1
|
Pantelic L, Bogojevic SS, Vojnovic S, Oliveira R, Lazic J, Ilic-Tomic T, Milivojevic D, Nikodinovic-Runic J. Upcycling of food waste streams to valuable biopigments pyocyanin and 1-hydroxyphenazine. Enzyme Microb Technol 2023; 171:110322. [PMID: 37722241 DOI: 10.1016/j.enzmictec.2023.110322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Phenazines, including pyocyanin (PYO) and 1-hydroxyphenazine (1-HP) are extracellular secondary metabolites and multifunctional pigments of Pseudomonas aeruginosa responsible for its blue-green color. These versatile molecules are electrochemically active, involved in significant biological activities giving fitness to the host, but also recognized as antimicrobial and anticancer agents. Their wider application is still limited partly due to the cost of carbon substrate for production, which can be solved by the utilization of carbon from food waste within the biorefinery concept. In this study, a variety of food waste streams (banana peel, potato peel, potato washing, stale bread, yoghurt, processed meat, boiled eggs and mixed canteen waste) was used as sole nutrient source in submerged cultures of P. aeruginosa BK25H. Stale bread was identified as the most suitable substrate to support phenazine biopigments production and bacterial growth. This was further increased in 5-liter fermenter when on average 5.2 mg L-1 of PYO and 4.4 mg L-1 of 1-HP were purified after 24 h batch cultivations from the fermentation medium consisting of homogenized stale bread in tap water. Purified biopigments showed moderate antimicrobial activity, and showed different toxicity profiles, with PYO not being toxic against Caenorhabditis elegans, a free-living soil nematode up to 300 µg mL-1 and 1-HP showing lethal effects at 75 µg mL-1. Therefore, stale bread waste stream with minimal pretreatment should be considered as suitable biorefinery feedstock, as it can support the production of valuable biopigments such as phenazines.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Rui Oliveira
- LAQV-REQUIMTE, NOVA School of Science and Technology, NOVA University Lisbon, Largo da Torre, 2829-516 Caparica, Portugal
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| |
Collapse
|
2
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
3
|
Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
5
|
Jyoti Sarma P, Mohanty K. A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation. Bioelectrochemistry 2022; 144:107996. [PMID: 34801808 DOI: 10.1016/j.bioelechem.2021.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
In this work, a novel three-chamber modular plant microbial fuel cell (PMFC) was designed and tested for long term sustainable generation of bioelecricity. The modular setup makes operation easy and hassle-free as placing every components, i.e., membranes, electrodes, and even changing the plants, becomes very convenient. The novel membrane assembly design combined with pre-activated electrodes with increased surface area helped promote biofilm growth and electrocatalytic activity on anode and cathode surface. The new design resulted in improved performance and stability of the PMFC system for long term usage with minimal maintenance. The use of composite membrane consisting of clay, bentonite, and fly ash mixture was used for the first time in PMFC research and proved to be an excellent alternative to existing expensive Nafion membranes. The power density and current density has increased up to 24.56 mW m-2 and 52 mA m-2 respectively, which is 63% increase in power production and is amongst the highest in PMFC research.
Collapse
Affiliation(s)
- Pranab Jyoti Sarma
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
6
|
Kugarajah V, Solomon J, Rajendran K, Dharmalingam S. Enhancement of nitrate removal and electricity generation in microbial fuel cell using eggshell supported biocathode. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Pugazhendi A, Jamal MT, Al-Mur BA, Jeyakumar RB. Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. CHEMOSPHERE 2022; 288:132515. [PMID: 34627818 DOI: 10.1016/j.chemosphere.2021.132515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastewater with different toxic recalcitrant materials and high salinity requires a novel treatment technology before released into the environment. The present research details the treatment of pharmaceutical wastewater along with energy production using bioaugmentation of halophilic consortium in air cathode microbial fuel cell (ACMFC) under saline condition (4%). Organic load (OL) varied from 1.04 to 3.51 gCOD/L was studied in ACMFC. TCOD (Total Chemical Oxygen Demand) removal exhibited 65%, 72%, 84% and 89% at 1.04, 1.52, 2.01 and 2.52 gCOD/L OL respectively. SCOD (Soluble Chemical Oxygen Demand) removal of 60%, 66%, 76% and 82% was recorded during the operation of identical OL (1.04-2.52 gCOD/L). Prominent TCOD (92%), SCOD (90%), TSS (Total Suspended Solids) removal of 73% was attained at 3.02 gCOD/L OL with corresponding energy production of 896 mV (Current density (CD) - 554 mA/m2, Power density (PD)-505 mW/m2). CE (Columbic Efficiency) was 43%, 38%, 33%, 30%, 28% and 22% at different OL ranged between 1.04 and 3.51 gCOD/L. Increase in OL to 3.51 gCOD/L revealed decrement in TCOD (68%), SCOD (62%), TSS (52%) removal and energy production (CD-234 mA/m2, PD-165 mW/m2). Complete removal of phenol was accomplished at different OL in 6 (1.04, 1.52 gCOD/L) and 8 (2.01, 2.52 and 3.02 gCOD/L) days respectively. Ochrobactrum, Marinobacter, Bacillus and Rhodococcus were the dominant halophilic electrogenic strain in ACMFC at different OL.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur-610005, Tamil Nadu, India
| |
Collapse
|
8
|
Maddalwar S, Kumar Nayak K, Kumar M, Singh L. Plant microbial fuel cell: Opportunities, challenges, and prospects. BIORESOURCE TECHNOLOGY 2021; 341:125772. [PMID: 34411941 DOI: 10.1016/j.biortech.2021.125772] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are considered as greener technologies for generation of bioenergy and simultaneously treatment of wastewater. However, the major drawback of these technologies was, rapid utilization of substrate by the microbes to generate power. This drawback is solved to a great extent by plant microbial fuel cell (PMFC) technology. Therefore, this review critically explored the challenges associated with PMFC technology and approaches to be employed for making it commercially feasible, started with brief introduction of MFCs, and PMFCs. This review also covered various factors like light intensity, carbon dioxide concentration in air, type of plant used, microbial flora in rhizosphere and also electrode material used which influence the efficiency of PMFC. Finally, this review comprehensively revealed the possibility of future intervention, such as application of biochar and preferable plants species which improve the performance of PMFC along with their opportunities challenges and prospects.
Collapse
Affiliation(s)
- Shrirang Maddalwar
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Kush Kumar Nayak
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India.
| |
Collapse
|
9
|
Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13148057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.
Collapse
|