1
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Beta-cypermethrin-induced stress response and ABC transporter-mediated detoxification in Tetrahymena thermophila. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110066. [PMID: 39510334 DOI: 10.1016/j.cbpc.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
β-Cypermethrin (β-CYP), a synthetic pyrethroid pesticide, is widely used for insect management. However, it also affects non-target organisms and pollutes aquatic ecosystems. Tetrahymena thermophila, a unicellular ciliated protist found in fresh water, is in direct contact with aquatic environments and sensitive to environmental changes. The proliferation of T. thermophila was inhibited and the cellular morphology changed under β-CYP stress. The intracellular ROS level significantly increased, and SOD activity gradually rose with increasing β-CYP concentrations. Under 25 mg/L β-CYP stress, 687 genes were up-regulated, primarily enriched in the organic cyclic compound binding and heterocyclic compound binding pathways. These include 8 ATP-binding cassette transporters (ABC) family genes, 2 cytochrome P450 monooxygenase genes, and 2 glutathione peroxidase related genes. Among of them, ABCG14 knockdown affected cellular proliferation under β-CYP stress. In contrast, overexpression of ABCG14 enhanced cellular tolerance to β-CYP. The results demonstrated that Tetrahymena tolerates high β-CYP concentration stress through various detoxification mechanisms, with ABCG14 playing a crucial role in detoxification of β-CYP.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
2
|
Lourenço L, Ellegaard Bager S, Ng DYK, Sheikh S, Lunding Kindtler N, Broman Nielsen I, Guldberg Frøslev T, Ekelund F. DNA metabarcoding reveals the impact of Cu 2+ on soil cercozoan diversity. Protist 2024; 175:126016. [PMID: 38350284 DOI: 10.1016/j.protis.2024.126016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Although copper (Cu2+) is a micronutrient, the metal may be toxic if present in high concentrations in soil ecosystems and subsequently affect various organisms, ranging from microorganisms to earthworms. We performed a microcosm study with an array of Cu2+ concentrations, with a specific focus on Cercozoa, an important protozoan group in most soil food webs. Research on Cercozoa is still scarce in terms of both diversity and ecology; hence, to explore this group in more depth, we used high-throughput sequencing to detect Cu2+ induced community changes. Increased levels of Cu2+ caused a shift in the cercozoan community, and we observed decreased cercozoan relative abundance across the majority of orders, families and genera. Due to their key role in soil food webs, especially as bacterial predators and providers of nutrients to plants, the reduction of cercozoan abundance and diversity may seriously affect soil functionality. Our results indicate that the increase of Cu2+ concentrations in the soil could potentially have this effect and the consequences need exploration.
Collapse
Affiliation(s)
- Leah Lourenço
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.
| | - Sara Ellegaard Bager
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Duncan Y K Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sanea Sheikh
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Ida Broman Nielsen
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Tobias Guldberg Frøslev
- Section for Geogenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Flemming Ekelund
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Ma L, Zhang L, Zhang S, Zhou M, Huang W, Zou X, He Z, Shu L. Soil protists are more resilient to the combined effect of microplastics and heavy metals than bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167645. [PMID: 37806593 DOI: 10.1016/j.scitotenv.2023.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Heavy metals and micro-/nanoplastic pollution seriously threaten the environment and ecosystems. While many studies investigated their effects on diverse microbes, few studies have focused on soil protists, and it is unclear how soil protists respond to the combined effect of micro-/nanoplastics and heavy metals. This study investigated how soil protistan and bacterial communities respond to single or combined copper and micro-/nanoplastics. The bacterial community exhibited an instantaneous response to single copper pollution, whereas the combined pollution resulted in a hysteresis effect on the protistan community. Single and combined pollution inhibited the predation of protists and changed the construction of ecological networks. Though single and combined pollution did not significantly affect the overall community structure, the exposure experiment indicated that combined pollution harmed soil amoeba's fitness. These findings offer valuable new insights into the toxic effects of single and combined pollution of copper and plastics on soil protistan and bacterial communities. Additionally, this study shows that sequencing-based analyses cannot fully reflect pollutants' adverse effects, and both culture-independent and dependent methods are needed to reveal the impact of pollutants on soil microbes.
Collapse
Affiliation(s)
- Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liu Z, Guo S, Fang X, Shao X, Zhao Z. Antibacterial and plant growth-promoting properties of novel Fe 3O 4/Cu/CuO magnetic nanoparticles. RSC Adv 2022; 12:19856-19867. [PMID: 35865197 PMCID: PMC9260745 DOI: 10.1039/d2ra03114k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, an Fe3O4/Cu/CuO (FC) antibacterial nano-agent was synthesized in a "one-pot" approach using copper sulfate and ferric chloride as raw materials, and it was studied using TEM, XRD, XPS, UV-vis, and VSM methods. The antibacterial activity and mechanism of FC were studied, using a commercially available Bordeaux mixture as a control. The effects of an FC on mung bean development and its toxicity to human mammary epithelial cells were also investigated. The results revealed that FC could break the cell walls of E. coli and S. aureus, quadrupling the antibacterial activity of the Bordeaux combination. Furthermore, it was shown that FC might improve the germination, root development, and chlorophyll content of mung bean seeds while being 1/8 as hazardous to human mammary epithelial cells as the Bordeaux combination. The as-prepared FC can replace the Bordeaux combination in the management of agroforestry pathogens.
Collapse
Affiliation(s)
- Zhifeng Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 China +86-0916-2641660 +86-0916-2641660
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Shaobo Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 China +86-0916-2641660 +86-0916-2641660
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Xun Fang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 China +86-0916-2641660 +86-0916-2641660
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 China +86-0916-2641660 +86-0916-2641660
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Zuoping Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 China +86-0916-2641660 +86-0916-2641660
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| |
Collapse
|