1
|
Saqib A, -ur-Rehman S, Ali H, Hassan N, Ali A, Rashid MH. Gama rays mediated improvement of catalytic efficiency and thermostability of glucoamylase by replacing active site leucine to isoleucene from super koji (Aspergillus oryzae). PLoS One 2025; 20:e0319261. [PMID: 40249742 PMCID: PMC12007714 DOI: 10.1371/journal.pone.0319261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 04/20/2025] Open
Abstract
Glucoamylase is considered as an essential enzyme in food industry. However, lowere catalytic efficiency and weak thermostability confine its application in food industry. Therefore, the current study was aimed to improve catalytic efficiency and thermostability of glucoamylase by replacing active site leucine to isoleucene from Super Koji (Aspergillus oryzae) using gama rays mediated point mutation. High catalytic efficiency and thermostability of glucoamylase from mutant Aspergillus oryzae M-60(5) (screened from 51 mutants) was achieved due to a point mutation, i.e., Leu203 → lle in active site. The SDS-PAGE molecular mass of parent and mutant glucoamylase was 63.1 kDa, while mutant glucoamylase showed; productivity = 9.7 U ml‒1, kinetic constants kcat = 118 (1.62 fold), (kcat/Km) = 1899 (4.75 fold) and half-life at 55 °C for 45 min (1.92 fold). Thermodynamics parameters for starch hydrolysis of parent glucoamylase were; ΔH*= 47.755 kJ mol‒1 and ΔG*= 67.975 kJ mol‒1 while for mutant ΔH*= 44.263kJ mol‒1 and ΔG*= 66.514 kJ mol‒1. The ΔG* of irreversible thermostability for parent and mutant at 55 °C was 104.95 kJ mol‒1 and 101.52 kJ mol‒1respectively. The point mutation altered the conformation of the glucoamylase active site that contributed to improve the functional energy (ΔG*), resulted the stabilization of transition state which made it thermostable and highly efficient in starch hydrolysis.
Collapse
Affiliation(s)
- Anam Saqib
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- QuinTech Center for Applied Sciences (QCAS), Lahore, Pakistan
| | - Saif -ur-Rehman
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Noor Hassan
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asad Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Hamid Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE)—College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
2
|
Yan G, Zhou Y, Wu J, Jin C, Zhao L, Wang W. Novel Strain of Paenibacillus phyllosphaerae CS-148 for the Direct Hydrolysis of Raw Starch into Glucose: Isolation and Fermentation Optimization. Appl Biochem Biotechnol 2024; 196:4125-4139. [PMID: 37897622 DOI: 10.1007/s12010-023-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The conventional process for converting starch to glucose is energy-intensive. To lower the cost of this process, a novel strain of Paenibacillus phyllosphaerae CS-148 was isolated and identified, which could directly hydrolyze raw starch into glucose and accumulate glucose in the fermentation broth. The effects of different organic and inorganic nitrogen sources, the culture temperature, the initial pH, and the agitation speed on the yield of glucose were optimized through the one-factor-at-a-time method. Nine factors were screened by Plackett-Burman design, and three factors (raw corncob starch, yeast extract and (NH4)2SO4) had significant effects on glucose yield. Three significant factors were further optimized using Box-Behnken design. Under the optimized fermentation conditions (raw corncob starch 40.4 g/L, yeast extract 4.27 g/L, (NH4)2SO4 4.39 g/L, KH2PO4 2 g/L, MgSO4`7H2O 2 g/L, FeSO4`7H2O 0.02 g/L, NaCl 2 g/L, KCl 0.5 g/L, inoculums volume 4%, temperature 35 °C, agitation rate 150 rpm, and initial pH 7.0), the maximum glucose yield reached 17.32 ± 0.46 g/L, which is 1.33-fold compared to that by initial fermentation conditions. The maximum conversion rate and glucose productivity were 0.43 ± 0.01 g glucose/g raw corn starch and 0.22 ± 0.01 g/(L·h), respectively. These results implied that P. phyllosphaerae CS-148 could be used in the food industry or fermentation industry at a low cost.
Collapse
Affiliation(s)
- Guilong Yan
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Yuzhen Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Jianguo Wu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Ci Jin
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Liqin Zhao
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Wei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
3
|
Egbune EO, Ezedom T, Orororo OC, Egbune OU, Avwioroko OJ, Aganbi E, Anigboro AA, Tonukari NJ. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World J Microbiol Biotechnol 2023; 39:259. [PMID: 37493900 DOI: 10.1007/s11274-023-03706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Georgia State University, J. Mack Robinson College of Business, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria
| |
Collapse
|
4
|
Padil, Putra MD, Hidayat M, Kasiamdari RS, Mutamima A, Iwamoto K, Darmawan MA, Gozan M. Mechanism and kinetic model of microalgal enzymatic hydrolysis for prospective bioethanol conversion. RSC Adv 2023; 13:21403-21413. [PMID: 37465575 PMCID: PMC10350658 DOI: 10.1039/d3ra01556d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Tetraselmis chuii is a potential microalgae that is in consideration for producing bioethanol owing to its large content of carbohydrates. The glucose production from T. chuii through an enzymatic process with cellulase and xylanase (pretreatment process) and α-amylase and glucoamylase (saccharification process) was studied. The mechanism of the enzymatic process was developed and the kinetic models were then evaluated. For the pretreatment process, enzymes with 30% concentration reacted at 30 °C for 40 min resulted in 35.9% glucose yield. For the saccharification process, the highest glucose yield of 90.03% was obtained using simultaneous α-amylase (0.0006%) and glucoamylase (0.01%) enzymes at 55 °C and for 40 min. The kinetic models fitted well with the experimental data. The model also revealed that the saccharification process performed better than the pretreatment process with a higher kinetic constant and lower activation energy. The proposed kinetic model plays an important role in implementing processes at a larger scale.
Collapse
Affiliation(s)
- Padil
- Department of Chemical Engineering, Riau University Pekanbaru 28293 Indonesia
| | - Meilana Dharma Putra
- Department of Chemical Engineering, Lambung Mangkurat University Banjarbaru 70713 Indonesia
| | - Muslikhin Hidayat
- Department of Chemical Engineering, Gadjah Mada University Yogyakarta 55284 Indonesia
| | | | - Anisa Mutamima
- Department of Chemical Engineering, Riau University Pekanbaru 28293 Indonesia
| | - Koji Iwamoto
- Department of Environmental Engineering and Green Technology, Universiti Technologi Malaysia Kuala Lumpur 54100 Malaysia
| | - Muhammad Arif Darmawan
- Research Center for Process and Manufacturing Industry Technology, Research Organization for Energy and Manufacture, National Research and Innovation Agency Jakarta Pusat 10340 Indonesia
| | - Misri Gozan
- Department of Chemical Engineering, University of Indonesia Depok 16424 Indonesia
- Research Center for Biomass Valorization, University of Indonesia Depok 16424 Indonesia
| |
Collapse
|
5
|
Zhao S, Tan MZ, Wang RX, Ye FT, Chen YP, Luo XM, Feng JX. Combination of genetic engineering and random mutagenesis for improving production of raw-starch-degrading enzymes in Penicillium oxalicum. Microb Cell Fact 2022; 21:272. [PMID: 36566178 DOI: 10.1186/s12934-022-01997-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Raw starch-degrading enzyme (RSDE) is applied in biorefining of starch to produce biofuels efficiently and economically. At present, RSDE is obtained via secretion by filamentous fungi such as Penicillium oxalicum. However, high production cost is a barrier to large-scale industrial application. Genetic engineering is a potentially efficient approach for improving production of RSDE. In this study, we combined genetic engineering and random mutagenesis of P. oxalicum to enhance RSDE production. RESULTS A total of 3619 mutated P. oxalicum colonies were isolated after six rounds of ethyl methanesulfonate and Co60-γ-ray mutagenesis with the strain A2-13 as the parent strain. Mutant TE4-10 achieved the highest RSDE production of 218.6 ± 3.8 U/mL with raw cassava flour as substrate, a 23.2% compared with A2-13. Simultaneous deletion of transcription repressor gene PoxCxrC and overexpression of activator gene PoxAmyR in TE4-10 resulted in engineered strain GXUR001 with an RSDE yield of 252.6 U/mL, an increase of 15.6% relative to TE4-10. Comparative transcriptomics and real-time quantitative reverse transcription PCR revealed that transcriptional levels of major amylase genes, including raw starch-degrading glucoamylase gene PoxGA15A, were markedly increased in GXUR001. The hydrolysis efficiency of raw flour from cassava and corn by crude RSDE of GXUR001 reached 93.0% and 100%, respectively, after 120 h and 84 h with loading of 150 g/L of corresponding substrate. CONCLUSIONS Combining genetic engineering and random mutagenesis efficiently enhanced production of RSDE by P. oxalicum. The RSDE-hyperproducing mutant GXUR001 was generated, and its crude RSDE could efficiently degrade raw starch. This strain has great potential for enzyme preparation and further genetic engineering.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| | - Ming-Zhu Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rui-Xian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fa-Ting Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuan-Peng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Centre for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Song W, Li Y, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Improving the Catalytic Efficiency of Aspergillus fumigatus Glucoamylase toward Raw Starch by Engineering Its N-Glycosylation Sites and Saturation Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12672-12680. [PMID: 36154122 DOI: 10.1021/acs.jafc.2c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Raw starch glucoamylase (RSGA) can degrade the raw starch below the starch gelatinization temperature. In this study, to improve the catalytic activity of raw corn starch, N-glycosylation was introduced into the RSGA from Aspergillus fumigatus through site-directed mutation and the recombinant expression in Komagataella phaffii. Among them, the mutants G101S (N99-L100-S101) and Q113T (N111-S112-T113) increased the specific activity of raw corn starch by 1.19- and 1.21-fold, respectively. The optimal temperature of Q113T decreased from 70 to 60 °C. Notably, the combined mutant G101S/Q113T increased the specific activity toward raw starch by 1.22-fold and reduced the optimal temperature from 70 to 60 °C. Moreover, the mutant Q113M with a 1.5-fold increase in the catalytic activity was obtained via saturation mutation at site 113. Thus, the N-glycosylation site engineering is an efficient method to improve the activity of RSGA toward raw starch.
Collapse
Affiliation(s)
- Weiyan Song
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li Y, Li C, Huang H, Rao S, Zhang Q, Zhou J, Li J, Du G, Liu S. Significantly Enhanced Thermostability of Aspergillus niger Xylanase by Modifying Its Highly Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4620-4630. [PMID: 35404048 DOI: 10.1021/acs.jafc.2c01343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the thermostability of an acid-resistant GH11 xylanase (xynA) from Aspergillus niger AG11 was enhanced through systematic modification of its four highly flexible regions (HFRs) predicted using MD simulations. Among them, HFR I (residues 92-100) and HFR II (residues 121-130) were modified by iterative saturation mutagenesis (ISM), yielding mutants G92F/G97S/G100K and T121V/A124P/I126V/T129L/A130N, respectively. For HFR III, the N-(residues 1-37) and C-termini (residues 179-188) were, respectively, substituted with the corresponding sequences from thermophilic EvXyn11TS and Nesterenkonia xinjiangensis xylanase. N-Glycosylation was introduced into HFR IV (residues 50-70) through site-directed mutation (A55N/D57S/S61N) and the recombinant expression in A. niger AG11. Combining these positive mutations from each HFR yielded the variant xynAm1 with 137.6- and 1.3-fold increases in half-life at 50 °C and specific activity compared to the wild-type xynA, respectively. With the highest thermostability at 80 and 90 °C in reports, xynAm1 could be a robust candidate for industrial applications in functional foods, feed products, and bioethanol production.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cen Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|