentiated existing AD biofilm reactors through their respective mode of biofilm growth. Bacteria and archaea engaged in methanogenesis during anaerobic processes potentially build biofilms by adhering or attaching to biofilm carriers. Meta-analyzed results depicted varying degrees of biogas enhancement within AD biofilm reactors. Furthermore, different carrier materials highly induced the dynamicity of the dominant microbial population in each system. It is suggested that the promotion of surface contact and improvement of interspecies electron transport have greatly impacted the treatment results. Modern spectroscopy techniques have been and will continue to give essential information regarding biofilm's composition and structural organization which can be useful in elucidating the added function of this special layer of microbial cells.
Collapse
Affiliation(s)
- Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Liu Y, Li X, Wu S, Tan Z, Yang C. Enhancing anaerobic digestion process with addition of conductive materials. CHEMOSPHERE 2021; 278:130449. [PMID: 34126684 DOI: 10.1016/j.chemosphere.2021.130449] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is widely used for the treatment of wastewater for its low costs and bioenergy production, but the performances of anaerobic digestion often need improving in practical applications. The addition of conductive materials could lead to direct interspecies electron transfer (DIET) among the anaerobic microorganisms, and consequently enhance the efficiencies of anaerobic digestion. In this paper, the effects of DIET via conductive materials on chemical organic demand (COD) removal, volatile fatty acid (VFA) consumption and methane production were reviewed. The reports on the increase of conductive microorganisms due to the addition of conductive materials were discussed. Results regarding activities of microorganisms and morphology and properties of sludge were described and commented, and future research needs were also proposed which included better understanding of the roles of DIET in each step of anaerobic digestion, mechanisms of metabolism of pollutants in DIET-established systems and inhibition of excessive dosage of conductive materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Zhao Tan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| |
Collapse
|
3
|
Dzofou Ngoumelah D, Harnisch F, Kretzschmar J. Benefits of Age-Improved Resistance of Mature Electroactive Biofilm Anodes in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8258-8266. [PMID: 34096274 DOI: 10.1021/acs.est.0c07320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) and microbial electrochemical technologies (MET) can be combined in manifold ways. Recent studies show negative influences of AD effluents on the performance of pre-grown Geobacter spp.-dominated biofilm anodes. In this study, it was investigated how such biofilm anodes are affected by AD effluents. Therefore, experiments using AD effluents in different concentrations (0-100%) in combination with biofilms of different ages were performed. Furthermore, the activity of methanogens was inhibited and minimized by application of 2-bromoethanesulfonate (2-BES) and microfiltration, respectively. Biofilms pre-grown for 5 weeks show higher resistance against AD effluents compared to biofilms pre-grown for only 3 weeks. Nevertheless, adaptation of biofilms to AD effluents was not successful. Biofilm activity in terms of coulombic efficiency and maximum current density (jmax) dropped by factor 32.2 ± 3.2 and 38.9 ± 8.4, respectively. The application of 2-BES and microfiltration had positive effects on the biofilm activity. The results support the assumption that methanogens or further compounds not studied here, for example, protozoans, which may have been inhibited or removed by 2-BES application or microfiltration, have an immediate influence on the stability of Geobacter spp.-dominated biofilms and may limit their practical application in AD environments.
Collapse
Affiliation(s)
- Daniel Dzofou Ngoumelah
- Biochemical Conversion Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Torgauer Straße 116, 04347 Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jörg Kretzschmar
- Biochemical Conversion Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Torgauer Straße 116, 04347 Leipzig, Germany
| |
Collapse
|
4
|
Du J, Gu M, Yin Q, Wu G. Temporary addition of carbon fibers facilitates methanogenic degradation of ethanol during anaerobic treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142724. [PMID: 33082040 DOI: 10.1016/j.scitotenv.2020.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Syntrophic methanogenesis can be improved by the addition of conductive materials. In this study, conductive carbon fibers (CFs) were applied to efficiently enrich syntrophic microorganisms with potential direct interspecies electron transfer (DIET) ability and promote methanogenic activity. With ethanol as the substrate, CFs shortened the acclimation time remarkably. The maximum methane production rate and the ethanol degradation rate of suspended biomass were increased by 40% and 68%, respectively, even when CFs were subsequently removed. However, with acetate and propionate as the mixed substrate, CFs decreased the methanogenic activity. In the reactor fed with ethanol, CFs increased the relative abundance of Geobacter, Desulfovibrio, and methanogens by 57%, 39%, and 63%, respectively. Methanosaeta possessed most methane production genes and might involve in DIET. Furthermore, CFs increased the relative abundance of ethanol-degradation genes assigned to Geobacter, Desulfovibrio and Pelobacter, suggesting the promoted ethanol-degradation. The triggered electron transport system activity and acetoclastic methanogenesis also explained the accelerated effects on ethanol-degradation by long-term acclimation with CFs. Notably, the dominance of Geobacter and Methanosaeta combined with the increased electron transfer constant in the CFs-amended ethanol reactor indicated the potential role of DIET after the removal of CFs, which deserved further clarification.
Collapse
Affiliation(s)
- Jin Du
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhao L, Su C, Liu W, Qin R, Tang L, Deng X, Wu S, Chen M. Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110070. [PMID: 31841892 DOI: 10.1016/j.ecoenv.2019.110070] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Microplastic polyamide 66 (PA66) was used to explore its mechanism of influence on the contaminants removal from aerobic granular sludge (AGS) and the corresponding change to the microbial community. Results showed that the removal pollution efficiency of the experimental groups with PA66 were inhibited during the early treatment stage. However, as the experiment progressed, the removal efficiencies of chemical oxygen demand (COD) (92.66%, 93.10%, 93.11%, 93.79%) and ammonia nitrogen (94.25%, 94.58%, 95.61%, 94.73%) were similar in the addition 0 g/L (A), 0.1 g/L (B), 0.2 g/L (C) and 0.5 g/L (D) PA66 beakers at the last 10 days. On the first day, the intensity of fluorescence peaks representing tryptophan protein-like and aromatic protein-like substances of loosely-bound extracellular polymeric substances (LB-EPS) indicated that the PA66 microplastic caused damage to the sludge structure, and the intensity of fluorescence peaks representing fulvic acid-like and humic acid-like substances were stronger than those in the control beaker (A). Microbial community analysis showed that the main phyla were Firmicutes (49.11%, 59.77%, 44.33%, 41.21%), Proteobacteria (26.44%, 11.96%, 31.44%, 19.4%) and Bacteroidetes (9.24%, 13.05%, 11.89%, 14.71%) in the four beakers. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, genes representing [T] Signal transduction mechanisms illustrated that adding PA66 microplastic resulted in more signaling molecules in the AGS.
Collapse
Affiliation(s)
- Lijian Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Weihong Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
6
|
Xu H, Chang J, Wang H, Liu Y, Zhang X, Liang P, Huang X. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133876. [PMID: 31756846 DOI: 10.1016/j.scitotenv.2019.133876] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion is an effective biological treatment process that produces methane by degrading organic compounds in waste/wastewater. It is a complicated microbial process by metabolic interactions among different types of microorganisms. In this process, efficient interspecies electron transfer between secondary fermenting bacteria and methanogens is the critical process for fast and effective methanogenesis. In syntrophic metabolism, hydrogen or formate has been considered as the conventional electron carrier transferring electrons from secondary fermenting bacteria to hydrogenotrophic methanogens. Recently, direct interspecies electron transfer (DIET) without the involvement of dissolved redox mediators is arousing great concerns and has been regarded as a more efficient and thermodynamically favorable interspecies electron transfer pathway for methanogenesis. Interspecies electron exchange through DIET is accomplished via the membrane-bound cytochromes or conductive pili. Several kinds of exogenously-added conductive or semiconductive iron oxides have been discovered to greatly enhance anaerobic methanogenesis through promoting DIET. Different (semi)conductive iron oxides give a boost to DIET through different mechanisms based on the physicochemical properties of the iron oxides and the reciprocal interactions between iron oxides and functional microorganisms. In this review, the current understanding of interspecies electron transfer in syntrophic-methanogenic consortions is summarized, the effects and deep-rooted mechanisms of (semi)conductive iron oxides on methanogenesis and DIET are discussed, and possible future perspectives and development directions are suggested for DIET via (semi)conductive iron oxides in anaerobic digestion.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiali Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Yancheng Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Wu B, Yang Q, Yao F, Chen S, He L, Hou K, Pi Z, Yin H, Fu J, Wang D, Li X. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. BIORESOURCE TECHNOLOGY 2019; 294:122235. [PMID: 31610493 DOI: 10.1016/j.biortech.2019.122235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study compared the effects of sewage sludge-derived pyrochar (PC300, PC500, and PC700) and hydrochar (HC180, HC240, and HC300) on mesophilic anaerobic digestion of waste activated sludge (WAS). It was demonstrated that hydrochar can better promote the methane production compared with pyrochar. The highest accumulative methane yield of 132.04 ± 4.41 mL/g VSadded was obtained with HC180 addition. In contrast, the PC500 and PC700 showed a slightly negative effect on methane production. Sludge-derived HC not only accelerated the solubilization and hydrolysis of sludge floc, but also improved the production of acetic acid and propionate, further resulting in improved methane production. Simultaneously, the syntrophic microbes facilitating direct interspecies electron transfer (DIET) such as Syntrophomonas, Peptococcaceae, Methanosaeta and Methanobacterium bred rapidly with the addition of HCs. These results indicated that the hydrochar is more ideal as the accelerant to promote the methane production from mesophilic anaerobic digestion of WAS than the pyrochar.
Collapse
Affiliation(s)
- Bo Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huanyu Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Yin Q, Wu G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol Adv 2019; 37:107443. [DOI: 10.1016/j.biotechadv.2019.107443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
9
|
Adekunle A, Raghavan V, Tartakovsky B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry 2019; 126:105-112. [DOI: 10.1016/j.bioelechem.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 01/27/2023]
|
10
|
Barua S, Zakaria BS, Lin L, Dhar BR. Shaping microbial communities with conductive carbon fibers to enhance methane productivity and kinetics. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wang X, Chen Z, Shen J, Zhao X, Kang J. Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation. BIORESOURCE TECHNOLOGY 2019; 271:258-265. [PMID: 30278350 DOI: 10.1016/j.biortech.2018.09.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Carbon to nitrogen (C/N) ratio is one of the most important factor affecting aerobic granular sludge (AGS) growth and pollutant removal in aerobic granular sludge sequencing batch reactor (AGSBR). For stability of sludge granulation process, AGSs were domesticated in five sequence batch reactors (SBRs) with different C/N ratios (6, 7, 8, 9, and 10), which the ammonia nitrogen concentration of influent was 165 mg/L. The effects of C/N ratio on morphology and property of AGS were studied. The results showed that stable AGS was yielded with good settleability, high pollutant removal efficiency and rich microbial diversity when C/N ratio was 8. AGS yielded had stable structure due to higher protein in extracellular polymeric substances (EPS). High throughput 16S rDNA gene analysis revealed the microbial community diversity increased in AGS under the C/N ratio. The dominant microbes changed at the phylum, class and family three levels with the increasing operation time.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Barua S, Zakaria BS, Dhar BR. Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers. BIORESOURCE TECHNOLOGY 2018; 266:259-266. [PMID: 29982046 DOI: 10.1016/j.biortech.2018.06.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 05/10/2023]
Abstract
Recent studies have shown that the addition of conductive materials can promote direct interspecies electron transfer (DIET) between bacteria and methanoarchaea. This study demonstrated that carbon fibers could significantly stimulate methanogenic conversion of propionate and butyrate as co-substrate, while only butyrate was completely degraded in the unamended control bioreactor. In the carbon fibers-amended bioreactor, specific methane production (mL-CH4/g CODInitial) and methanogenesis rate (d-1) increased by around 2.4 and 6.7 times, respectively. Various electroactive bacteria were abundant in the carbon fibers-amended bioreactor, whereas different known fermentative bacteria were abundant in the control. Moreover, carbon fibers substantially increased the abundance of Methanosaeta species. These results suggest that electroactive bacteria could be involved in DIET with Methanosaeta species enabling co-degradation of propionate and butyrate. Additionally, electrical conductivities of the biomass were comparable in both configurations, indicating that carbon fibers were the primary route for DIET.
Collapse
Affiliation(s)
- Sajib Barua
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|