1
|
Zhou S, Xu W, Wang Z, Yao K, Ji C, Hou T, He Y, Guo H. "Like Dissolves Like" Strategy Facilitates Interfacial Polymerization for Facile Synthesis of Highly Permeable Reverse Osmosis Membranes. NANO LETTERS 2025. [PMID: 40354622 DOI: 10.1021/acs.nanolett.5c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Existing reverse osmosis (RO) membranes often feature a polyamide rejection layer fabricated by interfacial polymerization (IP) between m-phenylenediamine (MPD) and trimesoyl chloride. However, polyamide RO membrane formation is limited by the poorly soluble polar MPD in the nonpolar organic solvent (e.g., hexane). Herein, we developed a dual organic solvent system to increase MPD solubility via introducing a polar solvent of dioxane into the hexane as inspired by the classical "like dissolves like" theory and thus promoting the IP reaction efficiency. Consequently, the optimal RO membrane exhibited a superior desalination performance with a rejection of 99.2% for 35,000 ppm of NaCl, simultaneous with a high water permeance of 3.1 L m-2 h-1 bar-1. Meanwhile, it had a boron rejection of 90.3% that far exceeds commercial RO membranes. These findings demonstrate that a dual organic solvent IP system can offer a facile yet effective strategy for scalable fabrication of high-performance RO membranes.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Wenjia Xu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Zhuting Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Keyu Yao
- Institute of Environment and Ecology, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
| | - Chaoyuan Ji
- Institute of Materials Research, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
| | - Tingzheng Hou
- Institute of Materials Research, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
| | - Yanbing He
- Institute of Materials Research, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
| | - Hao Guo
- Institute of Environment and Ecology, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
- Guangdong Provincial Key Laboratory of Carbon Fixation and Sinks, Department of Education of Guangdong Province, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, P.R. China
| |
Collapse
|
2
|
Wu Q, Li D, Liu J, Long S, Huang Y, Li X. Antifouling PTFE Hollow Fiber Microfiltration Membrane with a Double-Defense Mechanism. NANO LETTERS 2025; 25:7081-7088. [PMID: 40249846 DOI: 10.1021/acs.nanolett.5c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of in situ coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.
Collapse
Affiliation(s)
- Qiang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Dapeng Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
- Bioengineering Department, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747-2300, United States
| | - Jing Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang 441000, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
3
|
Burts KS, Plisko TV, Penkova AV, Yuan B, Ermakov SS, Bildyukevich AV. Correlation Between Conditions of Polyaniline Interlayer Formation and the Structure and Performance of Thin-Film Composite Membranes for Nanofiltration Prepared via Interfacial Polymerization. Polymers (Basel) 2025; 17:1199. [PMID: 40362986 PMCID: PMC12073387 DOI: 10.3390/polym17091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Correlations between conditions of the polyaniline (PANI) interlayer formation on the surface of a polysulfone (PSF) porous membrane substrate and the structure and performance of thin-film composite (TFC) membranes for nanofiltration with a polyamide (PA) selective layer prepared via interfacial polymerization (IP) were studied. It was shown that application of the PANI layer significantly enhanced hydrophilicity (the water contact angle decreased from 55 ± 2° down to 26-49 ± 2°), decreased pore size and porosity, and increased the surface roughness of the selective layer surface of porous PSF/PANI membrane substrates due to the formation of bigger PANI globules, which affect the formation of the PA layer of TFC membranes via IP. It was shown that the application of the PANI intermediate layer yielded the formation of a thinner PA selective layer, a decline in surface roughness, and an increase in hydrophilicity (the water contact angle declined from 28 to <10°) and crosslinking degree of the selective layer of TFC NF membranes. The developed approach allows us to enhance the water permeation up to 45-64 L·m-2·h-1 at ΔP = 0.5 MPa and improve membrane selectivity (rejection coefficient of MgSO4->99.99%; LiCl-5-25%; sulfadimetoxine-80-95%) and also ensure enhanced long-term operational stability of TFC nanofiltration membranes with a PANI interlayer. Moreover, Mg2+/Li+ separation factor values were found to increase to 37 and 58 for PANI-modified membranes compared to 9 and 8 for the reference NF-PSF membranes.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia or (K.S.B.); (A.V.P.); (S.S.E.)
| | - Tatiana V. Plisko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia or (K.S.B.); (A.V.P.); (S.S.E.)
| | - Anastasia V. Penkova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia or (K.S.B.); (A.V.P.); (S.S.E.)
| | - Bingbing Yuan
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China;
| | - Sergey S. Ermakov
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia or (K.S.B.); (A.V.P.); (S.S.E.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov str., 13, 220072 Minsk, Belarus;
| |
Collapse
|
4
|
Lin Y, Zhang Y, Dai Z, Peng X, Xue W, Zhang Y, Li N. In Situ Real-Time Quantitative Characterization of Nanofiltration Membrane Pore Orientation for Enhanced Ion Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500447. [PMID: 40272022 DOI: 10.1002/adma.202500447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Indexed: 04/25/2025]
Abstract
Nanofiltration membranes hold great promise for ion separation but often suffer from a trade-off between selectivity and flux, limiting their use in precise separation processes. A key challenge is achieving precise control over pore orientation, as existing methods fail to provide real-time, quantitative insights for optimizing membrane structure and performance. To address this, an innovative in situ, real-time quantitative technique is developed that links pore alignment directly to separation efficiency. Using β-cyclodextrin as a model pore-forming compound, fluorescent labeling enables continuous monitoring of pore orientation and distribution during membrane fabrication. This method enables the capture of the complete distribution of pore orientation across the entire membrane surface, allowing for precise adjustments in membrane design. This approach provides the real-time quantification of pore alignment, facilitating the design of NF membranes with enhanced ion selectivity and permeability. The optimized membranes demonstrate exceptional Mg2+/Li+ separation efficiency, with a separation factor of 15.55 and permeance of 35.85 L m-2 h-1 bar-1, representing a significant step forward in high-performance nanofiltration membranes with broad applications in resource recovery, environmental remediation, and water treatment.
Collapse
Affiliation(s)
- Yushuang Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhao Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Xue Peng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Weihao Xue
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Jin Y, Li M, Yang Y. Covalent Organic Frameworks for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412600. [PMID: 39661725 PMCID: PMC11791980 DOI: 10.1002/advs.202412600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Membranes with switchable wettability, solvent resistance, and toughness have emerged as promising materials for separation applications. However, challenges like limited mechanical strength, poor chemical stability, and structural defects during membrane fabrication hinder their widespread adoption. Covalent organic frameworks (COFs), crystalline materials constructed from organic molecules connected by covalent bonds, offer a promising solution due to their high porosity, stability, and customizable properties. The ordered structures and customizable functionality provide COFs with a lightweight framework, large surface area, and tunable pore sizes, which have attracted increasing attention for their applications in membrane separations. Recent research has extensively explored the preparation strategies of COF membranes and their applications in various separation processes. This review uniquely delves into the influence of various COF membrane fabrication techniques, including interfacial polymerization, layer-by-layer assembly, and in situ growth, on membrane thickness and performance. It comprehensively explores the design strategies and potential applications of these methods, with a particular focus on gas separation, oil/water separation, and organic solvent nanofiltration. Furthermore, future opportunities, challenges within this field, and potential directions for future development are proposed.
Collapse
Affiliation(s)
- Yuan‐Hang Jin
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Meng‐Hao Li
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| |
Collapse
|
6
|
Han S, Lu Z, Zhu J, Mai Z, Matsuyama H, He T, Zhang Y. Boosted Intracavity Aperture in Macrocyclic Amines Enabling Finely Regulated Microporous Membranes. NANO LETTERS 2024; 24:12382-12389. [PMID: 39258768 DOI: 10.1021/acs.nanolett.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zhen Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Sun Q, Song Z, Du J, Yao A, Liu L, He W, Hassan SU, Guan J, Liu J. Covalent Organic Framework Membranes with Regulated Orientation for Monovalent Cation Sieving. ACS NANO 2024; 18:27065-27076. [PMID: 39308162 DOI: 10.1021/acsnano.4c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation. Within these confined channels, the membrane with vertically aligned pores and micron-scale stacking thickness demonstrates rapid and selective transportation of Li+ ions over Na+ and K+ ions, achieving Li+/K+ and Li+/Na+ selectivity ratios of 38.7 and 7.2, respectively. This research not only reveals regulated orientation and layer stacking in COF membranes via strategic solvent selection but also offers a potent approach for developing membranes specialized in Li+ ion separation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
8
|
Zhang R, Yang J, Tian J, Zhu J, Van der Bruggen B. Synergistic interfacial polymerization between hydramine/diamine and trimesoyl chloride: A novel reaction for NF membrane preparation. WATER RESEARCH 2024; 257:121745. [PMID: 38733965 DOI: 10.1016/j.watres.2024.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyester-amide (PEA) thin film composite (TFC) NF membranes have rapidly evolved towards a competitive performance, benefiting from their remarkable antifouling capability and superior chlorine resistance. In this report, a new concept of synergistic interfacial polymerization is explored, which promptly triggers the reaction between hydramines and trimesoyl chloride (TMC) in the presence of a trace amount of diamines. This rapid-start mode enables the formation of defect-free PEA films without the requirement of catalysis. A comprehensive characterization of physicochemical properties using high-resolution mass spectrometer (HRMS) reveals that the recombination and formation of a "hydramine-diamine" coupling unit plays a decisive role in activating the synergistic interfacial polymerization reaction with TMC molecules. Taking the pair of serinol and piperazine (PIP) as an example, the PEA-NF membrane fabricated with 0.1 w/v% serinol mixed with 0.04 w/v% PIP as water-soluble monomer and 0.1 w/v% TMC as oil phase monomer was found to have a pure water permeability (PWP) of 18.5 L·m-2·h-1·bar-1 and a MgSO4 rejection of 95.5 %, which surpasses almost all the reported PEA NF membranes. Findings of the current research provide more possibilities for the low-cost and rapid synthesis of high-performance PEA membranes aiming for water purification.
Collapse
Affiliation(s)
- Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jie Yang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| |
Collapse
|
9
|
Zhao J, Li C, Sui J, Feng T, Li C, Liu L, Xue H, Zhao W, Chen X. Synthesis of tunable thickness-to-diameter ratio microcapsules via a diffusion-controlled process for temperature-responsive release. NANOSCALE 2024; 16:8495-8503. [PMID: 38591112 DOI: 10.1039/d3nr06483b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Designing microcapsules with a complicated functionalized shell to respond to an external stimulus has attracted much attention for triggered release; however, simplifying the synthesis process remains a significant challenge. Herein, we initially propose a novel, simple synthesis strategy that utilizes a mixed solvent as the organic phase to control the diffusion of common monomers during interfacial polymerization, resulting in the successful preparation of microcapsules with tunable thickness-to-diameter ratios (T/D). The morphology of microcapsules is confirmed by scanning electron microscopy. We also observe that the T/D of the designed microcapsules progressively increases as the diffusion of monomers occurs, and the glass transition temperature of microcapsules is controlled. Furthermore, microcapsule-based crosslinking agents are applied to investigate the crosslinking reaction of poly(vinyl chloride). Rotational rheometer results indicate that the microcapsules exhibit an excellent external stimulus response, precisely triggering release at the predetermined temperature. This simple approach for the preparation of microcapsules with tunable physical properties has great potential for triggered release in diverse applications.
Collapse
Affiliation(s)
- Jinshun Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chun Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiayang Sui
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tong Feng
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chonghui Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lifei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huimin Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Weizhen Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuhuang Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
10
|
Yao Y, Zhang P, Sun F, Zhang W, Li M, Sha G, Teng L, Wang X, Huo M, DuChanois RM, Cao T, Boo C, Zhang X, Elimelech M. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 2024; 384:333-338. [PMID: 38669571 DOI: 10.1126/science.adk0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Thin-film composite reverse osmosis membranes have remained the gold standard technology for desalination and water purification for nearly half a century. Polyamide films offer excellent water permeability and salt rejection but also suffer from poor chlorine resistance, high fouling propensity, and low boron rejection. We addressed these issues by molecularly designing a polyester thin-film composite reverse osmosis membrane using co-solvent-assisted interfacial polymerization to react 3,5-dihydroxy-4-methylbenzoic acid with trimesoyl chloride. This polyester membrane exhibits substantial water permeability, high rejection for sodium chloride and boron, and complete resistance toward chlorine. The ultrasmooth, low-energy surface of the membrane also prevents fouling and mineral scaling compared with polyamide membranes. These membranes could increasingly challenge polyamide membranes by further optimizing water-salt selectivity, offering a path to considerably reducing pretreatment steps in desalination.
Collapse
Affiliation(s)
- Yujian Yao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingxia Zhang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fei Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wen Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gang Sha
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Long Teng
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianze Wang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Mingxin Huo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Chen W, Qiu X, Chen Y, Ke J, Ji Y, Chen J. Supramolecular Interaction Modulation in Thermosensitive Composites: Enantiomeric Recognition and Chiral Site Regeneration. Anal Chem 2024; 96:5580-5588. [PMID: 38532617 DOI: 10.1021/acs.analchem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Herein, a novel strategy was implemented to modulate the supramolecular interaction between enantiomers and chiral recognition sites (CRSs), effectively resolving the issue of CRS saturation. Randomly methylated-β-cyclodextrin (Rm-β-CD) was used as the CRS (host molecule), and polymerized ionic liquids [poly([vbim]TFSI)] were used as the supramolecular modulator (guest molecule), which self-assembled to generate thermosensitive supramolecular host/guest complexes. The enantiomeric binding capacity and enantioselectivity of chiral separation systems centered on supramolecular host-guest complexes are characterized by a high degree of temperature dependence. Poly([vbim]TFSI) bonded to Rm-β-CD at temperatures between 17 °C ± 3 and 50 °C ± 3 °C, and the binding free energy difference (|ΔΔG|) between the (S)- and (R)-enantiomer was 0.55. Conversely, poly([vbim]TFSI detached from Rm-β-CD at temperatures >50 °C ± 3 °C or <17 °C ± 3 °C, and |ΔΔG| between (S)- and (R)-enantiomer was 0.03. The |ΔΔG| value of the (R)-enantiomer can reach 0.86 in two temperature intervals. Therefore, the binding of poly([vbim]TFSI) to Rm-β-CD afforded the favorable separation of four racemic sample mixtures: mandelic acid (e.e.% = 61.3%), ibuprofen (e.e.% = 21.6%), warfarin (e.e.% = 14.9%), and naproxen (e.e% = 18.2%). The detachment of poly([vbim]TFSI) from Rm-β-CD released the enantiomer bound to CRSs. The decomplexation of mandelic acid reached 75.1%.
Collapse
Affiliation(s)
- Wenbei Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Xin Qiu
- China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Chen
- China Pharmaceutical University, Nanjing 210009, China
| | - Jian Ke
- China Pharmaceutical University, Nanjing 210009, China
| | - Yibing Ji
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
12
|
Guo BB, Liu C, Zhu CY, Xin JH, Zhang C, Yang HC, Xu ZK. Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration. Nat Commun 2024; 15:2282. [PMID: 38480727 PMCID: PMC10937904 DOI: 10.1038/s41467-024-46580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/02/2024] [Indexed: 03/17/2024] Open
Abstract
Fine design of surface charge properties of polyamide membranes is crucial for selective ionic and molecular sieving. Traditional membranes face limitations due to their inherent negative charge and limited charge modification range. Herein, we report a facile ionic liquid-decoupled bulk/interfacial diffusion strategy to elaborate the double charge flips of polyamide membranes, enabling on-demand transformation from inherently negative to highly positive and near-neutral charges. The key to these flips lies in the meticulous utilization of ionic liquid that decouples intertwined bulk/interfacial diffusion, enhancing interfacial while inhibiting bulk diffusion. These charge-tunable polyamide membranes can be customized for impressive separation performance, for example, profound Cl-/SO42- selectivity above 470 in sulfate recovery, ultrahigh Li+/Mg2+ selectivity up to 68 in lithium extraction, and effective divalent ion removal in pharmaceutical purification, surpassing many reported polyamide nanofiltration membranes. This advancement adds a new dimension to in the design of advanced polymer membranes via interfacial polymerization.
Collapse
Affiliation(s)
- Bian-Bian Guo
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chang Liu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Ye Zhu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Hui Xin
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| | - Hao-Cheng Yang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| | - Zhi-Kang Xu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Li J, Peng H, Liu K, Zhao Q. Polyester Nanofiltration Membranes for Efficient Cations Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309406. [PMID: 37907065 DOI: 10.1002/adma.202309406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Polyester nanofiltration membranes highlight beneficial chlorine resistance, but their loose structures and negative charge result in poor cations retention precluding advanced use in cations separation. This work designs a new monomer (TET) containing "hydroxyl-ammonium" entities that confer dense structures and positive charge to polyester nanofiltration membranes. The TET monomer undergoes efficient interfacial polymerization with the trimesoyl chloride (TMC) monomer, and the resultant TET-TMC membranes feature one of the lowest molecular weight cut-offs (389 Da) and the highest zeta potential (4 mv, pH: 7) among all polyester nanofiltration membranes. The MgCl2 rejection of the TET-TMC membrane is 95.5%, significantly higher than state-of-the-art polyester nanofiltration membranes (<50%). The Li+ /Mg2+ separation performance of TET-TMC membrane is on par with cutting-edge polyamide membranes, while additionally, the membrane is stable against NaClO though polyamide membranes readily degrade. Thus the TET-TMC is the first polyester nanofiltration membrane for efficient cations separation.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kuankuan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Xue YR, Liu C, Ma ZY, Zhu CY, Wu J, Liang HQ, Yang HC, Zhang C, Xu ZK. Harmonic amide bond density as a game-changer for deciphering the crosslinking puzzle of polyamide. Nat Commun 2024; 15:1539. [PMID: 38378907 PMCID: PMC10879148 DOI: 10.1038/s41467-024-45918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
It is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance. HABD quantifies the number of distinct amide bonds per unit mass of polyamide, based on a comprehensive segmentation of polyamide structure and consistent computational protocols derived from X-ray photoelectron spectroscopy data. Compared to its counterpart, HABD overcomes the limitations and offers a more accurate depiction of the crosslinked networks. Empirical data validate that HABD exhibits the expected correlation with the salt rejection and water permeance of reverse osmosis and nanofiltration polyamide membranes. Notably, HABD is applicable for analyzing complex crosslinked polyamide networks formed by highly functional monomers. By offering a powerful toolbox for systematic analysis of crosslinked polyamide networks, HABD facilitates the development of permselective membranes with enhanced performance in desalination applications.
Collapse
Affiliation(s)
- Yu-Ren Xue
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Chang Liu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Zhao-Yu Ma
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Ye Zhu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Qing Liang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| | - Hao-Cheng Yang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Kang Xu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Zhou S, Tan H, Chen K, Cheng X, Huang X, Gao C. Enhancing the water permeability of composite NF membranes through the incorporation of organic ions in the aqueous phase. RSC Adv 2024; 14:4645-4652. [PMID: 38318625 PMCID: PMC10839750 DOI: 10.1039/d3ra04972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Composite nanofiltration (NF) membranes prepared using interfacial polymerization (IP) have gained significant attention in the field of wastewater treatment. In this study, sodium camphor sulfonate (CSA-Na) and tetraethylammonium chloride (TEAC) were employed as aqueous phase additives to regulate the diffusion of piperazine (PIP) molecules through electrostatic interactions. The dissociated CSA-Na and TEAC in the aqueous solution formed an organic structure at a certain concentration, restricting the interfacial transport behavior of PIP monomers. The results show that when the content of CSA-Na is 2% w/v, TEAC is 3.9% w/v, that is, the material dosage ratio is 1 : 3, and the NF membrane shows the best performance, with a water flux of 55.61 L m-2 h-1 (test pressure is 0.5 MPa), and MgSO4 rejection rate of more than 98%.
Collapse
Affiliation(s)
- Shuai Zhou
- Second Institute of Oceanography of the State Oceanic Administration Hangzhou 310012 China
- Bluestar (Hangzhou) Membrane Industries Co., Ltd No. 602 Shunfeng Road, Linping District Hangzhou China 311100
| | - Huifen Tan
- Bluestar (Hangzhou) Membrane Industries Co., Ltd No. 602 Shunfeng Road, Linping District Hangzhou China 311100
| | - Keke Chen
- Bluestar (Hangzhou) Membrane Industries Co., Ltd No. 602 Shunfeng Road, Linping District Hangzhou China 311100
| | - Xin Cheng
- Bluestar (Hangzhou) Membrane Industries Co., Ltd No. 602 Shunfeng Road, Linping District Hangzhou China 311100
| | - Xiaojuan Huang
- Second Institute of Oceanography of the State Oceanic Administration Hangzhou 310012 China
- Bluestar (Hangzhou) Membrane Industries Co., Ltd No. 602 Shunfeng Road, Linping District Hangzhou China 311100
| | - Congjie Gao
- Second Institute of Oceanography of the State Oceanic Administration Hangzhou 310012 China
- Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
16
|
Peng H, Liu X, Su Y, Li J, Zhao Q. Advanced Lithium Extraction Membranes Derived from Tagged-Modification of Polyamide Networks. Angew Chem Int Ed Engl 2023; 62:e202312795. [PMID: 37796136 DOI: 10.1002/anie.202312795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Efficient Mg2+ /Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a "tagged-modification" approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1 ) and 3-aminopropyltrimethylazanium (E2 ) was designed to modify polyethylenimine - trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m-2 h-1 bar-1 ) and Mg2+ /Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2 CO3 ) from simulated brine.
Collapse
Affiliation(s)
- Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Yafei Su
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| |
Collapse
|
17
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Sun J, Zhang Q, Xue W, Ding W, Zhang K, Wang S. An economical and simple method for preparing highly permeable and chlorine-resistant reverse osmosis membranes with potential commercial applications. RSC Adv 2023; 13:32083-32096. [PMID: 37920753 PMCID: PMC10618943 DOI: 10.1039/d3ra06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
The improvement in the overall efficiency of thin-film composite (TFC) reverse osmosis (RO) membranes is limited by their low permeability and sensitivity to degradation by chlorine. In the present study, polypiperazine (PIP), the commonly used amine monomer in preparing commercial TFC nanofiltration (NF) membranes, was used to regulate the m-phenylenediamine (MPD) based interfacial polymerization (IP) process. The results showed that addition of PIP optimized the micro-structure and surface properties of the polyamide (PA) layer. When the MPD and PIP mass ratio was 1 : 1, the TFCW-1:1 membrane exhibited 70% flux enhancement compared to pure MPD-based TFCW-1:0 membranes. Besides, the TFCW-1:1 membrane exhibited better chlorine-resistant performance since the NaCl rejection declined to just 3.8% while it was 11.3% for TFCW-1:0 membranes after immersion in 500 ppm NaClO solution for 48 h. Such improvement can be attributed to the increased number of unreacted amine groups and the thickness of the PA layer that PIP brought, which provided a sacrificial protective layer to consume the active chlorine, and thus maintain the integrity of the inner rejection layer. In all, the novelty and purpose of the present work is to find a more simple and scalable method to fabricate high-performance TFC RO membranes by using commonly, cheaply and frequently used materials.
Collapse
Affiliation(s)
- Junqing Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Qianwen Zhang
- School of Environment, Tsinghua University Beijing 100084 China
| | - Wenjing Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Shandong Shuifa Environmental Technology Co., Ltd Jining 272000 China
| | - Kefeng Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Shan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
19
|
Rehman D, Sheriff F, Lienhard JH. Quantifying uncertainty in nanofiltration transport models for enhanced metals recovery. WATER RESEARCH 2023; 243:120325. [PMID: 37487358 DOI: 10.1016/j.watres.2023.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
To decarbonize our global energy system, sustainably harvesting metals from diverse sourcewaters is essential. Membrane-based processes have recently shown great promise in meeting these needs by achieving high metal ion selectivities with relatively low water and energy use. An example is nanofiltration, which harnesses steric, dielectric, and Donnan exclusion mechanisms to perform size- and charge-based fractionation of metal ions. To further optimize nanofiltration systems, multicomponent models are needed; however, conventional methods necessitate large amounts of data for model calibration, introduce substantial uncertainty into the characterization process, and often yield poor results when extrapolated. In this work, we develop a new computational architecture to alleviate these concerns. Specifically, we develop a framework that: (1) reduces the data requirement for model calibration to only charged species measurements; (2) eliminates uncertainty propagation problems present in conventional characterization processes; (3) enables exploration of pH optimization for enhancing metal ion selectivities; and (4) enables uncertainty quantification to assess the sensitivity of partition coefficients and ion driving forces to learned pore size distributions. Our framework captures eight independent datasets comprising over 500 measurements to within ±15%. Our studies also suggest that the expectation-maximization algorithm can effectively learn pore size distributions and that optimizing pH can improve metal ion selectivities by a factor of 3-10×. Our findings also reveal that image charges appear to play a less pronounced role in dielectric exclusion under the studied conditions and that ion driving forces are more sensitive to pore size distributions than partition coefficients.
Collapse
Affiliation(s)
- Danyal Rehman
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA; Centre for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Fareed Sheriff
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - John H Lienhard
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
20
|
Park SJ, Lee MS, Kilic ME, Ryu J, Park H, Park YI, Kim H, Lee KR, Lee JH. Autonomous Interfacial Assembly of Polymer Nanofilms via Surfactant-Regulated Marangoni Instability. NANO LETTERS 2023. [PMID: 37256774 DOI: 10.1021/acs.nanolett.3c00374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interfacial polymerization (IP) provides a versatile platform for fabricating defect-free functional nanofilms for various applications, including molecular separation, energy, electronics, and biomedical materials. Unfortunately, coupled with complex natural instability phenomena, the IP mechanism and key parameters underlying the structural evolution of nanofilms, especially in the presence of surfactants as an interface regulator, remain puzzling. Here, we interfacially assembled polymer nanofilm membranes at the free water-oil interface in the presence of differently charged surfactants and comprehensively characterized their structure and properties. Combined with computational simulations, an in situ visualization of interfacial film formation discovered the critical role of Marangoni instability induced by the surfactants via various mechanisms in structurally regulating the nanofilms. Despite their different instability-triggering mechanisms, the delicate control of the surfactants enabled the fabrication of defect-free, ultra-permselective nanofilm membranes. Our study identifies critical IP parameters that allow us to rationally design nanofilms, coatings, and membranes for target applications.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myung-Seok Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mehmet Emin Kilic
- Computational Science Research Center, Korea Institute of Science and Technology, 66 Hoegi-ro, Dongdaemun-gu, Seoul 02792, Republic of Korea
| | - Junil Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - You In Park
- Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Ryeol Lee
- Computational Science Research Center, Korea Institute of Science and Technology, 66 Hoegi-ro, Dongdaemun-gu, Seoul 02792, Republic of Korea
- On leave at the Department of Chemistry, Uppsala University, Uppsala, 75105, Sweden
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
22
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
23
|
Zhu Y, Gui L, Wang R, Wang Y, Fang W, Elimelech M, Lin S, Jin J. Regulation of molecular transport in polymer membranes with voltage-controlled pore size at the angstrom scale. Nat Commun 2023; 14:2373. [PMID: 37185940 PMCID: PMC10130050 DOI: 10.1038/s41467-023-38114-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Polymer membranes have been used extensively for Angstrom-scale separation of solutes and molecules. However, the pore size of most polymer membranes has been considered an intrinsic membrane property that cannot be adjusted in operation by applied stimuli. In this work, we show that the pore size of an electrically conductive polyamide membrane can be modulated by an applied voltage in the presence of electrolyte via a mechanism called electrically induced osmotic swelling. Under applied voltage, the highly charged polyamide layer concentrates counter ions in the polymer network via Donnan equilibrium and creates a sizeable osmotic pressure to enlarge the free volume and the effective pore size. The relation between membrane potential and pore size can be quantitatively described using the extended Flory-Rehner theory with Donnan equilibrium. The ability to regulate pore size via applied voltage enables operando modulation of precise molecular separation in-situ. This study demonstrates the amazing capability of electro-regulation of membrane pore size at the Angstrom scale and unveils an important but previously overlooked mechanism of membrane-water-solute interactions.
Collapse
Affiliation(s)
- Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Liangliang Gui
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yunfeng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Wangxi Fang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Jian Jin
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
24
|
Lin R, Lu J, Ma F, Yan M, Wu Y, Pan J. Continuous-imprinted-layer nanofiber membrane with MXene-based precise-designed nanocages for high-accuracy recognition and separation of shikimic acid. J Colloid Interface Sci 2023; 641:875-892. [PMID: 36972623 DOI: 10.1016/j.jcis.2023.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Ti3C2Tx (MXene) has attracted extensive attention from scholars at home and abroad due to its rich surface termination functional groups and two-dimensional multilayer structure. In this work, MXene was introduced to the membrane by vacuum-assisted filtration processes, and the formed interlayer channel facilitated the construction of recognition sites and molecular transmission. In this paper, PDA@MXene@PDA@SiO2-PVDF dual-imprinted mixed matrix membrane (PMS-DIMs) were developed by the cooperative dual-imprinting strategy, which was used for the adsorption of shikimic acid (SA). Firstly, SiO2-PVDF nanofiber basement membrane were prepared by electrospinning method and the first Polydopamine (PDA)-based imprinted layer was constructed on the membrane. PDA not only realized the imprinting process, PDA modification was used to give MXene nanosheets better antioxidant properties and to confer the SiO2-PVDF nanofiber membrane the interface stability. After that, the second-imprinted sites were constructed on the stacked MXene nanosheets surface as well as between the layers. The SA dual-imprinted sites significantly increased the efficiency of the selective adsorption efficiency, when the template molecule passed through the membrane, the cooperative dual-imprinting strategy enabled multiplex recognition and adsorption of template molecules. As a consequence, which greatly improving the rebinding ability(262.17 g m-2), and mselectivity factors (βCatechol/SA, βP-HB/SA, βP-NP/SA were 2.34, 4.50 and 5.68). High stability proved the potentials of the PMS-DIMs for practical application. Precise SA-recognition sites were constructed on the PMS-DIMs, PMS-DIMs not only exhibit excellent selective rebinding properties but also have high permeability.
Collapse
Affiliation(s)
- Rongxin Lin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Lu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Zhang Z, Fan K, Liu Y, Xia S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159922. [PMID: 36336064 DOI: 10.1016/j.scitotenv.2022.159922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.
Collapse
Affiliation(s)
- Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
26
|
Park SJ, Shin SS, Jo JH, Jung CH, Park H, Park YI, Kim HJ, Lee JH. Tannic acid-assisted in-situ interfacial formation of Prussian blue-assembled adsorptive membranes for radioactive cesium removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129967. [PMID: 36155300 DOI: 10.1016/j.jhazmat.2022.129967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
There is a growing interest in advanced materials that can effectively treat wastewater contaminated with radioactive cesium (137Cs), which is an extremely hazardous material. Here, we report a new class of Cs-adsorptive membranes compactly assembled with Cs-adsorptive Prussian blue (PB) particles. The PB particle assembly was formed via an in-situ interfacial reaction between two PB precursors in the presence of tannic acid (TA) as a binder on a porous support. While the interfacial reaction enabled the formation of a defect-less PB network, TA enhanced the PB-PB and PB-support compatibilities, consequently producing a uniform, densely packed PB assembly near the support surface. The fabricated TA-assisted PB membrane (PB/TA-M) synergistically rejected Cs via a combination of adsorption and membrane filtration, although adsorption predominantly determined Cs rejection initially. Hence, the PB/TA-M membrane showed considerably higher Cs removal performance than commercial nanofiltration (NF) and reverse osmosis (RO) polyamide (PA) membranes for a sufficiently long operation time. Furthermore, the PB/TA-M membrane displayed excellent radioactive 137Cs removal performance, significantly exceeding those of commercial NF and RO PA membranes due to its higher radiation stability, indicating its viability for application in treating actual radioactive wastewater.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Su Shin
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Joon Hee Jo
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chan Hee Jung
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hosik Park
- Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - You-In Park
- Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hyung-Ju Kim
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea.
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
29
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Liu Y, Wang K, Zhou Z, Wei X, Xia S, Wang XM, Xie YF, Huang X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15220-15237. [PMID: 36330774 DOI: 10.1021/acs.est.2c06579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Zixuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- Environmental Engineering Programs, The Pennsylvania State University, Middletown, Pennsylvania17057, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
31
|
Rigid twisted structured PA membranes for organic solvent nanofiltration via co-solvent assisted interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Plisko T, Burts K, Zolotarev A, Bildyukevich A, Dmitrenko M, Kuzminova A, Ermakov S, Penkova A. Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation. MEMBRANES 2022; 12:967. [PMID: 36295726 PMCID: PMC9611024 DOI: 10.3390/membranes12100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).
Collapse
Affiliation(s)
- Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
34
|
Li C, Zhao Y, Lai GS, Wang R. Fabrication of fluorinated polyamide seawater reverse osmosis membrane with enhanced boron removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Dobariya P, Kaushik A, Marvaniya K, Maurya A, Pathan S, Kushwaha S, Patel K. Interafacially grown ultrathin high flux polymeric nanofilm for molecular separation: An improved trade-off between permeance and selectivity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
37
|
Fan K, Liu Y, Wang X, Cheng P, Xia S. Comparison of polyamide, polyesteramide and polyester nanofiltration membranes: properties and separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Li S, Yin Y, Liu S, Li H, Su B, Han L, Gao X, Gao C. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Lim YJ, Lai GS, Zhao Y, Ma Y, Torres J, Wang R. A scalable method to fabricate high-performance biomimetic membranes for seawater desalination: Incorporating pillar[5]arene water nanochannels into the polyamide selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Fu W, Huang Y, Deng L, Sun J, Li SL, Hu Y. Ultra-thin microporous membranes based on macrocyclic pillar[n]arene for efficient organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Dissecting the structure-compaction-performance relationship of thin-film composite polyamide membranes with different structure features. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Kaushik A, Dhundhiyawala M, Dobariya P, Marvaniya K, Kushwaha S, Patel K. Perm-selective ultrathin high flux microporous polyaryl nanofilm for molecular separation. iScience 2022; 25:104441. [PMID: 35677642 PMCID: PMC9167968 DOI: 10.1016/j.isci.2022.104441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Polymeric membranes with high permeance and selectivity performances are anticipated approach for water treatment. Separation membranes with moderate molecular weight cut-offs (MW in between 400 and 700 g mol−1) are desirable to separate multivalent ions and small molecules from a water stream. This requires polymeric membranes with controlled pore, pore size distribution, surface charge, and thin active layer to maximize membrane performance. Here, a fabrication of the polyaryl nanofilm with thickness down to ∼15 nm synthesized using interfacial polymerization onto ultrafiltration supports is described. Electron microscopy analysis reveals the presence of crumpled surface morphology in polyaryl nanofilm. Polyaryl nanofilm shows high water permeance of ∼110 Lm−2h−1 bar−1. Polyaryl nanofilm presents molecular weight cut-off greater than ∼450 gmol−1 (molecular marker) with water permeance of ∼84 Lm−2h−1 bar−1. Multivalent salt (K3[Fe(CN)6]) has higher rejection (>95%) as compared to the monovalent (∼5%) and divalent salt (∼28%) with the water permeance of ∼81 Lm−2h−1 bar−1. Ultrathin PAR composite membrane with crumpled morphology & improved permeance Tailored surface functionality to improve hydrophilicity, negative surface charge PAR membranes shows the high flux separation within 450 g/mol range of MWCO
Collapse
Affiliation(s)
- Ashwini Kaushik
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mansoor Dhundhiyawala
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Priyanka Dobariya
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Karan Marvaniya
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shilpi Kushwaha
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Ketan Patel
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| |
Collapse
|
45
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Zhang H, Xie F, Zhao Z, Afsar NU, Sheng F, Ge L, Li X, Zhang X, Xu T. Novel Poly(ester amide) Membranes with Tunable Crosslinked Structures for Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10782-10792. [PMID: 35188363 DOI: 10.1021/acsami.1c21862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuning the crosslinking density of interfacial-polymerized nanofiltration (NF) membranes varying from loose to dense structures can make them meet the demand of various applications. The properties (e.g., pore size and porosity) of NF membranes can be tuned by choosing monomers with different structures and reactivities. Herein, tris(hydroxymethyl)aminomethane (THAM), a low-cost and green monomer, is first employed for the preparation of poly(ester amide) (PEA) thin-film composite membranes via interfacial polymerization. The moderate reactivity of THAM enables rational regulation of the crosslinking density of PEA membranes from loose to dense structures by varying the THAM concentration, which can hardly be achieved for traditional polyamide or polyester membranes. The developed PEA membranes with a wide tunability range of crosslinking densities broaden their potential utility in NF. PEA membranes with dense structures show exceptional desalination performance with a water permeance of 11.1 L m-2 h-1 bar-1 and a Na2SO4 rejection of 97.1%. However, loose PEA membranes exhibit good dye/salt separation performance with a dye removal rate over 95.0% and negligible NaCl rejection (<7.5%), as well as high water permeance (>45 L m-2 h-1 bar-1). This work implies that PEA membranes with tunable crosslinked structures provide new possibilities for the development of task-specific separation membranes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Xie
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
47
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|