1
|
Marčiulaitienė E, Malaiškienė J, Boris R, Urbonavičius J, Tauraitė D, Biyada S. Role of ammonia-oxidising bacteria in the removal of odorous gases by the use of plastic recycling waste as a biofilter. World J Microbiol Biotechnol 2025; 41:172. [PMID: 40346368 DOI: 10.1007/s11274-025-04392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Ammonia gas has emerged as a major concern for many industrial facilities. With the same degree of hazard, plastic waste after mechanical processing is becoming a crucial challenge for many mechanical plastics recycling plants. In this respect, the present study explored the use of plastic waste obtained from mechanical recycling plants as an adsorbent to treat ammonia gas using a biofiltration device. The physical-chemical parameters of the adsorbent used, notably moisture, ash, organic matter, pH and elemental analysis were determined. Next-generation sequencing and scanning electron microscopy analyses were carried out to detect and identify the nature of bacterial communities in the biofilters used. The results of the chemical analysis showed that the adsorbent used is appropriate for the development of the microorganisms. X-ray fluorescence analysis showed that the adsorbent belongs to the silico-aluminous materials, proving its effectiveness as an adsorbent. The efficiency of ammonia removal was over 93% using the biofilter. Next-generation sequencing revealed that bacteria belonging to ammonia oxidizers such as Nitrosomonas and Nitrosospira are among the most abundant bacteria after the biofiltration process, which explains the efficiency of ammonia removal. Scanning electron microscopy confirmed the development of a biofilm on the surface of the biofilter after filtration. Ultimately, these results offer a promising novel approach for valorisation of the plastic waste.
Collapse
Affiliation(s)
- Eglė Marčiulaitienė
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
| | - Jurgita Malaiškienė
- Institute of Building Materials, Laboratory of Composite Materials, Vilnius Gediminas Technical University, Linkmenų str. 28, Vilnius, LT-08217, Lithuania
| | - Renata Boris
- Institute of Building Materials, Laboratory of Composite Materials, Vilnius Gediminas Technical University, Linkmenų str. 28, Vilnius, LT-08217, Lithuania
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
| | - Daiva Tauraitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
| | - Saloua Biyada
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania.
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania.
| |
Collapse
|
2
|
Li D, Sun Z, Luo G, Lu L, Zhang S, Xi J. Enhancing biological conversion of NO to N 2O by utilizing thermophiles instead of mesophiles. CHEMOSPHERE 2024; 350:141037. [PMID: 38147927 DOI: 10.1016/j.chemosphere.2023.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ga Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaobo Zhang
- Beijing Capital Sludge Disposal Technology Co. LTD, 100044, Beijing, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Wang Z, Hu L, He J, Zhou G, Chen Z, Wang Z, Chen J, Hayat K, Hrynsphan D, Tatsiana S. Mechanisms of N, N-dimethylacetamide-facilitated n-hexane removal in a rotating drum biofilter packed with bamboo charcoal-polyurethane composite. BIORESOURCE TECHNOLOGY 2023; 372:128600. [PMID: 36634880 DOI: 10.1016/j.biortech.2023.128600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
n-Hexane and N, N-dimethylacetamide (DMAC) are two major volatile organic compounds (VOCs) discharged from the pharmaceutical industry. To enhance DMAC-facilitated n-hexane removal, we investigated the simultaneous removal of multiple pollutants in a rotating drum biofilter packed with bamboo charcoal-polyurethane composite. After adding 800 mg·L-1 DMAC, the n-hexane removal efficiency increased from 59.4 % to 83.1 % under the optimized conditions. The maximum elimination capacity of 10.0 g·m-3·h-1n-hexane and 157 g·m-3·h-1 DMAC were obtained. The biomass of bamboo charcoal-polyurethane and the ratio of protein-to-polysaccharide in extracellular polymeric substances were significantly increased compared with the non-DMAC stage, which is attributed to increased carbon utilization. In addition, Na+ K+-ATPase was positively correlated with increasing electron transport system activity, which was 1.98 and 1.36 times greater. Hydrophilic DMAC improved the bioavailability of hydrophobic n-hexane and benefited bacterial metabolism. Co-degradation of n-hexane and DMAC system can be used for other volatile organic pollutants.
Collapse
Affiliation(s)
- Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenghui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| |
Collapse
|
4
|
Jachimowicz P, Nosek D, Cydzik-Kwiatkowska A. Chemical and microbiological changes on the surface of microplastic after long term exposition to different concentrations of ammonium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154784. [PMID: 35346713 DOI: 10.1016/j.scitotenv.2022.154784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The increasing production of plastic in the world has resulted in the widespread pollution of the environment with microplastics (MP). MP enter facilities such as wastewater treatment plants or landfills characterized by various ammonium concentrations. The aim of this study was to determine the structure of the microbial community on MP surfaces at various concentrations of ammonium nitrogen, and in particular, to identify microorganisms capable of polyethylene terephthalate (PET) degradation. Moreover, changes in the chemical characteristics of the MP surface resulting from microbial activity were also investigated, and the potential of MP to serve as a vector for pollutants was determined. The tests were carried out in a reactor filled with PET for a period of 260 days. The experiment was carried out in 3 phases: in I and III phase, the concentration of N-NH4 was about 70 mg/L, while in II phase, it was about 430 mg/L. On the MP surface, biofilm-forming microorganisms from the genera Rhodococcus, Pseudomonas and Xantomonas were identified at the lower ammonium concentration. At this concentration, MP-degraders belonging to genera Acidovorax, Gordonia, Pseudomonas, Sphingomonas, and Sphingopyxis were identified in the biofilm. At the higher N-NH4 concentration, the biomass was enriched with bacteria from genera Nitrosospira, Nitrosomonas and Terrimonas, and the number of microorganisms with the potential to degrade MP decreased. Analysis of the MP surface during the experiment has showed the loss of carbonyl groups and formation of carboxyl and hydroxyl groups, which indicated the degradation of MP. Independent of the ammonium concentration in the environment, MP was a carrier of pathogenic microorganisms from the genera Mycobacterium, Enterobacter and Brevundimonas.
Collapse
Affiliation(s)
- Piotr Jachimowicz
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland.
| | - Dawid Nosek
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
5
|
Sun Z, Xi J, Yeung M, Lu L. Two quorum sensing enhancement methods optimized the biofilm of biofilters treating gaseous chlorobenzene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150589. [PMID: 34597570 DOI: 10.1016/j.scitotenv.2021.150589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, effects of two quorum sensing (QS) enhancement methods on the performance and biofilm of biofilters treating chlorobenzene were investigated. Three biofilters were set up with BF1 as a control, BF2 added exogenous N-acyl-homoserine lactones (AHLs) and BF3 inoculated AHLs-producing bacterium identified as Acinetobacter. The average chlorobenzene elimination capacities were 73 and 77 g/m3/h for BF2 and BF3 respectively, which were significantly higher than 50 g/m3/h for BF1. The wet biomass of BF2 and BF3 with QS enhancement eventually increased to 60 and 39 kg/m3 respectively, and it was 29 kg/m3 for BF1. Analysis on biofilms in three biofilters showed that distribution uniformity, extracellular polymeric substances production, adhesive strengths, viability, and metabolic capacity of biofilms were all prompted by the two QS enhancement methods. Comparisons between the two QS enhancement methods showed that adding exogenous AHLs had more significant enhancing effect on biofilm due to its higher AHLs level in start-up period, while AHLs-producing bacteria had an advantage in enhancing bacterial community diversity. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating recalcitrant VOCs.
Collapse
Affiliation(s)
- Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
6
|
Kim K, Jung JY, Kwon JH. Potential of Bacterial Strains Isolated from Coastal Water for Wastewater Treatment and as Aqua-Feed Additives. Microorganisms 2021; 9:2441. [PMID: 34946043 PMCID: PMC8708354 DOI: 10.3390/microorganisms9122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria have various and sustained effects on humans in various fields: molecular biology, biomedical science, environmental/food industry, etc. This study was conducted to evaluate the wastewater treatment capacity and feed-additive fish-growth effect of four strains of bacteria: Pseudoalteromonas mariniglutinosa, Psychrobacter celer, Bacillus albus, and Bacillus safensis. In a wastewater degradation experiment, (i) nitrate-N and nitrite-N were removed within 1 h in all of the 4 bacterial strains; (ii) the removal rates of TAN and TN were higher in all of the strains relative to the B. subtilis. In a feed-additive experiment (5% Kg-1), (i) the growth of fish was higher in all of the 4 bacterial strains with the B. subtilis relative to the commercial feed; (ii) there was no significant growth difference for B. albus and B. safensis relative to the B. subtilis, but growth was higher in P. mariniglutinosa and P. celer. The results indicated that the 4 bacterial strains can be effectively utilized for biological wastewater treatment processes and as aqua-feed.
Collapse
Affiliation(s)
- Kyochan Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Joo-Young Jung
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Korea
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Korea
- Department of Food Science & Technology, and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
7
|
Dang QA, Gostomski PA. Development of a feedback control system for a differential biofilter degrading toluene contaminated air. CHEMOSPHERE 2021; 275:129822. [PMID: 33647683 DOI: 10.1016/j.chemosphere.2021.129822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, a proportional - integral feedback control system was implemented on a lab-scale differential biofilter to control the gas phase toluene concentration in the soil bed through online manipulation of the inlet toluene concentration. The feedback control system was based on a cascade controller that manipulated the setpoint of an air bath diffusion system to manipulate the inlet toluene concentration. The controller performed well for toluene concentrations in the reactor of 10 - 300 ppm for both setpoint changes and disturbance rejections; however, the system was nonlinear requiring different tuning parameters at different outlet concentrations. Feedback control of the toluene concentration in the differential reactor was used to explore the impact of concentration on start-up and long-term biofilter operation in a rigorous fashion. Starting at an reactor concentration of 20 ppm and then increasing to 65 ppm increased the toluene removal rate (33 ± 1.6 g m-3h-1) compared to starting the reactor at an outlet concentration of 81 ppm before settling at 65 ppm (42 ± 0.9 g m- 3h-1). The toluene removal rate increased with increasing outlet toluene concentration and then eventually decreased when reaching the inhibitory toluene concentration (ranged from 80 to 250 ppm).
Collapse
Affiliation(s)
- Quang A Dang
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| |
Collapse
|