1
|
Rajamanickam V, Desouza CV, Castillo RT, Saraswathi V. Blocking Thromboxane-Prostanoid Receptor Signaling Attenuates Lipopolysaccharide- and Stearic Acid-Induced Inflammatory Response in Human PBMCs. Cells 2024; 13:1320. [PMID: 39195211 PMCID: PMC11352481 DOI: 10.3390/cells13161320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is implicated in the etiology of obesity-related diseases. Thromboxane-prostanoid receptor (TPR) is known to play a role in mediating an inflammatory response in a variety of cells. Gut-derived lipopolysaccharide (LPS), a TLR4 agonist, is elevated in obesity. Moreover, free fatty acids (FFAs) are important mediators of obesity-related inflammation. However, the role and mechanisms by which TPR regulates the inflammatory response in human immune cells remain unclear. We sought to determine the link between TPR and obesity and the role/mechanisms by which TPR alters LPS- or stearic acid (SA)-induced inflammatory responses in PBMCs. Cells were pre-treated with agents blocking TPR signaling, followed by treatment with LPS or stearic acid (SA). Our findings showed that TPR mRNA levels are higher in PBMCs from individuals with obesity. Blockade of TPR as well as ROCK, which acts downstream of TPR, attenuated LPS- and/or SA-induced pro-inflammatory responses. On the other hand, TPR activation using its agonist enhanced the pro-inflammatory effects of LPS and/or SA. Of note, the TPR agonist by itself elicits an inflammatory response, which was attenuated by blocking TPR or ROCK. Our data suggest that TPR plays a key role in promoting an inflammatory response in human PBMCs, and this effect is mediated via TLR4 and/or ROCK signaling.
Collapse
Affiliation(s)
- Vinothkumar Rajamanickam
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.R.); (C.V.D.); (R.T.C.)
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Cyrus V. Desouza
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.R.); (C.V.D.); (R.T.C.)
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Romilia T. Castillo
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.R.); (C.V.D.); (R.T.C.)
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Viswanathan Saraswathi
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.R.); (C.V.D.); (R.T.C.)
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Aradhyula V, Breidenbach JD, Khatib-Shahidi BZ, Slogar JN, Eyong SA, Faleel D, Dube P, Gupta R, Khouri SJ, Haller ST, Kennedy DJ. Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes (Basel) 2024; 15:954. [PMID: 39062733 PMCID: PMC11275336 DOI: 10.3390/genes15070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Arachidonic acid (AA) metabolites have been associated with several diseases across various organ systems, including the cardiovascular, pulmonary, and renal systems. Lipid mediators generated from AA oxidation have been studied to control macrophages, T-cells, cytokines, and fibroblasts, and regulate inflammatory mediators that induce vascular remodeling and dysfunction. AA is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) to generate anti-inflammatory, pro-inflammatory, and pro-resolutory oxidized lipids. As comorbid states such as diabetes, hypertension, and obesity become more prevalent in cardiovascular disease, studying the expression of AA pathway genes and their association with these diseases can provide unique pathophysiological insights. In addition, the AA pathway of oxidized lipids exhibits diverse functions across different organ systems, where a lipid can be both anti-inflammatory and pro-inflammatory depending on the location of metabolic activity. Therefore, we aimed to characterize the gene expression of these lipid enzymes and receptors throughout multi-organ diseases via a transcriptomic meta-analysis using the Gene Expression Omnibus (GEO) Database. In our study, we found that distinct AA pathways were expressed in various comorbid conditions, especially those with prominent inflammatory risk factors. Comorbidities, such as hypertension, diabetes, and obesity appeared to contribute to elevated expression of pro-inflammatory lipid mediator genes. Our results demonstrate that expression of inflammatory AA pathway genes may potentiate and attenuate disease; therefore, we suggest further exploration of these pathways as therapeutic targets to improve outcomes.
Collapse
Affiliation(s)
- Vaishnavi Aradhyula
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bella Z. Khatib-Shahidi
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Julia N. Slogar
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonia A. Eyong
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dhilhani Faleel
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rajesh Gupta
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Samer J. Khouri
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
4
|
Towards Precritical Medical Therapy of the Abdominal Aortic Aneurysm. Biomedicines 2022; 10:biomedicines10123066. [PMID: 36551822 PMCID: PMC9775372 DOI: 10.3390/biomedicines10123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pharmacotherapy for abdominal aortic aneurysm (AAA) can be useful for prevention, especially in people at higher risk, for slowing down AAA progression, as well as for post-surgery adjuvant treatment. Our review focuses on novel pharmacotherapy approaches targeted towards slowing down progression of AAA, known also as secondary prevention therapy. Guidelines for AAA are not specific to slow down the expansion rate of an abdominal aortic aneurysm, and therefore no medical therapy is recommended. New ideas are urgently needed to develop a novel medical therapy. We are hopeful that in the future, pharmacologic treatment will play a key role in the prevention and treatment of AAA.
Collapse
|
5
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Yang C, Zhao Y, Ren D, Yang X. Protective Effect of Saponins-Enriched Fraction of Gynostemma pentaphyllum against High Choline-Induced Vascular Endothelial Dysfunction and Hepatic Damage in Mice. Biol Pharm Bull 2020; 43:463-473. [PMID: 32115504 DOI: 10.1248/bpb.b19-00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Choline as a quaternary amine nutrient is metabolized to trimethylamine by gut microbiota and subsequently oxidized to circulating trimethylamine-N-oxide (TMAO), a gut-derived metabolite associated with liver toxicity and cardiovascular disease. The study was to probe the possible vasoprotective and hepatoprotective effects of total saponins of Gynostemma pentaphyllum (TSGP) in 3% high-choline water-feeding mice. The purified TSGP was obtained with content of 83.0% saponins, and its antioxidant activities were evaluated in vitro. Furthermore, the mice fed with high choline for 8 weeks significantly expressed vascular endothelial dysfunction and liver oxidative stress (p < 0.01 vs. Normal). Administration of TSGP at 400 and 800 mg/kg·body weight (b.w.) significantly lowered the serum total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), endothelin-1 (ET-1) and thromboxane A2 (TXA2) levels, as well as hepatic malondialdehyde (MDA) formation, but effectively elevated the serum nitric oxide (NO), endothelial nitric oxide synthase (eNOS) and prostaglandin I2 (PGI2) levels, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), T-superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in high choline-fed mice. Hematoxylin-eosin (H&E) and oil red O staining also suggested that TSGP could exert the significant protection against endothelial dysfunction and liver injury in high choline-treated mice. These findings suggest that TSGP is of the saponins-enriched extract, and is a good candidate of dietary supplement and therapeutic application in vascular and hepatic oxidative injury.
Collapse
Affiliation(s)
- Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University
| |
Collapse
|
7
|
Villalpando DM, Gómez Rivas J, Flynn D, R de Bethencourt F, Ferrer M. Gonadal function protects against organ culture-induced vascular damage. Involvement of prostanoids. Prostaglandins Other Lipid Mediat 2020; 148:106406. [PMID: 31945460 DOI: 10.1016/j.prostaglandins.2019.106406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
Androgen deprivation induces vascular dysfunction in which altered release and action of prostanoids has been extensively studied. On the other hand, the vascular organ-culture system has been reported as a valid model for phenotypic changes that occur in several cardiovascular pathologies. Since there are no studies analyzing the impact of androgenic loss on vascular vulnerability during induced vascular damage, the objective of this study was to analyze the possible preventive role of male sex hormones on the organ culture-induced vascular damage in rat aorta. The link to possible changes in gross structure was also analyzed. For this purpose, fresh and 20 h-cultured aortic arterial segments from intact and orchidectomized rats were used to analyze: (i) the release and vasomotor effect of the thromboxane A2 (TXA2), prostaglandin (PG) E2, PGF2α and PGI2; (ii) the vasodilator response induced by acetylcholine (ACh) as well as the involvement of prostanoids, in particular TXA2, in the ACh-induced response; (iii) the effect of activation of thromboxane/prostaglandin (TP) receptors on the ACh-induced response; and (iv) the vascular structure. The results showed that organ culture: i) increased production of prostanoids; ii) increased prostanoids-induced vasomotor responses; iii) decreased ACh-induced relaxation after incubation with indomethacin, a blocker of cyclooxygenases; iv) increased the ACh-induced relaxation after incubation with the TXA2 synthase inhibitor, furegrelate, more in arteries from orchidectomized rats than in those of intact rats; v) diminished ACh-induced relaxation after U-46619 incubation only in arteries from orchidectomized rats; and vi) preserved the integrity of the different vascular layers. These results showed the protective role of male sex hormones against the induced vascular damage, since a decreased deleterious effect of prostanoids, in particular that of TXA2, was observed in arteries from rats with intact gonadal function.
Collapse
Affiliation(s)
| | - Juan Gómez Rivas
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain
| | - Daniel Flynn
- Departamento de Fisiología, Facultad de Medicina, UAM, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain.
| |
Collapse
|
8
|
Schrör K, Hohlfeld T. Antiinflammatory effects of aspirin in ACS: relevant to its cardio coronary actions? Thromb Haemost 2017; 114:469-77. [DOI: 10.1160/th15-03-0191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 01/04/2023]
Abstract
SummaryVascular injury in acute coronary syndromes (ACS) involves a complex cross-talk between inflammatory mediators, platelets and thrombosis, where the interaction between platelets and coagulation factors (e. g. thrombin) is a central link between thrombosis and inflammation. In ACS, aspirin at antiplatelet doses exhibits anti-inflammatory effects as seen from the decrease in inflammation markers such as CRP, M-CSF, MCP-1 and others. These actions probably occur subsequent to inhibition of platelet COX-1-dependent thromboxane formation and its action as a multipotent autocrine and paracrine agent. This likely involves inhibition of thrombin formation as well as inhibition of secondary pro-inflammatory mediators, such as sphingosine-1-phosphate. Experimental and limited clinical data additionally suggest antiinflammatory effects of aspirin independent of its antiplatelet action. For example, aspirin at antiplatelet doses might acetylate COX-2 in vascular cells, directing the activity of the enzyme into a 15-lipoxygenase which by transcellular metabolism results in the formation of 15-epi-lipoxin (‘aspirin-triggered lipoxin’), an antiinflammatory mediator. Furthermore, aspirin stimulates eNOS via lysine-acetylation, eventually resulting in induction of heme oxygenase (HO-1), which improves the antioxidative potential of vascular cells. All of these effects have been seen at antiplatelet doses of 100–300 mg/day, equivalent to peak plasma levels of 10–30 μM. Many more potentially antiinflammatory mechanisms of aspirin have been described, mostly salicy-late-related, at low to medium millimolar concentrations and, therefore, are of minor clinical interest. Altogether, there is a wealth of data supporting antiiflammatory effects of aspirin in ACS, but studies generating direct evidence for antiinflammatory effects in ACS remain to be done.
Collapse
|
9
|
Romero M, Leon-Gomez E, Lobysheva I, Rath G, Dogné JM, Feron O, Dessy C. Effects of BM-573 on Endothelial Dependent Relaxation and Increased Blood Pressure at Early Stages of Atherosclerosis. PLoS One 2016; 11:e0152579. [PMID: 27019366 PMCID: PMC4809599 DOI: 10.1371/journal.pone.0152579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is considered to be an early event in atherosclerosis and plays a pivotal role in the development, progression and clinical complications of atherosclerosis. Previous studies have shown the beneficial effects of combined inhibition of thromboxane synthase and antagonism of thromboxane receptors by BM-573 on atherosclerosis; however our knowledge about the beneficial effects of BM-573 on endothelial function and increased blood pressure related to early stage of atherosclerosis is limited. In the present study, we investigated the effects of short-term (3 μM, 1 hour) and chronic (10 mg/L, 8 weeks) treatments with BM-573 on vasodilatory function, nitric oxide (NO) bioavailability, oxidative stress and systolic blood pressure in 15 weeks old apolipoprotein E-deficient (ApoE-KO) mice. ApoE-KO mice showed a reduced endothelium-derived relaxation. In addition, NO bioavailability was reduced and oxidative stress and blood pressure were increased in ApoE-KO mice versus wild-type mice. BM-573 treatments were able to improve the relaxation profile in ApoE-KO mice. Short-term effects of BM-573 were mainly mediated by an increased phosphorylation of both eNOS and Akt, whereas BM-573 in vivo treatment also reduced oxidative stress and restored NO bioavailability. In addition, chronic administration of BM-573 reduced systolic blood pressure in ApoE-KO mice. In conclusion, pharmacological modulation of TxA2 biosynthesis and biological activities by dual TP antagonism/TxAS inhibition with BM-573, already known to prevent plaque formation, has the potential to correct vasodilatory dysfunction at the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Miguel Romero
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| | - Elvira Leon-Gomez
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Irina Lobysheva
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Géraldine Rath
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | | | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| |
Collapse
|
10
|
Could the thromboxane A2 pathway be a therapeutic target for the treatment of obstructive sleep apnea-induced atherosclerosis? Prostaglandins Other Lipid Mediat 2015; 121:97-104. [DOI: 10.1016/j.prostaglandins.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
|
11
|
Guo J, Meng Y, Zhao Y, Hu Y, Ren D, Yang X. Myricetin derived from Hovenia dulcis Thunb. ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct 2015; 6:1620-34. [DOI: 10.1039/c4fo01073f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study was conducted to explore the protective effects of myricetin (MYR) purified from Hovenia dulcis Thunb. against vascular endothelial dysfunction and liver injury in mice fed with 3% dietary choline water.
Collapse
Affiliation(s)
- Jianjun Guo
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yonghong Meng
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yan Zhao
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Yuanyuan Hu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Daoyuan Ren
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xingbin Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
12
|
Capra V, Bäck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J Thromb Haemost 2014; 12:126-37. [PMID: 24298905 DOI: 10.1111/jth.12472] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/13/2022]
Abstract
The activation of thromboxane prostanoid (TP) receptor on platelets, monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (SMC) plays important roles in regulating platelet activation and vascular tone and in the pathogenesis of thrombosis and vascular inflammation. Oxidative stress and vascular inflammation increase the formation of TP receptor agonists, which promote initiation and progression of atherogenesis and thrombosis. Furthermore, TP receptor activation promotes angiogenesis and vessel wall constriction. Besides thromboxane A₂ and its endoperoxide precursors, prostaglandin G₂ and H₂, isoprostanes, and 20-hydroxyeicosatetraenoic acid also activate TP receptor as autocrine or paracrine ligands. These additional TP activators play a role in pathological conditions such as diabetes, obesity, and hypertension, and their biosynthesis is not inhibited by aspirin, at variance with that of thromboxane A₂. The understanding of TP receptor function increased our current knowledge of the pathogenesis of atherosclerosis and thrombosis, highlighting the great impact that this receptor has in cardiovascular disorders.
Collapse
Affiliation(s)
- V Capra
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
13
|
Petri MH, Tellier C, Michiels C, Ellertsen I, Dogné JM, Bäck M. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun 2013; 441:393-8. [PMID: 24161392 DOI: 10.1016/j.bbrc.2013.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.
Collapse
Affiliation(s)
- Marcelo H Petri
- Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Lu N, Zhan M, Gao C, Wu G, Zhang H. I4, a new synthetic sulfonylurea compound, inhibits the action of TXA2 in vivo and in vitro on platelets and aorta vascular smooth muscle. Thromb Res 2012; 130:e209-15. [DOI: 10.1016/j.thromres.2012.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/16/2012] [Accepted: 07/24/2012] [Indexed: 11/17/2022]
|