1
|
Lobo S, Argolinha I, Machado V, Botelho J, Rua J, Li J, Mendes JJ. Advances in Digital Technologies in Dental Medicine: Enhancing Precision in Virtual Articulators. J Clin Med 2025; 14:1495. [PMID: 40094941 PMCID: PMC11900346 DOI: 10.3390/jcm14051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Precision in diagnosis is essential for achieving optimal outcomes in prosthodontics, orthodontics, and orthognathic treatments. Virtual articulators provide a sophisticated digital alternative to conventional methods, integrating intraoral scans, facial scans, and cone beam computed tomography (CBCT) to enhance treatment predictability. This review examines advancements in virtual articulator technology, including digital workflows, virtual facebow transfer, and occlusal analysis, with a focus on Artificial Intelligence (AI)-driven methodologies such as machine learning and artificial neural networks. The clinical implications, particularly in condylar guidance and sagittal condylar inclination, are investigated. By streamlining the acquisition and articulation of digital dental models, virtual articulators minimize material handling errors and optimize workflow efficiency. Advanced imaging techniques enable precise alignment of digital maxillary models within computer-aided design and computer-aided manufacturing systems (CAD/CAM), facilitating accurate occlusal simulations. However, challenges include potential distortions during digital file integration and the necessity for robust algorithms to enhance data superimposition accuracy. The adoption of virtual articulators represents a transformative advancement in digital dentistry, with promising implications for diagnostic precision and treatment outcomes. Nevertheless, further clinical validation is essential to ensure the reliable transfer of maxillary casts and refine digital algorithms. Future developments should prioritize the integration of AI to enhance predictive modeling, positioning virtual articulators as a standard tool in routine dental practice, thereby revolutionizing treatment planning and interdisciplinary collaboration. This review explores advancements in virtual articulators, focusing on their role in enhancing diagnostic precision, occlusal analysis, and treatment predictability. It examines digital workflows, AI-driven methodologies, and clinical applications while addressing challenges in data integration and algorithm optimization.
Collapse
Affiliation(s)
- Sofia Lobo
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| | - Inês Argolinha
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| | - João Rua
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| | - Junying Li
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA;
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; (I.A.); (V.M.); (J.B.); (J.R.); (J.J.M.)
| |
Collapse
|
2
|
Çakmak G, Cho JH, Choi J, Yoon HI, Yilmaz B, Schimmel M. Can deep learning-designed anterior tooth-borne crown fulfill morphologic, aesthetic, and functional criteria in clinical practice? J Dent 2024; 150:105368. [PMID: 39326724 DOI: 10.1016/j.jdent.2024.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES This study aimed to compare the design outcomes of anterior crowns generated using deep learning (DL)-based software with those fabricated by a technician using conventional dental computer-assisted design (CAD) software without DL support, with a focus on the evaluation of crown morphology, function, and aesthetics. METHODS Twenty-five in vivo datasets comprising maxillary and mandibular arch scans of prepared maxillary central incisors were utilized to design anterior crowns by using three methods: 1) a DL-based method resulting in as-generated outcome (DB), 2) a DL-based method further optimized by a technician (DM), and 3) a conventional CAD-based method (NC, control). Evaluations were conducted for crown morphology (total discrepancy volume (TDV), root mean square (RMS), positive average (PA) and negative average (NA) deviations), functional aspects (incisal path: deviations, length, and mean inclination), and aesthetics (crown width, height, width-to-height ratio, angular radius of mesioincisal line angle, proximal contact length, and tooth axis angle). RESULTS Significant differences in TDV ratio were noted between the DB-NC (32.3 ± 8.5 %) and DM-NC (26.5 ± 5.4 %) pairs (P = 0.006). No significant differences were observed in TDV between the DB-NC (65.3 ± 24.4 mm3) and DM-NC (54.3 ± 21.0 mm3) pairs (P = 0.095). For the entire palatal surface, significant differences in RMS and PA values were observed between the DB-NC and DM-NC pairs (P < 0.037). Significant differences in RMS values for the incisal half (P = 0.021) and in PA values for the cervical half (P = 0.047) of the palatal surface were also noted between these pairs. Significant differences in the deviation of the incisal path were observed between the DB-NC (290.4 ± 212.4 μm) and DM-NC (132.0 ± 122.3 μm) pairs (P < 0.001). However, no significant differences were found among the groups (DB, DM, and NC) in terms of the length and mean inclination of incisal paths or in aesthetic outcomes. CONCLUSIONS A DL-based method can result in promising outcomes with clinically acceptable morphology and aesthetics for anterior crowns. Minor deviations in incisal path of the crowns may lead to anterior guidance discrepancies, which can be corrected by the dental technician at the design stage. CLINICAL SIGNIFICANCE With the potential of DL-based design methods in dental applications, integrating AI technology into dental CAD workflow can enhance the clinical efficiency and consistency of anterior crown design, although human intervention may be required to refine functional aspect.
Collapse
Affiliation(s)
- Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jun-Ho Cho
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jinhyeok Choi
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung-In Yoon
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, United States
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Cho JH, Çakmak G, Choi J, Lee D, Yoon HI, Yilmaz B, Schimmel M. Deep learning-designed implant-supported posterior crowns: Assessing time efficiency, tooth morphology, emergence profile, occlusion, and proximal contacts. J Dent 2024; 147:105142. [PMID: 38906454 DOI: 10.1016/j.jdent.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVES To compare implant supported crowns (ISCs) designed using deep learning (DL) software with those designed by a technician using conventional computer-aided design software. METHODS Twenty resin-based partially edentulous casts (maxillary and mandibular) used for fabricating ISCs were evaluated retrospectively. ISCs were designed using a DL-based method with no modification of the as-generated outcome (DB), a DL-based method with further optimization by a dental technician (DM), and a conventional computer-aided design method by a technician (NC). Time efficiency, crown contour, occlusal table area, cusp angle, cusp height, emergence profile angle, occlusal contacts, and proximal contacts were compared among groups. Depending on the distribution of measured data, various statistical methods were used for comparative analyses with a significance level of 0.05. RESULTS ISCs in the DB group showed a significantly higher efficiency than those in the DM and NC groups (P ≤ 0.001). ISCs in the DM group exhibited significantly smaller volume deviations than those in the DB group when superimposed on ISCs in the NC group (DB-NC vs. DM-NC pairs, P ≤ 0.008). Except for the number and intensity of occlusal contacts (P ≤ 0.004), ISCs in the DB and DM groups had occlusal table areas, cusp angles, cusp heights, proximal contact intensities, and emergence profile angles similar to those in the NC group (P ≥ 0.157). CONCLUSIONS A DL-based method can be beneficial for designing posterior ISCs in terms of time efficiency, occlusal table area, cusp angle, cusp height, proximal contact, and emergence profile, similar to the conventional human-based method. CLINICAL SIGNIFICANCE A deep learning-based design method can achieve clinically acceptable functional properties of posterior ISCs. However, further optimization by a technician could improve specific outcomes, such as the crown contour or emergence profile angle.
Collapse
Affiliation(s)
- Jun-Ho Cho
- Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jinhyeok Choi
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyung-In Yoon
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, United States
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Revilla-León M, Zeitler JM, Kois JC. Intraoral scanners as tracking devices: A dental protocol for assessing volumetric changes between intraoral scans. J Prosthet Dent 2024:S0022-3913(24)00364-0. [PMID: 38955599 DOI: 10.1016/j.prosdent.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Intraoral scanners (IOSs) are digital data acquisition technologies that ease the recording of virtual diagnostic casts. Some IOSs have a specific software tool to assess volumetric changes between 2 scans acquired on the patient at different times. The scans are superimposed and volumetric differences between both meshes are reported. However, these software tools may be limited to scans captured only by the IOS of the same manufacturer. The present manuscript describes a protocol for comparing volumetric changes between 2 scans recorded using any IOS. Additionally, 1 of the scans is divided into 3 sections to minimize the alignment distortion and maximize the evaluation of the volumetric changes.
Collapse
Affiliation(s)
- Marta Revilla-León
- Affiliate Assistant Professor, Graduate Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash.; Faculty & Director, Research and Digital Dentistry, Kois Center, Seattle, Wash.; and Adjunct Professor, Department of Prosthodontics, Tufts University, Boston, Mass.
| | | | - John C Kois
- Founder and Director, Kois Center, Seattle, Wash.; Affiliate Professor, Graduate Prosthodontics, Department of Restorative Dentistry, University of Washington, Seattle, Wash.; and Private practice, Seattle, Wash
| |
Collapse
|
5
|
Revilla-León M, Gómez-Polo M, Barmak AB, Kois JC, Alonso Pérez-Barquero J. Accuracy of an artificial intelligence-based program for locating the maxillomandibular relationship of scans acquired by using intraoral scanners. J Prosthet Dent 2024:S0022-3913(24)00053-2. [PMID: 38458860 DOI: 10.1016/j.prosdent.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
STATEMENT OF PROBLEM An artificial-intelligence (AI) based program can be used to articulate scans in maximum intercuspal position (MIP) or correct occlusal collisions of articulated scans at MIP; however, the accuracy of the AI program determining the MIP relationship is unknown. PURPOSE The purpose of the present clinical study was to assess the influence of intraoral scanner (IOS) (TRIOS 5 or i700) and program (IOS or AI-based program) on the accuracy of the MIP relationship. MATERIAL AND METHODS Casts of a participant mounted on an articulator were digitized (T710). A maxillary and a mandibular scan of the participant were recorded by using 2 IOSs: TRIOS 5 and i700. The scans were duplicated 15 times. Then, each duplicated pair of scans was articulated in MIP using a bilateral occlusal record. Articulated scans were duplicated and allocated into 2 groups based on the automatic occlusal collisions' correction completed by using the corresponding IOS program: IOS-corrected and IOS-noncorrected group. Three subgroups were created based on the AI-based program (Bite Finder) method: AI-articulated, AI-IOS-corrected, and AI-IOS-noncorrected (n=15). In the AI-articulated subgroup, the nonarticulated scans were imported and articulated. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-corrected group were imported, and the occlusal collisions were corrected. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-noncorrected subgroup were imported, and the occlusal collisions were corrected. A total of 36 interlandmark measurements were calculated on each articulated scan (Geomagic Wrap). The distances computed on the reference scan were used as a reference to calculate the discrepancies with each experimental scan. Nonparametric 2-way ANOVA and pairwise multiple comparison Dwass-Steel-Critchlow-Fligner tests were used to analyze trueness. The general linear model procedure was used to analyze precision (α=.05). RESULTS Significant maxillomandibular trueness (P=.003) and precision (P<.001) differences were found among the subgroups. The IOS-corrected and IOS-noncorrected (P<.001) and AI-articulated and IOS-noncorrected subgroups (P=.011) were significantly different from each other. The IOS-corrected and AI-articulated subgroups obtained significantly better maxillomandibular trueness and precision than the IOS-noncorrected subgroups. CONCLUSIONS The IOSs tested obtained similar MIP accuracy; however, the program used to articulate or correct occlusal collusions impacted the accuracy of the MIP relationship.
Collapse
Affiliation(s)
- Marta Revilla-León
- Affiliate Assistant Professor, Graduate Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash.; Faculty and Director, Research and Digital Dentistry, Kois Center, Seattle, Wash.; and Adjunct Professor, Department of Prosthodontics, School of Dental Medicine, Tufts University, Boston, Mass.
| | - Miguel Gómez-Polo
- Associate Professor, Department of Conservative Dentistry and Prosthodontics, School of Dentistry, Complutense University of Madrid, Madrid, Spain; and Director, Specialist in Advanced Implant-Prosthesis Postgraduate Program, Complutense University of Madrid, Madrid, Spain
| | - Abdul B Barmak
- Assistant Professor, Clinical Research and Biostatistics, Eastman Institute of Oral Health, University of Rochester Medical Center, Rochester, NY
| | - John C Kois
- Director, Kois Center, Seattle, Wash.; Affiliate Professor, Graduate in Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash.; and Private practice, Seattle, Wash
| | - Jorge Alonso Pérez-Barquero
- Associate Professor, Department of Dental Medicine, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Cho JH, Çakmak G, Yi Y, Yoon HI, Yilmaz B, Schimmel M. Tooth morphology, internal fit, occlusion and proximal contacts of dental crowns designed by deep learning-based dental software: A comparative study. J Dent 2024; 141:104830. [PMID: 38163455 DOI: 10.1016/j.jdent.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES This study compared the tooth morphology, internal fit, occlusion, and proximal contacts of dental crowns automatically generated via two deep learning (DL)-based dental software systems with those manually designed by an experienced dental technician using conventional software. METHODS Thirty partial arch scans of prepared posterior teeth were used. The crowns were designed using two DL-based methods (AA and AD) and a technician-based method (NC). The crown design outcomes were three-dimensionally compared, focusing on tooth morphology, internal fit, occlusion, and proximal contacts, by calculating the geometric relationship. Statistical analysis utilized the independent t-test, Mann-Whitney test, one-way ANOVA, and Kruskal-Wallis test with post hoc pairwise comparisons (α = 0.05). RESULTS The AA and AD groups, with the NC group as a reference, exhibited no significant tooth morphology discrepancies across entire external or occlusal surfaces. The AD group exhibited higher root mean square and positive average values on the axial surface (P < .05). The AD and NC groups exhibited a better internal fit than the AA group (P < .001). The cusp angles were similar across all groups (P = .065). The NC group yielded more occlusal contact points than the AD group (P = .006). Occlusal and proximal contact intensities varied among the groups (both P < .001). CONCLUSIONS Crowns designed by using both DL-based software programs exhibited similar morphologies on the occlusal and axial surfaces; however, they differed in internal fit, occlusion, and proximal contacts. Their overall performance was clinically comparable to that of the technician-based method in terms of the internal fit and number of occlusal contact points. CLINICAL SIGNIFICANCE DL-based dental software for crown design can streamline the digital workflow in restorative dentistry, ensuring clinically-acceptable outcomes on tooth morphology, internal fit, occlusion, and proximal contacts. It can minimize the necessity of additional design optimization by dental technician.
Collapse
Affiliation(s)
- Jun-Ho Cho
- Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Yuseung Yi
- Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Hyung-In Yoon
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, USA
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|