1
|
Sun X, Hou Y, Zhu Z, Zhu B, Ding Q, Zhou W, Yan S, Xia Z, Liu Y, Hou Y, Yu Y, Wang Z. Modular assembly of self-healing flexible thermoelectric devices with integrated cooling and heating capabilities. Nat Commun 2025; 16:4220. [PMID: 40328774 PMCID: PMC12056181 DOI: 10.1038/s41467-025-59602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Flexible thermoelectric devices enable direct energy conversion between heat and electrical energy, making them ideal for wearable electronics and personal thermal management. Yet, current devices lack functional module expansion, which limits the customization for diverse energy-harvesting heat sources and complicates their assembly to meet the specific power requirements of electrical appliances. Moreover, existing devices cannot be stacked to enhance thermoelectric cooling performance while maintaining flexibility and self-healing capabilities. Here, by selectively encapsulating liquid metal electrodes with carbon nanotube-doped self-healing materials with increased thermal conductivity, we substantially improve heat transfer across thermoelectric legs, thereby maximizing energy conversion efficiency. The device achieves a normalized power density of 3.14 μW⋅cm-2 ⋅ K-2, setting a benchmark for self-healing thermoelectric devices. Benefiting from self-healing materials and liquid metal, the device demonstrates both self-healing capabilities and modular assembly, greatly expanding the application scenarios of flexible thermoelectric devices in wearable power generation and refrigeration.
Collapse
Affiliation(s)
- Xiaolong Sun
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Artificial Micro-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- School of Physics and Microelectronics, Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zheng Zhu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Qianfeng Ding
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenjie Zhou
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Sijia Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhanglong Xia
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Yong Liu
- Key Laboratory of Artificial Micro-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Youmin Hou
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
- Key Laboratory of Artificial Micro-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- School of Physics and Microelectronics, Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025; 54:2762-2831. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
3
|
Peng M, Heng Z, Ma D, Hou B, Yang K, Liu Q, Gu Z, Liu W, Chen S. Iontophoresis-Integrated Smart Microneedle Delivery Platform for Efficient Transdermal Delivery and On-Demand Insulin Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70378-70391. [PMID: 39668130 DOI: 10.1021/acsami.4c18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection. Herein, we report an iontophoresis (ITP)-integrated smart MNs delivery platform with enhanced transdermal delivery efficiency and delivery depth. Carbon nanotubes (CNTs) were induced in the boronate-containing hydrogel to develop a semi-interpenetrating network hydrogel with enhanced stiffness and conductivity. Remarkably, ITP not only facilitated efficient and deeper transdermal delivery of insulin via electroosmosis and electrophoresis but also well-maintained glucose responsiveness. This ITP-combined smart MNs delivery platform, which could provide on-demand insulin delivery in a painless, convenient, and safe way, is promising to achieve persistent glycemic control. Furthermore, transdermal delivery of payloads with a wide size range was achieved by this delivery platform and thus shed light on the development of an efficient transdermal delivery platform with deep skin penetration in a minimally invasive way.
Collapse
Affiliation(s)
- Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Bo Hou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
4
|
Kuang T, Guo H, Guo W, Liu W, Li W, Saeb MR, Vatankhah‐Varnosfaderani M, Sheiko SS. Boosting the Strength and Toughness of Polymer Blends via Ligand-Modulated MOFs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407593. [PMID: 39412093 PMCID: PMC11615806 DOI: 10.1002/advs.202407593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/13/2024] [Indexed: 12/06/2024]
Abstract
Mechanically robust and tough polymeric materials are in high demand for applications ranging from flexible electronics to aerospace. However, achieving both high toughness and strength in polymers remains a significant challenge due to their inherently contradictory nature. Here, a universal strategy for enhancing the toughness and strength of polymer blends using ligand-modulated metal-organic framework (MOF) nanoparticles is presented, which are engineered to have adjustable hydrophilicity and lipophilicity by varying the types and ratios of ligands. Molecular dynamics (MD) simulations demonstrate that these nanoparticles can effectively regulate the interfaces between chemically distinct polymers based on their amphiphilicity. Remarkably, a mere 0.1 wt.% of MOF nanoparticles with optimized amphiphilicity (ML-MOF(5:5)) delivered ≈1.1- and ≈34.1-fold increase in strength and toughness of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) blend, respectively. Moreover, these amphiphilicity-tailorable MOF nanoparticles universally enhance the mechanical properties of various polymer blends, such as polypropylene (PP)/polyethylene (PE), PP/polystyrene (PS), PLA/poly (butylene adipate-co-terephthalate) (PBAT), and PLA/polycaprolactone (PCL)/PBS. This simple universal method offers significant potential for strengthening and toughening various polymer blends.
Collapse
Affiliation(s)
- Tairong Kuang
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Hongxin Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Guo
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wenxian Liu
- Functional Polymers & Advanced Materials (FPAM) LabZhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science and EngineeringZhejiang University of TechnologyHangzhouZhejiang310014P. R. China
| | - Wei Li
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD)Hokkaido UniversitySapporo001–0021Japan
- Suzhou LaboratorySuzhouJiangsu215123P. R. China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical ChemistryMedical University of GdańskJ. Hallera 107Gdańsk80–416Poland
| | | | - Sergei S. Sheiko
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
5
|
Meng F, Li C. Optimizing polylactic acid composites: Role of sodium lignosulfonate-modified carbon nanotubes in mechanical and interfacial performance. Int J Biol Macromol 2024; 285:138220. [PMID: 39617246 DOI: 10.1016/j.ijbiomac.2024.138220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
In this study, researchers synthesized sodium lignosulfonate (LS) modified multi-walled carbon nanotubes (L-MWCNTs) using a deep eutectic solvent (DES) method and incorporated them into polylactic acid (PLA) composite films using a solvent evaporation method. The nanofiller content ranged between 0.5 % and 1.5 % by mass. Transmission electron microscopy (TEM) confirmed the uniform dispersion of LS on the surface of MWCNTs, while scanning electron microscopy (SEM) revealed that L-MWCNTs were homogeneously distributed within PLA matrix without notable aggregation. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with an 8.4 % increase in residue at 800 °C. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful integration of L-MWCNTs into the composite films, while X-ray diffraction (XRD) analysis showed a significant increase in crystallinity (Xc) from 47.4 % to 68.9 %. With increasing L-MWCNT content, ultraviolet-visible (UV-vis) transmittance decreased from 75.9 % to 28.9 %, and oxygen (O2) permeability was reduced by 22.4 %. At an L-MWCNT content of 1.5 %, the composite films exhibited an increase of 49.7 % and 194.5 % in tensile strength and elongation at break compared to pure PLA. These results unveil that PLA/L-MWCNT composite films possess excellent mechanical strength, thermal resistance, and barrier properties, enabling their suitability for advanced applications in packaging, medical, and electronic industries.
Collapse
Affiliation(s)
- Fanyue Meng
- College of Home and Art Design, Northeast Forestry University, Harbin 150000, China
| | - Chen Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150000, China.
| |
Collapse
|
6
|
Xu T, Wang L, Gao L, Li F, Hu B, Li B, Shen H, Liu Z, Hu BL. Intrinsic Elastomer with Remarkable Dielectric Constant via Elastification of Relaxor Ferroelectric Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404001. [PMID: 38838735 DOI: 10.1002/adma.202404001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
High-dielectric-constant elastomers always play a critical role in the development of wearable electronics for actuation, energy storage, and sensing; therefore, there is an urgent need for effective strategies to enhance dielectric constants. The present methods mainly involve adding inorganic or conductive fillers to the polymer elastomers, however, the addition of fillers causes a series of problems, such as large dielectric loss, increased modulus, and deteriorating interface conditions. Here, the elastification of relaxor ferroelectric polymers is investigated through slight cross-linking, aiming to obtain intrinsic elastomers with high-dielectric constants. By cross-linking of the relaxor ferroelectric polymer poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) with a long soft chain cross-linker, a relaxor ferroelectric elastomer with an enhanced dielectric constant is obtained, twice that of the pristine relaxor ferroelectric polymer and surpassing all reported intrinsic elastomers. This elastomer maintains its high-dielectric constant over a wide temperature range and exhibits robust mechanical fatigue resistance, chemical stability, and thermal stability. Moreover, the ferroelectricity of the elastomer remains stable under strains up to 80%. This study offers a simple and effective way to enhance the dielectric constant of intrinsic elastomers, thus facilitating advancements in soft robots, biosensors, and wearable electronics.
Collapse
Affiliation(s)
- Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Bowen Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haoyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwen Liu
- Oxford Instruments Technology China, Beijing, 100034, P. R. China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
da Silva MM, Proença MP, Covas JA, Paiva MC. Shape-Memory Polymers Based on Carbon Nanotube Composites. MICROMACHINES 2024; 15:748. [PMID: 38930718 PMCID: PMC11205355 DOI: 10.3390/mi15060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite's response to external stimuli.
Collapse
Affiliation(s)
- Mariana Martins da Silva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Mariana Paiva Proença
- ISOM and Departamento de Electrónica Física, Universidad Politécnica de Madrid, Ava. Complutense 30, E-28040 Madrid, Spain;
| | - José António Covas
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Maria C. Paiva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| |
Collapse
|
8
|
Yang J, Chen Y, Yang Z, Dai L, Choi H, Meng Z. Unveiling the Nanoconfinement Effect on Crystallization of Semicrystalline Polymers Using Coarse-Grained Molecular Dynamics Simulations. Polymers (Basel) 2024; 16:1155. [PMID: 38675074 PMCID: PMC11053607 DOI: 10.3390/polym16081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer-polyvinyl alcohol (PVA)-under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29631, USA; (J.Y.); (Y.C.); (Z.Y.); (L.D.); (H.C.)
| |
Collapse
|
9
|
Chervanyov AI. Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers. Polymers (Basel) 2023; 16:38. [PMID: 38201702 PMCID: PMC10780493 DOI: 10.3390/polym16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The reported work addresses the effect of fillers on the thermodynamic stability and miscibility of compressible polymer blends. We calculate the spinodal transition temperature of a filled polymer blend as a function of the interaction energies between the blend species, as well as the blend composition, filler size, and filler volume fraction. The calculation method relies on the developed thermodynamic theory of filled compressible polymer blends. This theory makes it possible to obtain the excess pressure and chemical potential caused by the presence of fillers. As a main result of the reported work, we demonstrate that the presence of neutral (non-adsorbing) fillers can be used to enhance the stability of a polymer blend that shows low critical solution temperature (LCST) behavior. The obtained results highlight the importance of the osmotic effect of fillers on the miscibility of polymer blends. The demonstrated good agreement with the experiment proves that this effect alone can explain the observed filler-induced change in the LCST.
Collapse
Affiliation(s)
- A I Chervanyov
- Institute of Theoretical Physics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Bernardes GP, Andrade MP, Poletto M, Luiz NR, Santana RMC, Forte MMDC. Evaluation of Thermal Decomposition Kinetics of Poly (Lactic Acid)/Ethylene Elastomer (EE) Blends. Polymers (Basel) 2023; 15:4324. [PMID: 37960004 PMCID: PMC10648464 DOI: 10.3390/polym15214324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The influences of ethylene-based elastomer (EE) and the compatibilizer agent ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) on the thermal degradation of PLA/EE blends were evaluated by the thermal degradation kinetics and thermodynamic parameters using thermogravimetry. The presence of EE and EBAGMA synergistically improved the PLA thermal stability. The temperature of 10% of mass loss (T10%) of PLA was around 365 °C, while in the compatibilized PLA/EE blend, this property increased to 370 °C. The PLA average activation energy (Ea¯) reduced in the PLA/EE blend (from 96 kJ/mol to 78 kJ/mol), while the presence of EBAGMA in the PLA/EE blend increased the Ea¯ due to a better blend compatibilization. The solid-state thermal degradation of the PLA and PLA/EE blends was classified as a D-type degradation mechanism. In general, the addition of EE increased the thermodynamic parameters when compared to PLA and the compatibilized blend due to the increase in the collision rate between the components over the thermal decomposition.
Collapse
Affiliation(s)
- Giordano P. Bernardes
- Department of Mechatronic Engineering, Atlantic Technological University (ATU) Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Matheus P. Andrade
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Nathália R. Luiz
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Ruth M. C. Santana
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Maria M. de C. Forte
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| |
Collapse
|
11
|
Zhou M, Wan G, Wang G, Wieme T, Edeleva M, Cardon L, D'hooge DR. Carbon Nitride Grafting Modification of Poly(lactic acid) to Maximize UV Protection and Mechanical Properties for Packaging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45300-45314. [PMID: 37713339 DOI: 10.1021/acsami.3c10085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Due to their biobased nature and biodegradability, poly(lactic acid) (PLA) rich blends are promising for processing in the packaging industry. However, pure PLA is brittle and UV transparent, which limits its application, so the exploration of nanocomposites with improved interfacial interactions and UV absorbing properties is worthwhile. We therefore developed and optimized synthesis routes for well-designed nanocomposites based on a PLA matrix and graphitic carbon nitride (g-C3N4; CN) nanofillers. To enhance the interfacial interaction with the PLA matrix, a silane-coupling agent (γ-methacryloxypropyl trimethoxysilane, KH570) is chemically grafted onto the CN surface after controlled oxidation with nitric acid and hydrogen peroxide. Interestingly, only 1 wt % of CNO-KH570, as synthesized under mild conditions, is needed to significantly improve the UV absorption, blocking even a large part of both UV-C, UV-B, and UV-A outperforming the UV absorption performance of PLA and, for instance, polyethylene terephthalate (PET). The low nanofiller loading of 1 wt % also results in a higher ductility with an increase in elongation at break (+73%), maintaining the tensile modulus. The results on a joint optimization of UV protection and mechanical properties are supported by a broad range of experimental characterizations, including FTIR, XRD, DSC, DSEM, FETEM, XPS, FTIR, TGA, and BET N2 adsorption-desorption analysis.
Collapse
Affiliation(s)
- Maofan Zhou
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, B-9052 Zwijnaarde (Ghent), Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, B-9052 Zwijnaarde (Ghent), Belgium
| | - Gengping Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Guizhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Tom Wieme
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, B-9052 Zwijnaarde (Ghent), Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, B-9052 Zwijnaarde (Ghent), Belgium
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, B-9052 Zwijnaarde (Ghent), Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, B-9052 Zwijnaarde (Ghent), Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, B-9052 Zwijnaarde (Ghent), Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, B-9052 Zwijnaarde (Ghent), Belgium
| | - Dagmar R D'hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, B-9052 Zwijnaarde (Ghent), Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, B-9052 Zwijnaarde (Ghent), Belgium
| |
Collapse
|
12
|
Kim KH, Jang JU, Yoo GY, Kim SH, Oh MJ, Kim SY. Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5329. [PMID: 37570033 PMCID: PMC10420153 DOI: 10.3390/ma16155329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Introducing a segregated network constructed through the selective localization of small amounts of fillers can be a solution to overcome the limitations of the practical use of graphene-based conductive composites due to the high cost of fillers. In this study, polypropylene composites filled with randomly dispersed GNPs and a segregated GNP network were prepared, and their conductive properties were investigated according to the formation of the segregated structure. Due to the GNP clusters induced by the segregated structure, the electrical percolation threshold was 2.9 wt% lower than that of the composite incorporating randomly dispersed GNPs. The fully interconnected GNP cluster network inside the composite contributed to achieving the thermal conductivity of 4.05 W/m∙K at 10 wt% filler content. Therefore, the introduction of a segregated filler network was suitable to simultaneously achieve excellent electrical and thermal conductivities at a low content of GNPs.
Collapse
Affiliation(s)
- Ki Hoon Kim
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| | - Ji-Un Jang
- Research Institute of Industrial Science, Hanyang University, 222 Wangsimni-ro, Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea; (J.-U.J.); (S.H.K.)
| | - Gyun Young Yoo
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| | - Seong Hun Kim
- Research Institute of Industrial Science, Hanyang University, 222 Wangsimni-ro, Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea; (J.-U.J.); (S.H.K.)
| | - Myung Jun Oh
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| | - Seong Yun Kim
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| |
Collapse
|
13
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
14
|
Gebrekrstos A, Ray SS. Superior electrical conductivity and mechanical properties of phase‐separated polymer blend composites by tuning the localization of nanoparticles for electromagnetic interference shielding applications. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| |
Collapse
|
15
|
Photo- and Water-Degradation Phenomena of ZnO Bio-Blend Based on Poly(lactic acid) and Polyamide 11. Polymers (Basel) 2023; 15:polym15061434. [PMID: 36987214 PMCID: PMC10058673 DOI: 10.3390/polym15061434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The goal of this work was to investigate the morphological and chemical–physical changes induced by adding ZnO nanoparticles to bio-based polymeric materials based on polylactic acid (PLA) and polyamide 11 (PA11). Precisely, the photo- and water-degradation phenomena of nanocomposite materials were monitored. For this purpose, the formulation and characterization of novel bio-nanocomposite blends based on PLA and PA11 at a ratio of 70/30 wt.% filled with zinc oxide (ZnO) nanostructures at different percentages were performed. The effect of ZnO nanoparticles (≤2 wt.%) within the blends was thoroughly explored by employing thermogravimetry (TGA), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS) and scanning and transmission electron microscopy (SEM and TEM). Adding up to 1% wt. of ZnO resulted in a higher thermal stability of the PA11/PLA blends, with a decrement lower than 8% in terms of molar masses (MMs) values being obtained during blend processing at 200 °C. ZnO promoted trans-ester-amide reactions between the two polymers, leading to the formation of PLA/PA11 copolymers. These species could work as compatibilisers at the polymer interface, improving thermal and mechanical properties. However, the addition of higher quantities of ZnO affected such properties, influencing the photo-oxidative behaviour and thus thwarting the material’s application for packaging use. The PLA and blend formulations were subjected to natural aging in seawater for two weeks under natural light exposure. The 0.5% wt. ZnO sample induced polymer degradation with a decrease of 34% in the MMs compared to the neat samples.
Collapse
|
16
|
Topcu G, Reinoso Arenas D, McNally T, Becer CR. Microphase separation assisted reduction in the percolation threshold of MWCNT/block polymer composites. SOFT MATTER 2023; 19:1109-1114. [PMID: 36648757 DOI: 10.1039/d2sm01277d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Block copolymers continue to attract a great deal of interest since they allow the formation of microphase-separated domains, useful for nanopatterning/templating. Herein, we present the drastic effect of microphase separation of a diblock copolymer on the electrical properties of polymer nanocomposites. Microphase-separated poly(styrene-b-2-ethylhexyl acrylate) (P(St-b-EHA)) block copolymers having different block lengths were synthesized and utilized as templates for multi-walled carbon nanotubes (MWCNTs). The percolation threshold of the films decreased from 0.46 to 0.19 vol% with decreasing styrene phase fraction. More importantly, we observed a non-linear and unique reduction in percolation threshold with transforming the phase into lamellar structures.
Collapse
Affiliation(s)
- Gokhan Topcu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - David Reinoso Arenas
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - Tony McNally
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Huang B, Wang Z, Tu J, Liu C, Xu P, Ding Y. Interfacial distribution and compatibilization of imidazolium functionalized CNTs in poly(lactic acid)/polycaprolactone composites with excellent EMI shielding and mechanical properties. Int J Biol Macromol 2023; 227:1182-1190. [PMID: 36462589 DOI: 10.1016/j.ijbiomac.2022.11.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Imidazolium-functionalized polyurethane (IPU) functionalized multi-walled carbon nanotubes (CNTs) was used to control interfacial distribution and compatibilization of CNTs, and enhance electromagnetic interference (EMI) shielding and mechanical properties of poly(lactic acid)/polycaprolactone (PLA/PCL) based composites. IPU facilitated the uniformly dispersion of CNTs and induced the selectively location of CNTs at the interface and PCL phase, which is beneficial to build more effective three-dimensional network structure at the co-continuous interphase. The EMI shielding properties for the PLA/PCL/8CNT/0.8IPU composites have been evidently increased to 35.6 dB. Meanwhile, the elongation at break and the notched impact strength of the PLA/PCL/8CNT/0.8IPU composite reached 307.8 % and 51.3 kJ/m2, respectively, which are increased by 27 and 53 % of PLA/PCL/8CNT because of the compatibilization effect of IPU and the distribution of CNTs. This work presented a promising prospect of polymer-based composites with satisfactory EMI shielding and mechanical properties.
Collapse
Affiliation(s)
- Bincheng Huang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Zhenfeng Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Jiaying Tu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Chao Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Pei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
18
|
Li J, Sun H, Yi SQ, Zou KK, Zhang D, Zhong GJ, Yan DX, Li ZM. Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection. NANO-MICRO LETTERS 2022; 15:15. [PMID: 36580201 PMCID: PMC9800674 DOI: 10.1007/s40820-022-00990-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Highlights A multi-scale conductive network was constructed in flexible PDMS/Ag@PLASF/CNT composite with micro-size Ag@PLASF and nano-size CNT. The PDMS/Ag@PLASF/CNT composite showed outstanding electrical conductivity of 440 S m-1 and superior electromagnetic interference shielding effectiveness of up to 113 dB. The PDMS/Ag@PLASF/CNT composites owned good retention (> 90%) of electromagnetic interference shielding performance even after subjected to a simulated aging strategy or 10,000 bending-releasing cycles. Abstract Highly conductive polymer composites (CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference (EMI) shielding materials, which can be used for the electromagnetic interference protection of flexible electronic devices. It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks. In this paper, a novel silver-plated polylactide short fiber (Ag@PLASF, AAF) was fabricated and was integrated with carbon nanotubes (CNT) to construct a multi-scale conductive network in polydimethylsiloxane (PDMS) matrix. The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m−1 and ultra-strong EMI shielding effectiveness (EMI SE) of up to 113 dB, containing only 5.0 vol% of AAF and 3.0 vol% of CNT (11.1wt% conductive filler content). Due to its excellent flexibility, the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy (60 °C for 7 days) and 10,000 bending-releasing cycles. This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace, environment and sensitive circuits against radiation for flexible electronic devices. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-022-00990-7.
Collapse
Affiliation(s)
- Jie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - He Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shuang-Qin Yi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kang-Kang Zou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Dan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
19
|
High-Temperature Response Polylactic Acid Composites by Tuning Double-Percolated Structures. Polymers (Basel) 2022; 15:polym15010138. [PMID: 36616486 PMCID: PMC9824055 DOI: 10.3390/polym15010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the properties of a positive temperature coefficient (PTC) effect and a negative temperature coefficient (NTC) effect, electrically conductive polymer composites (CPCs) have been widely used in polymer thermistors. A dual percolated conductive microstructure was prepared by introducing the polybutylene adipate terephthalate phase (PBAT) into graphene nanoplatelets (GNPs)-filled polylactic acid (PLA) composites, intending to develop a favorable and stable PTC material. To achieve this strategy, GNPs were selectively distributed in the PBAT phase by injection molding. In this study, we investigated the crystallization behavior, electrical conductivity, and temperature response of GNP-filled PLA/PBAT composites. The introduction of GNPs into PLA significantly increased PLA crystallization capacity, where the crystallization onset temperature (To) is raised from 116.7 °C to 134.7 °C, and the crystallization half-time (t1/2) decreases from 35.8 min to 27.3 min. The addition of 5 wt% PBAT increases the electrical conductivity of PLA/PBAT/GNPs composites by almost two orders of magnitude when compared to PLA/GNPs counterparts. The temperature of the heat treatment is also found to play a role in affecting the electrical conductivity of PLA-based composites. Increasing crystallinity is favorable for increasing electrical conductivity. PLA/PBAT/GNPs composites also show a significant positive temperature coefficient, which is reflected in the temperature-electrical resistance cycling tests.
Collapse
|
20
|
Wang K, Jin X, He X, Huang W, Tian Q, Fu Q, Yan W. Synthesis of Aluminum Phosphate-Coated Halloysite Nanotubes: Effects on Morphological, Mechanical, and Rheological Properties of PEO/PBAT Blends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2896. [PMID: 36079933 PMCID: PMC9457796 DOI: 10.3390/nano12172896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Polymer blending has been widely used to fabricate polymeric films in the last decade due to its superior properties to a single component. In this study, an aluminum phosphate-coated halloysite nanotube (HNTs@AlPO4) was fabricated using a one-pot heterogeneous precipitation method, organically modified HNTs@AlPO4 (o-HNTs@AlPO4) was used to improve the performance of polyethylene oxide/poly(butylene adipate-co-terephthalate) (PEO/PBAT) blends, and the mechanical and rheological properties of the PEO/PBAT/o-HNTs@AlPO4 films were systematically discussed. According to our results, there is an optimal addition for adequate AlPO4 nanoparticle dispersion and coating on the surface of HNTs, and organic modification could improve the interfacial compatibility of HNTs@AlPO4 and the polymeric matrix. Moreover, o-HNTs@AlPO4 may serve as a compatibilizer between PEO and PBAT, and PEO/PBAT/o-HNTs@AlPO4 films have better mechanical and rheological properties than the PEO/PBAT blends without the o-HNTs@AlPO4 component.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yan
- Correspondence: ; Tel.: +86-851-85400760
| |
Collapse
|
21
|
Qiao L, Yan X, Tan H, Dong S, Ju G, Shen H, Ren Z. Mechanical Properties, Melting and Crystallization Behaviors, and Morphology of Carbon Nanotubes/Continuous Carbon Fiber Reinforced Polyethylene Terephthalate Composites. Polymers (Basel) 2022; 14:polym14142892. [PMID: 35890669 PMCID: PMC9315575 DOI: 10.3390/polym14142892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon nanotube/continuous carbon fiber reinforced poly(ethylene terephthalate) (CNT/CCF/PET) composites are prepared by melt impregnating. The effects of CF and CNT content on the mechanical properties, melt and crystallization behaviors, and submicroscopic morphology of CNT/CCF/PET composites are studied. The tensile test results show that the increase of CF and the addition of appropriate amount of CNT improved the tensile strength and tensile modulus of the composites. When the content of CNT is 1.0 wt% and the content of CF is 56 wt%, the properties of the composites are the best, with tensile strength of 1728.7 MPa and tensile modulus of 25.1 GPa, which is much higher than that of traditional resin matrix composites. The results of dynamic mechanical analysis (DMA) show that the storage modulus of the composites increased with the increase of CF and CNT content. In particular, the addition of CNT greatly reduced the loss modulus of the composites. Morphological analysis show that the addition of CNT improved the fiber–matrix interface of the composite, which changes from fiber pull-out and fracture failure to fiber matrix fracture failure, and the fiber matrix interface is firmly bonded. In addition, there are polymer coated CNT protrusions on the surface of the fiber was observed. The results of differential scanning calorimetry (DSC) show that the melting temperature and crystallization temperature of the composites increased with the increase of CF content. The addition of CNT had little effect on the melting temperature of the composites, but it further improved the crystallization temperature of the composites. The effect of CNT content on the crystallization kinetics of the composites is studied. The non-isothermal crystallization kinetics of the composites is described by Jeziorny’s improved Avrami equation. The results show that CNT has a great influence on the crystallization type of the composites. As a nucleating agent, CNT has obvious heterogeneous nucleation effect in the composites, which improves the crystallization rate of PET.
Collapse
|
22
|
Influence of CNT Length on Dispersion, Localization, and Electrical Percolation in a Styrene-Butadiene-Based Star Block Copolymer. Polymers (Basel) 2022; 14:polym14132715. [PMID: 35808760 PMCID: PMC9268902 DOI: 10.3390/polym14132715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
This study followed the approach of dispersing and localizing carbon nanotubes (CNTs) in nanostructured domains of block copolymers (BCPs) by shortening the CNTs via ball milling. The aim was to selectively tune the electrical and mechanical properties of the resulting nanocomposites, e.g., for use as sensor materials. Multiwalled carbon nanotubes (MWCNTs) were ground into different size fractions. The MWCNT length distribution was evaluated via transmission electron microscopy and dynamic light scattering. The nanostructure of the BCPs and the glass transition temperatures of the PB-rich and PS phases were not strongly affected by the addition of CNTs up to 2 wt%. However, AFM and TEM investigations indicated a partial localization of the shortened CNTs in the soft PB-rich phase or at the interface of the PB-rich and PS phase, respectively. The stress-strain behavior of the solution-mixed composites differed little from the mechanical property profile of the neat BCP and was largely independent of CNT amount and CNT size fraction. Significant changes could only be observed for Young’s modulus and strain at break and may be attributed to CNT localization and small changes in morphology. For nanocomposites with unmilled CNTs, the electrical percolation threshold was less than 0.1 wt%. As the CNTs were shortened, the resistivity increased and the percolation threshold shifted to higher CNT contents. Composites with CNTs ground for 7.5 h and 13.5 h showed no bulk conductivity but significantly decreased surface resistivity on the bottom side of the films, which could be attributed to a sedimentation process of the grind and thereby highly compressed CNT agglomerates during evaporation.
Collapse
|
23
|
Tao JR, Yang D, Yang Y, He QM, Fei B, Wang M. Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(ε-caprolactone) blend: Towards electromagnetic shielding enhancement. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composites. Int J Biol Macromol 2022; 206:661-669. [DOI: 10.1016/j.ijbiomac.2022.02.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
|
25
|
Su Z, Zeng L, Zhang S, Xu Q, Jiang M, Liu J, Wang C, Liu P. The effects of carbon nanotubes selective location on the structures and properties of polyphenylene sulfide/polyamide 66 fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zexi Su
- College of Polymer Science & Engineering Sichuan University Chengdu China
| | - Luxian Zeng
- College of Polymer Science & Engineering Sichuan University Chengdu China
| | - Shengchang Zhang
- College of Polymer Science & Engineering Sichuan University Chengdu China
| | - Qibin Xu
- College of Polymer Science & Engineering Sichuan University Chengdu China
| | - Mengjin Jiang
- College of Polymer Science & Engineering Sichuan University Chengdu China
| | - Ju Liu
- Research and Development Center Sichuan Unfire Polymer Material Technology Co., Ltd. Deyang China
| | - Chong Wang
- Research and Development Center Sichuan Unfire Polymer Material Technology Co., Ltd. Deyang China
| | - Pengqing Liu
- College of Polymer Science & Engineering Sichuan University Chengdu China
| |
Collapse
|
26
|
The Role of Phase Migration of Carbon Nanotubes in Melt-Mixed PVDF/PE Polymer Blends for High Conductivity and EMI Shielding Applications. Molecules 2022; 27:molecules27030933. [PMID: 35164197 PMCID: PMC8839367 DOI: 10.3390/molecules27030933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the “Slim-Fast-Mechanism” is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends.
Collapse
|