1
|
Zhang H, Li M, Li N, Jiang R, Yin E, Li X. Performance enhancement and mechanism of tetracycline removal by visible light-driven photo bio-electro-fenton system with CoFe-LDH/g-C 3N 4 cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125526. [PMID: 40315647 DOI: 10.1016/j.jenvman.2025.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
Bio-electro-Fenton (BEF) technology has shown significant advantages in the treatment of antibiotic wastewater. However, the strict pH application range (2-3) still limits the practical application of BEF. To overcome the limitation of pH on traditional BEF, CoFe-LDH/g-C3N4 composite catalyst was synthesized by hydrothermal method and applied to the BEF cathode to construct a photo-BEF (PBEF) system. The performance of the PBEF system under visible light was investigated with tetracycline hydrochloride (TC) as the target pollutant. The results showed that the PBEF system could extend the pH application range to 3-11 and could maintain more than 80 % of TC removal. The highest removal efficiency of TC by PBEF reached 94.98 % at pH 5, and the highest TOC removal could achieve 70.09 %, indicating that the PBEF can effectively remove TC. Meanwhile, PBEF also showed good universality, anti-interference and stability. In addition, to explore the mechanism of TC degradation by PBEF, the quenching experiments and electron spin resonance (ESR) tests were used to identify and evaluate the contribution of the reactive oxygen species in TC removal. And the results showed that e- and •OH played the major role in TC removal. Density functional theory (DFT) calculations were used to analyze the active sites of TC molecules, and three possible degradation pathways of TC were proposed. Moreover, the toxicity of TC degradation by PBEF was effectively reduced. This study proposes a new way to broaden the application range of pH by PBEF and provides a novel alternative for antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ni Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
2
|
Tariq MF, Javed F, Rizzo L, Tahir MW, Ikhlaq A. Textile wastewater treatment by heterogeneous catalytic ozonation using microcellulose loaded ZIF 67 catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125031. [PMID: 40106978 DOI: 10.1016/j.jenvman.2025.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The textile industry, being a significant consumer of fresh water, generates large amounts of wastewater, leading to serious environmental problems. The high levels of pollutants present in textile wastewater pose a significant risk to the environment and disrupt the ecosystem. As a result, it is essential to implement effective treatment steps to mitigate these harmful effects. This research focuses on the performance of a novel catalyst, namely microcrystalline cellulose zeolitic imidazolate frameworks (MCC@ZIF-67), in a heterogeneous catalytic ozonation process (HCOP) for the treatment of real textile effluent. The textile wastewater was characterized by a chemical oxygen demand (COD) of 490 mg/L, a 5 days biochemical oxygen demand (BOD5) of 206 mg/L, a total dissolved solids (TDS) concentration of 3500 mg/L, and intense red color. The study investigated the influence of several parameters like ozone dose, pH, catalyst dosage, and treatment time. The experimental results showed a 79.01 % decolourization, 72.40 % COD removal, and 66.51 % BOD5 removal after 30 min of treatment at optimum conditions of pH 9, ozone concentration 0.4 mg/min, and MCC@ZIF 67 dose of 50 mg/L. The comparison with control tests revealed the beneficial synergistic effects of HCOP with a process efficiency in the order of HCOP(O3/MCC@ZIF-67) > O3 > MCC@ZIF-67. Scavenging tests allowed to better support the explanation of possible degradation mechanisms. This study demonstrates the potential of MCC@ZIF-67 in the HCOP process for the effective treatment of textile effluent and, depending on the characteristics of textile wastewater and standards for effluent disposal, may serve either as standalone process, a pre-treatment for subsequent biological process or tertiary treatment.
Collapse
Affiliation(s)
- Muhammad Fahad Tariq
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Farhan Javed
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Muhammad Wasim Tahir
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan.
| |
Collapse
|
3
|
Mohan H, Muthukumar Sathya P, Acharya S, Jeong HJ, Lee GM, Park JH, Seralathan KK, Oh BT. Harnessing landfill-derived Bacillus subtilis (LLS-04) for bio-electrodegradation of di-butyl phthalate: Comprehensive toxicity assessment across multiple biological models. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136480. [PMID: 39556914 DOI: 10.1016/j.jhazmat.2024.136480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Di-butyl phthalate (DBP), a pervasive environmental contaminant, poses significant ecological and health risks due to its persistence and toxicity. This study investigates the potential of a landfill-derived Bacillus subtilis strain (LLS-04) in bio-electrodegradation of DBP, alongside a comprehensive toxicity assessment across multiple biological models. Bio-electrodegradation efficiency was compared to biodegradation and electrodegradation, revealing that bio-electrodegradation achieved a remarkable 98.57 % reduction in DBP concentration significantly outperforming the other methods. This enhanced degradation was attributed to improved microbial activity and enzyme production, as indicated by higher protein content and increased esterase and dehydrogenase activities in the bio-electrodegradation system. The optimized conditions facilitated efficient degradation, with HPLC-MS/MS analysis confirming the breakdown of DBP into non-toxic end products via a proposed metabolic pathway. A comprehensive toxicity assessment, including in-silico analysis, in-vitro cytotoxicity and brine shrimp lethality assays, demonstrated a significant reduction in toxicity of BES treated effluent compared to DBP untreated effluent. Furthermore, in-vivo toxicity studies using animal model supported these findings, demonstrating reduced toxicity in the BES treated effluent compared to the DBP untreated effluent. Overall, these findings highlight the potential application of bio-electrodegradation in bioremediation strategies for phthalate pollution, offering an effective solution for reducing both DBP concentration and its environmental toxicity.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Satabdi Acharya
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk State, 54896 Republic of Korea
| | - Hyeon-Jin Jeong
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
4
|
Meurs E, Morshed MN, Kahoush M, Kadi N. Study on Fenton-based discoloration of reactive-dyed waste cotton prior to textile recycling. Sci Rep 2024; 14:24536. [PMID: 39424624 PMCID: PMC11489705 DOI: 10.1038/s41598-024-75450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The aim of this study is to investigate the feasibility of an alternative Fenton-based advanced oxidation process for the discoloration of reactive-dyed waste cotton as a pre-treatment for textile recycling. For that, pre-wetted dark-colored (black and blue) knitted samples of 300 cm2 are treated in 1200mL Fenton-solution containing 14 mM Fe2+ and 280mM H2O2 at 40 °C. Characterization of the textiles before and after the treatments are performed by UV VIS-spectrophotometry measuring color strength, microscopy, FTIR spectroscopy, thermal analysis and tensile testing measuring tenacity and elongation. Afterwards, the cotton is mechanically shredded for qualitative analysis of the recyclability. The color-strength measurements of the black and blue cotton led to discoloration-efficiencies of respectively 61.5 and 72.9%. Microscopic analysis of discolored textile fabric also showed significant fading of the colored textiles. Mechanical analysis resulted in reduced tensile strength after treatment, indicating oxidation of the cellulosic structure besides the degradation of the dye-molecules, also confirmed by reductions in thermal stability found after thermal analysis. Shredding of the fabric resulted in enhanced opening, but shorter remaining fibers after treatment. The findings of this study provide a proof-of-concept for an alternative color-stripping treatment concerning a Fenton-based advanced oxidation process as a pre-treatment for textile recycling.
Collapse
Affiliation(s)
- Elise Meurs
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden.
- Department of Engineering and Chemical Sciences, Karlstad University, Universitetsgatan 2, 651 88, Karlstad, Sweden.
| | - Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - May Kahoush
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - Nawar Kadi
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| |
Collapse
|
5
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Oh BT. Integrated bio-electrochemical approach to Norfloxacin (NFX) degradation: Efficacy, degradation mechanisms, and toxicological insights. CHEMOSPHERE 2024; 366:143479. [PMID: 39369744 DOI: 10.1016/j.chemosphere.2024.143479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Norfloxacin (NFX), a widely used fluoroquinolone antibiotic, poses significant environmental concerns due to its persistence in ecosystems and its potential to foster antibiotic resistance. This study explores the degradation of NFX using a bio-electrochemical system (BES) facilitated by Bacillus subtilis isolated from animal waste sludge. Experimental parameters were optimized to maximize removal efficiency, with the optimal conditions determined as an NFX concentration of 200 mg/L, pH 7, and an applied potential of 1.2 V. The degradation pathway was elucidated through the identification of intermediate products, ultimately leading to the complete mineralization of NFX. To assess the environmental impact of BES-treated water, a series of eco-toxicity assays were conducted. Microbial diversity analysis revealed that soil exposed to BES-treated water maintained a balanced microbial community, contrasting with the disruptions observed in soils exposed to untreated NFX-contaminated water. Phytotoxicity tests, earthworm toxicity assay, and Artemia hatchability & lethality assays further confirmed the reduced toxicity of the BES-treated water. These findings highlight the efficacy of BES in the degradation of NFX, demonstrating its potential as a sustainable strategy for the remediation of antibiotic-contaminated environments and the mitigation of associated ecological risks.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
6
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Zhou P, Yang L, Yang W, Hou J, Liao Z. Optimization of H 2O 2 Production in Biological Systems for Design of Bio-Fenton Reactors. Microorganisms 2024; 12:1488. [PMID: 39065256 PMCID: PMC11279341 DOI: 10.3390/microorganisms12071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of antibiotic wastewater, which is known for its micro-toxicity, inhibition, and poor biochemistry, poses significant challenges, including complex processes, high energy demands, and secondary pollution. Bio-Fenton, a novel Fenton technology, enables the in situ production of H2O2 at near-neutral pH, having low energy requirements and sustainable properties, and reduces the hazards of H2O2 transportation and storage. We preliminary self-designed a heterogeneous Bio-Fenton reactor. An aerobic SBBR system with pure algae, pure bacteria, and bacteria-algae symbiosis was first constructed to investigate the optimal process conditions through the effects of carbon source concentration, light duration, bamboo charcoal filling rate, and dissolved oxygen (DO) content on the H2O2 production and COD removal. Second, the reactor was constructed by adding iron-carrying catalysts to remove ROX and SDZ wastewater. The results demonstrated that the optimal operating parameters of aerobic SBBR were an influent carbon source concentration of 500 mg/L, a water temperature of 20 ± 2 °C, pH = 7.5, a dissolved oxygen content of 5 mg/L, a light-dark ratio of 12 h:12 h, a light intensity of 2500 Lux, an HRT of 10 h, and a bamboo charcoal filling rate of 33%. Given these conditions, the bacterial-algal system was comprehensively found to be the most suitable biosystem for this experiment. Ultimately, the dynamically coupled Bio-Fenton process succeeded in the preliminary removal of 41.32% and 42.22% of the ROX and SDZ from wastewater, respectively.
Collapse
Affiliation(s)
- Peiguo Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (L.Y.); (W.Y.); (J.H.); (Z.L.)
| | | | | | | | | |
Collapse
|
8
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120103. [PMID: 38280248 DOI: 10.1016/j.jenvman.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Collapse
Affiliation(s)
- Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Dipsikha Roy
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
10
|
Yoon Y, Cho M. Understanding atrazine elimination via treatment of the enzyme-based Fenton reaction: Kinetics, mechanism, reaction pathway, and metabolites toxicity. CHEMOSPHERE 2024; 349:140982. [PMID: 38103653 DOI: 10.1016/j.chemosphere.2023.140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
The degradation kinetics and mechanism of atrazine (ATZ) via an enzyme-based Fenton reaction were investigated at various substrate concentrations and pH values. Toxicological assessment was conducted on ATZ and its degradation products, and the associated reaction pathway was examined. The in situ production of hydrogen peroxide (H2O2) was monitored within the range of 3-15 mM, depending on the increase in glucose concentration, while decreasing the pH to 3.2-5.1 (initial pH of 5.8) or 6.5-7.4 (initial pH of 7.7). The degradation efficiency of ATZ was approximately 2-3 times higher at an initial pH of 5.8 with lower glucose concentrations than at an initial pH of 7.7 with higher substrate concentrations during the enzyme-based Fenton reaction. The apparent pseudo-first-order rate constant for H2O2 decomposition under various conditions in the presence of ferric citrate was 1.9-6.3 × 10-5 s-1. The •OH concentration ([•OH]ss) during the enzyme-based Fenton reaction was 0.5-4.1 × 10-14 M, and the second-order rate constant for ATZ degradation was 1.5-3.3 × 109 M-1 s-1. ATZ intrinsically hinders the growth and development of Arabidopsis thaliana, and its inhibitory effect is marginal, depending on the reaction time of the enzyme-based Fenton process. The ATZ transformation during this process occurs through dealkylation, hydroxylation, and dechlorination via •OH-mediated reactions. The degradation kinetics, mechanism, and toxicological assessment in the present study could contribute to the development and application of enzyme-based Fenton reactions for in situ pollutant abatement. Moreover, the enzyme-based Fenton reaction could be an environmentally benign and applicable approach for eliminating persistent organic matter, such as herbicides, using diverse H2O2-producing microbes and ubiquitous ferric iron with organic complexes.
Collapse
Affiliation(s)
- Younggun Yoon
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
11
|
Aravind P, Vasudevan S. Glucose driven self-sustained electro-Fenton platform for remediation of 2,4-dichlorophenoxy herbicide contaminated water. ENVIRONMENTAL TECHNOLOGY 2024; 45:61-72. [PMID: 35793114 DOI: 10.1080/09593330.2022.2099310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
As electrochemical oxidation technologies are energy-intensive, they are sparsely included in wastewater treatment plants. This study demonstrates a self-reliable glucose driven-electro-Fenton (GD-EF) system for decontamination of 2,4-dichlorophenoxy (2,4-D) herbicides without the supply of external current or voltage. It incorporates a cathode (graphite) which accepts electrons from abiotic glucose oxidation at anode (Pt/Ti or BDD or PbO2/Cu/Ti) and generates in situ H2O2. For the first time, the ability of Pt/Ti, BDD, and PbO2/Cu/Ti anodes in GD-EF and their influence on 2,4-D decontamination rate have been studied. Pt/Ti and PbO2/Cu/Ti exhibited maximum power densities of 60.42 and 219.3 µW cm-2, respectively than BDD (2.418 µW cm-2). Even though Pt/Ti fuel cell exhibited lower power density than the PbO2/Cu/Ti - fuel cell, it had a faster 2,4-D degradation rate of k = 18 × 10-3 s-1. The generated cathodic potential of -0.275 mV vs. Ag/AgCl in the Pt/Ti-fuel cell was sufficient to produce 23 mg L-1h-1 of H2O2. The high performance liquid chromatography analysis reveals the complete transformation of 2,4-D in 540 min and its degradation by 95% in 1080 min. This finding paves the way for greener decontamination of bio-recalcitrant herbicides with zero electrochemical energy consumption.
Collapse
Affiliation(s)
- Priyadharshini Aravind
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Subramanyan Vasudevan
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| |
Collapse
|
12
|
Vaidyanathan VK, Alanazi AK, Senthil Kumar P, Rajendran DS, Chidambaram A, Venkataraman S, Kumar VV, Rangasamy G, Cabana H, Abo-Dief HM. Cost-effective, scalable production of glucose oxidase using Casuarina equisetifolia biomass and its application in the bio-Fenton oxidation process for the removal of trace organic contaminants from wastewater. BIORESOURCE TECHNOLOGY 2023; 377:128958. [PMID: 36965584 DOI: 10.1016/j.biortech.2023.128958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
This study focuses on using Casuarina equisetifolia biomass for pilot-scale glucose oxidase production from Aspergillus niger and its application in the removal of trace organic contaminants (TrOCs) from municipal wastewater through the bio-Fenton oxidation. The cost of glucose oxidase was 0.005 $/U, including the optimum production parameters, 10% biomass, 7% sucrose, 1% peptone, and 3% CaCO3 at 96 h with an enzyme activity of 670 U/mL. Optimized conditions for H2O2 were 1 M glucose, 100 U/mL glucose oxidase, and 120 mins of incubation, resulting in 544.3 mg/L H2O2. Thus, H2O2 produced under these conditions lead to bio-Fenton oxidation resulting in the removal of 36-92% of nine TrOCs in municipal wastewater at pH 7.0 in 360 mins. Therefore, this work establishes the cost-effective glucose oxidase-producing H2O2 as an attractive bioremediating agent to enhance the removal of TrOCs in wastewater at neutral pH.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India; Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - P Senthil Kumar
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India.
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Ashok Chidambaram
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Vaithyanathan Vasanth Kumar
- Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada; Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hubert Cabana
- Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Muthukumar Sathya P, Mohan H, Venkatachalam J, Seralathan KK. A hybrid technique for sulfamethoxazole (SFM) removal using Enterobacter hormaechei HaG-7: Bio-electrokinetic degradation, pathway and toxicity. CHEMOSPHERE 2023; 313:137485. [PMID: 36526143 DOI: 10.1016/j.chemosphere.2022.137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Prolonged exposure to antibiotics would likely favor the development of antibiotic resistance and their gene transfer among bacterial communities that are responsible for enriched antibiotic resistant microbes. Sulfamethoxazole (SFM) is a commonly used antibiotic that is released into the environment through human and animal wastes. Improper degradation of SFM poses severe threats to mankind and all life forms. The present study aims in analyzing the process and the probability of utilizing bio-electrokinetic degradation for elimination of SFM from artificially contaminated soil employing Enterobacter hormaechei HaG-7. The desired optimal conditions for SFM degradation (∼98%) were observed at SFM initial concentration (100 mg/L) with an inoculum dose (1% v/v) and applied potential voltage (1.5 V) at pH (7). The results indicated efficient and complete degradation of SFM when compared with the conventional biodegradation.
Collapse
Affiliation(s)
| | - Harshavardhan Mohan
- Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
15
|
Trivedi A, Hait S. Metal bioleaching from printed circuit boards by bio-Fenton process: Optimization and prediction by response surface methodology and artificial intelligence models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116797. [PMID: 36423410 DOI: 10.1016/j.jenvman.2022.116797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Recycling printed circuit boards (PCBs) in the e-waste stream is essential for ecological protection and metal recycling for a circular economy. Efficient metal recovery from PCBs is highly dependent on the determination of the optimum combination of inputs in the recycling process. In this study, optimization and predictive modelling of the bio-Fenton process were performed employing the response surface methodology (RSM) and the artificial intelligence (AI) models for efficient enzymatic metal bioleaching from discarded cellphone PCBs. The Box-Behnken design (BBD) of RSM was chosen as the design matrix. Further, two AI models, i.e., support vector machine (SVM) and artificial neural network (ANN) were employed to predict complex metal bioleaching process. Experiments were performed based on variations of four input process parameters, namely, glucose oxidase (GOx) content (100-1000 U/L), Fe2+ content (10-50 mM), PCB pulp density (1-10 g/L), and shaking speed (150-450 rpm). Results revealed that the maximum simultaneous enzymatic metal extraction of 100% Cu, 70% Ni, 40% Pb, and 100% Zn was attained at the optimized conditions: GOx content: 300 U/L, Fe2+ content: 10 mM, pulp density: 1 g/L, and shaking speed: 335 rpm. A comparative analysis of the AI models suggested that the ANN-based model predicting more accurate results than the SVM-based model with coefficient of determination values > 0.99 for all the targeted metals. The FTIR analysis confirmed the partial disintegration of PCB polymeric base by OH radicals (OH•), which helped in liberating and exposing the embedded metals to the bio-Fenton solution. Further, the oxidation of metals by ferric ions produced from GOx-mediated oxidation of ferrous ions ensued efficient enzymatic metal bioleaching. Selective metal recovery of >99% was obtained by the chemical precipitation of bioleachate.
Collapse
Affiliation(s)
- Amber Trivedi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
16
|
Wang K, Li H, Yang Y, Wang P, Zheng Y, Song L. Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Yin Y, Liu C, Zhao G, Chen Y. Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129703. [PMID: 35963088 DOI: 10.1016/j.jhazmat.2022.129703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The removal of environmental pollutants is important for a sustainable ecosystem and human health. Shewanella oneidensis (S. oneidensis) has diverse electron transfer pathways and can use a variety of contaminants as electron acceptors or electron donors. This paper reviews S. oneidensis's function in removing environmental pollutants, including heavy metals, inorganic non-metallic ions (INMIs), and toxic organic pollutants. S. oneidensis can mineralize o-xylene (OX), phenanthrene (PHE), and pyridine (Py) as electron donors, and also reduce azo dyes, nitro aromatic compounds (NACs), heavy metals, and iodate by extracellular electron transfer (EET). For azo dyes, NACs, Cr(VI), nitrite, nitrate, thiosulfate, and sulfite that can cross the membrane, S. oneidensis transfers electrons to intracellular reductases to catalyze their reduction. However, most organic pollutants cannot be directly degraded by S. oneidensis, but S. oneidensis can remove these pollutants by self-synthesizing catalysts or photocatalysts, constructing bio-photocatalytic systems, driving Fenton reactions, forming microbial consortia, and genetic engineering. However, the industrial-scale application of S. oneidensis is insufficient. Future research on the metabolism of S. oneidensis and interfacial reactions with other materials needs to be deepened, and large-scale reactors should be developed that can be used for practical engineering applications.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
19
|
Yang Y, Ghatge S, Ko Y, Yoon Y, Ahn JH, Kim JJ, Hur HG. Non-specific degradation of chloroacetanilide herbicides by glucose oxidase supported Bio-Fenton reaction. CHEMOSPHERE 2022; 292:133417. [PMID: 34954194 DOI: 10.1016/j.chemosphere.2021.133417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Bio-Fenton reaction supported by glucose oxidase (GOx) for producing H2O2 was applied to degrade persistent chloroacetanilide herbicides in the presence of Fe (Ⅲ)-citrate at pH 5.5. There were pH decrease to 4.3, the production of 8 mM H2O2 and simultaneous consumption to produce •OH radicals which non-specifically degraded the herbicides. The degradation rates followed the order acetochlor ≈ alachlor ≈ metolachlor > propachlor ≈ butachlor with the degradation percent of 72.8%, 73.4%, 74.0%, 47.4%, and 43.8%, respectively. During the Bio-Fenton degradation, alachlor was dechlorinated and filtered into catechol via the production of intermediates formed through a series of hydrogen atom abstraction and hydrogen oxide radical addition reactions. The current Bio-Fenton reaction leading to the production of •OH radicals could be applied for non-specific oxidative degradation to various persistent organic pollutants under in-situ environmental conditions, considering diverse microbial metabolic systems able to continuously supply H2O2 with ubiquitous Fe(II) and Fe(III) and citrate.
Collapse
Affiliation(s)
- Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongseok Ko
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Younggun Yoon
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jeong Jun Kim
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
20
|
Sathe SM, Chakraborty I, Dubey BK, Ghangrekar MM. Microbial fuel cell coupled Fenton oxidation for the cathodic degradation of emerging contaminants from wastewater: Applications and challenges. ENVIRONMENTAL RESEARCH 2022; 204:112135. [PMID: 34592250 DOI: 10.1016/j.envres.2021.112135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Urbanization and industrialization have resulted in the escalation of the occurrence of emerging contaminants (EC) in the wastewater and ultimately to the receiving water bodies due to their bio-refractory nature. The presence of ECs in the water bodies adversely affects all three domains of life, viz. bacteria, archaea and eukaryotes, and eventually the ecosystem. Fenton oxidation is one of the most suitable method that is capable of degrading a variety of ECs by employing a strong oxidizing agent in the form of •OH. The coupling of Fenton oxidation with microbial fuel cell (MFC) offers benefits, such as low-cost, minimal requirement of external energy, and in-situ generation of oxidizing agents. The resulting system, termed as bio-electro-Fenton MFC (BEF-MFC), is capable of degrading the ECs in the cathodic chamber, while harvesting bioelectricity and simultaneously removing oxidizable organic matter from wastewater in the anodic chamber. This review discusses the applications of BEF-MFC for the treatment of dyes, pharmaceuticals, pesticides, and real complex wastewaters. Additionally, the effect of operating conditions on the performance of BEF-MFC are elaborated and emphasis is also given on possible future direction of research that can be adopted in BEF-MFC in the purview of up-scaling.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
21
|
Soltani F, Navidjouy N, Rahimnejad M. A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 2022; 12:5184-5213. [PMID: 35425537 PMCID: PMC8982105 DOI: 10.1039/d1ra08825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Student Research Committee, Urmia University of Medical Sciences Urmia Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| |
Collapse
|
22
|
Ghatge S, Yang Y, Ko Y, Yoon Y, Ahn JH, Kim JJ, Hur HG. Degradation of sulfonated polyethylene by a bio-photo-fenton approach using glucose oxidase immobilized on titanium dioxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127067. [PMID: 34488097 DOI: 10.1016/j.jhazmat.2021.127067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Polyethylene (PE) plastics are highly recalcitrant and resistant to photo-oxidative degradation due to its chemically inert backbone structure. We applied two novel reactions such as, Bio-Fenton reaction using glucose oxidase (GOx) enzyme alone and Bio-Photo-Fenton reaction using GOx immobilized on TiO2 nanoparticles (TiO2-GOx) under UV radiation, for (bio)degradation of pre-activated PE with sulfonation (SPE). From both the reactions, GC-MS analyses identified small organic acids such as, acetic acid and butanoic acid as a major metabolites released from SPE. In the presence of UV radiation, 21 fold and 17 fold higher amounts of acetic acid (4.78 mM) and butanoic acid (0.17 mM) were released from SPE after 6 h of reaction using TiO2-GOx than free GOx, which released 0.22 mM and 0.01 mM of acetic acid and butanoic acid, respectively. Our results suggest that (bio)degradation and valorization of naturally weathered and oxidized PE using combined reactions of biochemistry, photochemistry and Fenton chemistry could be possible.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yongseok Ko
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Younggun Yoon
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong Jun Kim
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
23
|
Song X, Jo C, Zhou M. Enhanced electricity generation and tetracycline removal of bioelectro-Fenton with electroactive biofilm induced by multi external resistance. CHEMOSPHERE 2022; 289:133070. [PMID: 34838838 DOI: 10.1016/j.chemosphere.2021.133070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A simple multi electric resistance mode is used to regulate electroactive anode film, which improves the electricity generation, H2O2 production and pollutants removal. This external electron transport path (double cathode with different resistance) exhibits higher H2O2 production (571.9 ± 0.1 mg m-2 h-1), tetracycline removal (71.4 ± 0.4% to 50 mg L-1), and power (615.3 ± 9.9 mW m-2 plus 680.6 ± 10.3 mW m-2), which is 75.4%, 23.1% and 1.25 times higher than that of single cathode mode. The double cathode improves the relative abundance of Geobacter (exoelectrogens), which is 9.45 times higher than that of single cathode mode. The anodic capacitance of double cathode mode is more than 10 times higher than that of single cathode mode. Electrons (generate by exoelectrogens) participate in two- (cathodic chamber) and four- (anodic chamber) electron reaction at cathode surface, and facilitates electricity generation of bioelectro-Fenton. The removal rate of double cathode mode is 342.7 mg L-1 d-1 (50 mg L-1 tetracycline) and 170.1 mg L-1 d-1 (20 mg L-1 tetracycline), which is much higher than that of reported. These results indicate that external electron transport path enhances the electrochemical activity of anode film and performance of bioelectro-Fenton. This paper provides a new power supply method for the future practical application and field experiment of bioelectrio-Fenton.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, North Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
24
|
Sathe SM, Chakraborty I, Sankar Cheela VR, Chowdhury S, Dubey BK, Ghangrekar MM. A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. BIORESOURCE TECHNOLOGY 2021; 341:125850. [PMID: 34474233 DOI: 10.1016/j.biortech.2021.125850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
The frequent occurrence of surfactants in urban wastewaters represents a multifaceted environmental concern. In this investigation, bio-electro-Fenton-microbial fuel cell (BEF-MFC) was developed for the degradation of sodium dodecyl sulphate (SDS) from wastewater. The synthesised cathode catalyst (powdered activated carbon and iron oxide) facilitated the Fenton reaction in the cathodic chamber of the MFC, concurrently generating a maximum power density of 105.67 mW m-2. The overall performance of the BEF-MFC for SDS removal and power generation excelled the control MFC (C-MFC) having carbon black coated cathode under similar operating conditions. Although, the rate of SDS degradation was favourable in acidic pH, under neutral pH, 70.8 ± 6.4% of SDS degradation was achieved in 120 min in BEF-MFC. A comparison of environmental impacts of BEF-MFC with up-flow MFC and electrochemical oxidation using life cycle assessment tool suggests that BEF-MFC can be one of the promising technologies for the tertiary treatment of wastewater.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - V R Sankar Cheela
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
25
|
A low temperature synthesis of Ti/TiO2/Fatty Acid/GOx/ZnO and its evaluation for amoxicillin bio-photo-catalytic degradation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Radulović O, Stanković S, Stanojević O, Vujčić Z, Dojnov B, Trifunović-Momčilov M, Marković M. Antioxidative Responses of Duckweed ( Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. Antioxidants (Basel) 2021; 10:antiox10111719. [PMID: 34829590 PMCID: PMC8615135 DOI: 10.3390/antiox10111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.
Collapse
Affiliation(s)
- Olga Radulović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
- Correspondence:
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000 Belgrade, Serbia; (S.S.); (O.S.)
| | - Olja Stanojević
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000 Belgrade, Serbia; (S.S.); (O.S.)
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000 Belgrade, Serbia;
| | - Biljana Dojnov
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 12 Njegoševa, 11000 Belgrade, Serbia;
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
| | - Marija Marković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11060 Belgrade, Serbia; (M.T.-M.); (M.M.)
| |
Collapse
|
27
|
Soltani F, Navidjouy N, Khorsandi H, Rahimnejad M, Alizadeh S. A novel bio-electro-Fenton system with dual application for the catalytic degradation of tetracycline antibiotic in wastewater and bioelectricity generation. RSC Adv 2021; 11:27160-27173. [PMID: 35480664 PMCID: PMC9037666 DOI: 10.1039/d1ra04584a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton's reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L−1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L−1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L−1, and substrate concentration of 2000 mg L−1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L−1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L−1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m−2, and 141.60 mW m−2, respectively, at the substrate concentration of 10 000 mg L−1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation. In this new insight, the potential application of the Bio-Electro-Fenton system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source.![]()
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan Iran
| |
Collapse
|
28
|
Gasmi I, Haddour N, Hamdaoui O, Kerboua K, Alghyamah A, Buret F. A Novel Energy-from-Waste Approach for Electrical Energy Production by Galvano-Fenton Process. Molecules 2021; 26:molecules26134013. [PMID: 34209359 PMCID: PMC8271935 DOI: 10.3390/molecules26134013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022] Open
Abstract
A novel approach allowing the production of electrical energy by an advanced oxidation process is proposed to eliminate organic micropollutants (MPs) in wastewaters. This approach is based on associating the Galvano–Fenton process to the generation of electrical power. In the previous studies describing the Galvano–Fenton (GF) process, iron was directly coupled to a metal of more positive potential to ensure degradation of organic pollutants without any possibility of producing electrical energy. In this new approach, the Galvano–Fenton process is constructed as an electrochemical cell with an external circuit allowing recovering electrons exchanged during the process. In this study, Malachite Green (MG) dye was used as a model of organic pollutant. Simultaneous MG degradation and electrical energy production with the GF method were investigated in batch process. The investigation of various design parameters emphasis that utilization of copper as a low-cost cathode material in the galvanic couple, provides the best treatment and electrical production performances. Moreover, these performances are improved by increasing the surface area of the cathode. The present work reveals that the GF process has a potential to provide an electrical power density of about 200 W m−2. These interesting performances indicate that this novel Energy-from-Waste strategy of the GF process could serve as an ecological solution for wastewater treatment.
Collapse
Affiliation(s)
- Intissar Gasmi
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
| | - Naoufel Haddour
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
- Correspondence:
| | - Oualid Hamdaoui
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Kaouther Kerboua
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
- Department of Second Cycle, Higher School of Industrial Technologies, P.O. Box 218, Annaba 23000, Algeria
| | - Abdulaziz Alghyamah
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - François Buret
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
| |
Collapse
|
29
|
Chen Q, Wang K, Cai Q, Gu Z, Zhu J. Optimization of pretreatment in pymetrozine production wastewater via reactive distillation and side-stream distillation methods with response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:463-474. [PMID: 33504708 DOI: 10.2166/wst.2020.599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lots of highly concentrated saline organic wastewater is produced during the pymetrozine production process, causing environmental pollution and waste of resources if discharged directly. Research on actual pymetrozine wastewater treatment is quite scarce. Existing treatment methods of pesticide wastewater usually have disadvantages of long treatment time, low processing efficiency and low recovery rate. To solve these problems, a pretreatment process for pymetrozine wastewater was studied based on material recovery and pollutant degradation. The ammonia conversion process was experimentally investigated by reactive distillation. The reaction product vapor was neutralized and then separated by side-stream distillation. Aspen Plus and response surface methodology were employed to simulate and optimize the operating conditions. Box-Behnken design was used to investigate the individual and interaction effects on methanol purification and sodium acetate removal. Experimental study was carried out on the basis of theoretical simulation data. The result showed that the optimized methanol content on tower top was 99.28% with a yield of 99.95% and methanol content of side withdrawal was 0.01%. The process can be applied for pesticide wastewater treatment to recycle high purity chemical materials, and meets the national sewage comprehensive emission standard.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail: ; School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing 210048, China
| | - Kaijun Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Qixing Cai
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Zhenggui Gu
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China E-mail:
| |
Collapse
|
30
|
Nie H, Nie M, Diwu Z, Wang L, Qiao Q, Zhang B, Yang X. Homogeneously catalytic oxidation of phenanthrene by the reaction of extracellular secretions of pyocyanin and Nicotinamide Adenine Dinucleotide. ENVIRONMENTAL RESEARCH 2020; 191:110159. [PMID: 32898564 DOI: 10.1016/j.envres.2020.110159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Application of biological methods on polycyclic aromatic hydrocarbons (PAHs) treatment is always limited by its low degradation efficiency. In this work, a catalytic oxidation pathway of phenanthrene resulted by extracellular secretions of P. aeruginosa NY3 was proposed. Results of the in vitro experiments showed that, the extracellular secretions of Pyocyanin (Pyo) and Nicotinamide Adenine Dinucleotide (NADH) acted as homogeneous catalysts because which produced H2O2, hydroxyl free radical and superoxide anion radical continuously under aerobic conditions. These produced reactive oxygen species oxidized the phenanthrene in aqueous solution, leading to the cleavage of the phenanthrene ring and the formation of phthalates products and low molecular weight metabolites (such as alkanoic acids). The ratio of BOD5/COD of phenanthrene-containing wastewaters was greatly improved after treating with Pyo and NADH. Results of the in vivo experiments showed that, pre-degradation of phenanthrene by extracellular fluid simultaneously containing Pyo and NADH, promoted cell growth of P. aeruginosa NY3, which confirmed the improvement of bioavalability of phenanthrene-containing wastewaters by the catalytic oxidation of Pyo and NADH. Further details of the free radical detection indicated that, the increase in secretion of Pyo by a bacterium was favorable to the production of H2O2 in the extracellular fluid.
Collapse
Affiliation(s)
- Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China.
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Qi Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, PR China
| | - Xuefu Yang
- School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an, 710032, PR China
| |
Collapse
|
31
|
Nguyen VH, Smith SM, Wantala K, Kajitvichyanukul P. Photocatalytic remediation of persistent organic pollutants (POPs): A review. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Vaithyanathan VK, Ravi S, Leduc R, Vaidyanathan VK, Cabana H. Utilization of biosolids for glucose oxidase production: A potential bio-fenton reagent for advanced oxidation process for removal of pharmaceutically active compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110995. [PMID: 32778284 DOI: 10.1016/j.jenvman.2020.110995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The current work focuses on the production of glucose oxidase (GOD) in sterilized biosolid (BS) slurries containing BS and municipal wastewater effluent. Various parameters were optimized for maximizing the GOD production and the effects of biostimulation on GOD production was investigated by adding synthetic media components. The studies on inoculum characteristics at an inoculum age of 72 h and inoculum size of 20% (w/v) produced high GOD activities of around 6012 U/L in 25% (dw/v) BS media. Further, the effect of ultrasonication time was determined to release BS-bound GOD in order to maximize enzymes recovery. Using 1000 U/L of the BS-based GOD for 0.55 M glucose oxidation produced the maximum H2O2 concentration of 216 ppm. The produced H2O2 was utilized for bio-Fenton based advanced oxidation process for the partial removal of 15 pharmaceutically active compounds.
Collapse
Affiliation(s)
- Vasanth Kumar Vaithyanathan
- Environmental Engineering Laboratory, Faculty of Engineering, University of Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Shobana Ravi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Roland Leduc
- Environmental Engineering Laboratory, Faculty of Engineering, University of Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Hubert Cabana
- Environmental Engineering Laboratory, Faculty of Engineering, University of Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
33
|
Morshed MN, Pervez MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: a full factorial design. Sci Rep 2020; 10:16133. [PMID: 32999300 PMCID: PMC7528022 DOI: 10.1038/s41598-020-72401-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
This work focuses on the optimization of heterogeneous Fenton-like removal of organic pollutant (dye) from water using newly developed fibrous catalysts based on a full factorial experimental design. This study aims to approximate the feasibility of heterogeneous Fenton-like removal process and optionally make predictions from this approximation in a form of statistical modeling. The fibrous catalysts were prepared by dispersing zerovalent iron nanoparticles on polyester fabrics (PET) before and after incorporation of either polyamidoamine (PAMAM, -NH2) dendrimer, 3-(aminopropyl) triethoxysilane (APTES, -Si-NH2) or thioglycerol (SH). The individual effect of two main factors [pH (X1) and concentration of hydrogen peroxide-[H2O2]μl (X2)] and their interactional effects on the removal process was determined at 95% confidence level by an L27 design. The results indicated that increasing the pH over 5 decreases the dye removal efficiency whereas the rise in [H2O2]μl until equilibrium point increases it. The principal effect of the type of catalysts (PET-NH2-Fe, PET-Si-NH2-Fe, and PET-SH-Fe) did not show any statistical significance. The factorial experiments demonstrated the existence of a significant synergistic interaction effect between the pH and [H2O2]μl as expressed by the values of the coefficient of interactions and analysis of variance (ANOVA). Finally, the functionalization of the resultant fibrous catalysts was validated by electrokinetic and X-ray photoelectron spectroscopy analysis. The optimization made from this study are of great importance for rational design and scaling up of fibrous catalyst for green chemistry and environmental applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Textile Material Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden.
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France.
- Université de Lille, Nord de France, 59000, Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215006, China.
| | - Md Nahid Pervez
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France
- Université de Lille, Nord de France, 59000, Lille, France
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215006, China
| | - Vincent A Nierstrasz
- Textile Material Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 50190, Borås, Sweden
| |
Collapse
|
34
|
Zou R, Angelidaki I, Yang X, Tang K, Andersen HR, Zhang Y. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bio-electro-Fenton (BEF) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138684. [PMID: 32330723 DOI: 10.1016/j.scitotenv.2020.138684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The bio-electro-Fenton (BEF) technology has proven to be an effective and energy-saving method for treating wastewaters containing a single pharmaceutical in the lab-scale. However, the continuous degradation of pharmaceuticals in a scaled-up BEF has never been reported. In this study, a 20-L dual-chamber BEF reactor was designed and tested for treating six model pharmaceuticals. The effect of key operational factors including applied voltage, cathode Fe2+ dosage, initial pharmaceuticals concentration and hydraulic retention time (HRT), were assessed. By implementing 0.1 V voltage, 0.3 mM Fe2+ and HRT of 26 h, the six selected pharmaceuticals (500 μg L-1 for each) were removed completely. Moreover, transformation products during clofibric acid degradation, such as 4-chlororesorcinol, were detected and the relevant transformation pathway was proposed. Additionally, it successfully removed these pharmaceuticals in the real wastewater matrix. This paper contributes to scaling-up the BEF process for continuous and effective treating pharmaceuticals-contaminated wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
35
|
Yu X, Fu W, Jiang M, Liu G, Zou Y, Chen S. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138508. [PMID: 32302852 DOI: 10.1016/j.scitotenv.2020.138508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/13/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Microbial electro-Fenton system (MEFS) shows potential application for degradation of recalcitrant pollutants. In order to simplify the MEFS and adapt to the practical application situations, such as water, soil or sludge remediation, we developed an automatic MEFS (AMEFS) for degradation of a recalcitrant dye, acid orange 7. The AMEFS contained a microchannel-structured carbon decorated with iron oxides as electro-Fenton cathode. The AMEFS could be either two-electrode configuration that the microchannel-structured carbon connected with an additional bioanode by an external circuit, or single-electrode configuration that the microchannel-structured carbon served as both bioanode and cathode. Thanks to the microchannel structure of the carbon cathode, the AMEFS could be auto-driven by a process similar to the transpiration process of natural plants. The two-electrode AMEFS had higher degradation efficiency of acid orange 7 at lower external resistance, and achieved the highest degradation efficiency of 96% at the short-circuit condition. The single-electrode configuration simplified the setup of the AMEFS and possessed comparable performance with that of two-electrode configuration at short-circuit condition. Moreover, it could degrade high concentration acid orange 7 of up to 50 mg L-1 and achieve a high degradation efficiency of over 93%. The AMEFS could be applied for soil and sludge remediation by direct insertion of the microchannel structured carbon into contaminated body.
Collapse
Affiliation(s)
- Xiaofang Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Wenna Fu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Minhua Jiang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China; School of New Energy Science and Engineering, Xinyu University, 2666 Sunshine Avenue, 338004 Xinyu City, Jiangxi Province, China
| | - Gongming Liu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Yan Zou
- Department of mechanics, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Wuhan, China.
| | - Shuiliang Chen
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China.
| |
Collapse
|
36
|
Haque AM, Hwang CE, Kim SC, Cho DY, Lee HY, Cho KM, Lee JH. Biodegradation of organophosphorus insecticides by two organophosphorus hydrolase genes (opdA and opdE) from isolated Leuconostoc mesenteroides WCP307 of kimchi origin. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Kornienko VL, Kolyagin GA, Kornienko GV, Kenova TA. The Prospects of the in situ and ex situ Use of Aqueous Solutions of Hydrogen Peroxide Electrogenerated from Oxygen. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520050067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116337] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Wu Q, Jiao S, Ma M, Peng S. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6749-6764. [PMID: 31956948 DOI: 10.1007/s11356-020-07745-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
The microbial fuel cell (MFC) system is a promising environmental remediation technology due to its simple compact design, low cost, and renewable energy producing. MFCs can convert chemical energy from waste matters to electrical energy, which provides a sustainable and environmentally friendly solution for pollutant degradations. In this review, we attempt to gather research progress of MFC technology in pollutant removal and environmental remediation. The main configurations and pollutant removal mechanism by MFCs are introduced. The research progress of MFC systems in pollutant removal and environmental remediation, including wastewater treatment, soil remediation, natural water and groundwater remediation, sludge and solid waste treatment, and greenhouse gas emission control, as well as the application of MFCs in environmental monitoring have been reviewed. Subsequently, the application of MFCs in environmental monitoring and the combination of MFCs with other technologies are described. Finally, the current limitations and potential future research has been demonstrated in this review.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Mengxing Ma
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
40
|
Syam Babu D, Nidheesh PV. A review on electrochemical treatment of arsenic from aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1715956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
41
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
42
|
Wang D, Hou H, Hu J, Xu J, Huang L, Hu S, Liang S, Xiao K, Liu B, Yang J. A bio-electro-Fenton system with a facile anti-biofouling air cathode for efficient degradation of landfill leachate. CHEMOSPHERE 2019; 215:173-181. [PMID: 30316159 DOI: 10.1016/j.chemosphere.2018.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Bio-electro-Fenton (BEF) system holds great potential for sustainable degradation of refractory organics. Activated carbon (AC) air cathode was modified by co-pyrolyzing of AC with glucose and doping with nano-zero-valent iron (denoted as nZVI@MAC) in order to promote two-electron oxygen reduction reaction (2e- ORR) for enhanced oxidizing performance. Single chamber microbial fuel cells (SCMFCs) with nZVI@MAC cathode was examined to degrade landfill leachate. It was revealed that nZVI@MAC cathode SCMFC showed higher degradation efficiency towards landfill leachate. Six landfill leachate treatment cycles indicated that nZVI@MAC cathode SCMFC exhibited higher COD removal efficiencies over AC and nZVI@AC and greatly enhanced columbic efficiency compared to AC and nZVI@AC cathode. Anti-biofouling effect was found on nZVI@MAC cathode because of the high Fenton oxidation effects at the vicinity of the cathode. Electrochemical characterizations indicated that MAC cathode had superior 2e- ORR capability than AC and nZVI@AC cathode, which was further evidenced by higher H2O2 production from nZVI@MAC cathode in SCMFC. Graphitic structure of MAC was evidenced by High Resolution Transmission Electron Microscopy, and glucose pyrolysis also resulted in nano carbon spheres on the activated carbon skeletons. Raman spectra indicated more defects were generated on MAC during its co-pyrolyzation with glucose.
Collapse
Affiliation(s)
- Dongliang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jikun Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Long Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shaogang Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|