1
|
de Andrade Borges A, Ouverney G, Arruda ATS, Ribeiro AV, Ribeiro RCB, de Souza AS, da Fonseca ACC, de Queiroz LN, de Almeida ECP, Pontes B, Rabelo VWH, Ferreira V, Abreu PA, de Carvalho da Silva F, da Silva Magalhaes Forezi L, Robbs BK. Determination of Inhibitory Effect of PKM2 Enzyme and Antitumoral Activity of Novel Coumarin-naphthoquinone Hybrids. Curr Med Chem 2025; 32:359-379. [PMID: 38877863 DOI: 10.2174/0109298673298471240605072658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science. OBJECTIVE This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC). METHODS Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma. RESULTS By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro. CONCLUSION We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.
Collapse
Grants
- 1A 301873/2019-4, 301873/2019-4 CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
- E-26/010.101106/2018, E-26/202, 787/2019, E-26/10.002250/2019, E-26/210.085/2022, E-26/010.001318/2019, E-26/211.343/2021, E-26/210.068/2021, E-26/203.191/2017-JCNE, E-26 /202.800/2017-CNE, E-26/010.101106/2018, E-26/200 .870/2021-CNE, E-26/201.369/2021-JCNE, E-26/010/ 001687/2015, E-26/202.787/2019, E-26/210.514/2019, E-26/10.002250/2019, E-26/211.343/2021, E-26/210. 085/2022, E-26/210.068/2021 FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- 001 Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES)
Collapse
Affiliation(s)
- Amanda de Andrade Borges
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Gabriel Ouverney
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Afonso Thales Sousa Arruda
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Amanda Vieira Ribeiro
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Ruan Carlos Busquet Ribeiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Acacio Silva de Souza
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Programa de Pós-graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Lucas Nicolau de Queiroz
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Vitor Won-Held Rabelo
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Vitor Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Luana da Silva Magalhaes Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| |
Collapse
|
2
|
Zhang J, Song S, Li Y, Gong A. Predicting Outcomes in Esophageal Squamous Cell Carcinoma Using scRNA-Seq and Bulk RNA-Seq: A Model Development and Validation Study. Cancer Med 2025; 14:e70617. [PMID: 39840762 PMCID: PMC11751878 DOI: 10.1002/cam4.70617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Altered glucose metabolism is a critical characteristic from the beginning stage of esophageal squamous cell carcinoma (ESCC), and the phenomenon is presented as a pink-color sign under endoscopy after iodine staining. Therefore, calculating the metabolic score based on the glucose metabolic gene sets may bring some novel insights, enabling the prediction of prognosis and the identification of treatment choices for ESCC. METHODS A total of 8, 99, and 140 individuals from The Gene Expression Omnibus database, The Cancer Genome Atlas database, and the Memorial Sloan Kettering Cancer Center, respectively, were encompassed in the investigation. Patients diagnosed with ESCC after surgery were enrolled for further validation. RESULTS A total of 13 kinds of cell clusters were screened, and the squamous epithelium was identified with the highest score. And 558 differential genes were selected from the single-cell RNA sequencing (scRNA-seq) dataset. Four glucose metabolism-related genes, namely, SERP1, CTSC, RAP2B, and SSR4, were identified as hub genes to develop a risk prognostic model. The model was validated in another external cohort. According to the risk score (RS) determined by the model, the patients were categorized into low- and high-risk groups (LRG and HRG). Compared with LRG, HRG indicated poor survival and decreased drug sensitivity. Additionally, the immune microenvironment and pathway enrichment were different between the two groups. Immunohistochemical staining revealed that hub genes were expressed differently in ESCC tissues, high- and low-grade intraepithelial neoplasia, and adjacent normal tissues. CONCLUSION Four hub genes (SERP1, CTSC, RAP2B, and SSR4) screened based on glucose metabolism developed a predictive model in ESCC patients. The RS was established as an independent risk factor for predicting prognosis. These findings may enhance understanding of ESCC's molecular profile and serve as a new prognostic tool for better patient stratification and treatment planning in clinical practice.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Digestive EndoscopyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningPeople's Republic of China
| | - Shunzhe Song
- Department of Digestive EndoscopyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningPeople's Republic of China
| | - Yuqing Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningPeople's Republic of China
| | - Aixia Gong
- Department of Digestive EndoscopyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningPeople's Republic of China
- Department of GastroenterologyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningPeople's Republic of China
| |
Collapse
|
3
|
Chen Y, Fan P, Chen Z, Zheng Z, He M, Zhao X, Chen R, Yao J, Yang Z. Long non-coding RNA SRA1 suppresses radiotherapy resistance in esophageal squamous cell carcinoma by modulating glycolytic reprogramming. Open Med (Wars) 2024; 19:20240946. [PMID: 38584841 PMCID: PMC10998669 DOI: 10.1515/med-2024-0946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metabolic reprogramming as a prominent feature. Specifically, the Warburg effect, marked by enhanced glycolysis, has emerged as a hallmark of cancer, offering potential therapeutic targets. In this study, we comprehensively analyzed bulk RNA-seq data from ESCC patients, uncovering elevated SRA1 expression in ESCC development and a poorer prognosis. Silencing of SRA1 led to a modulation of glycolysis-related products and a shift in PKM2 expression. Our findings shed light on the intricate molecular landscape of ESCC, highlighting SRA1 as a potential therapeutic target to disrupt glycolysis-dependent energy production. This metabolic reprogramming may hold the key to innovative treatment strategies for ESCC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Yurao Chen
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Peng Fan
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Zhenhai Chen
- Department of Thoracic Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Zemao Zheng
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Ming He
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Xiang Zhao
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Ronghuai Chen
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Juan Yao
- Department of Radiation Oncology, Huaian Cancer Hospital, Huaian, 223299, Jiangsu, China
| | - Zhaodong Yang
- Department of Thoracic Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| |
Collapse
|
4
|
Wang T, Zhu Y, Chen L, Zhang W, Qi H, Shi X, Zhong M, Chen H, Li Q. ESRRG-PKM2 axis reprograms metabolism to suppress esophageal squamous carcinoma progression and enhance anti-PD-1 therapy efficacy. J Transl Med 2023; 21:605. [PMID: 37679788 PMCID: PMC10485992 DOI: 10.1186/s12967-023-04347-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Glycolysis under normoxic conditions, known as the Warburg effect, confers a selective advantage for the survival and proliferation of many tumors. In this study, we investigated the role of estrogen-related receptor gamma (ESRRG) in metabolic reprogramming in esophageal squamous cell carcinoma (ESCC). METHODS Bioinformatics analysis indicated that ESRRG expression was decreased in ESCC tissue and associated with poor clinical outcomes. We also examined the effects of altered ESRRG expression on the proliferation and metabolic reprogramming of ESCC cells. We explored the impact of ESRRG on Pyruvate kinase M2 (PKM2) expression and malignant behavior in ESCC. RESULTS Our study revealed the inhibitory effects of ESRRG on the growth, tumorigenesis, and glycolysis activity of ESCC cells, which were mediated by the downregulation of PKM2 expression. We further demonstrated that ESRRG directly interacts with the PKM2 promoter to inhibit its activity in ESCC. Notably, the ESRRG-specific agonist, DY131, inhibited ESCC cell proliferation and glycolysis activity by modulating genes in the glycolysis pathway. Moreover, we verified that DY131 exhibits enhanced activity as an immune checkpoint inhibitor, considering the significance of the ESRRG-PKM2 axis in the lactate regulation of ESCC cells. CONCLUSION Our findings provide novel insights into the role of ESRRG-PKM2 signaling in regulating ESCC cell metabolism and immune checkpoint regulation. Additionally, we suggest that DY131 holds promise as a promising therapeutic agent for ESCC treatment.
Collapse
Affiliation(s)
- Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yongjun Zhu
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - WenXin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
5
|
Ishfaq M, Bashir N, Riaz SK, Manzoor S, Khan JS, Bibi Y, Sami R, Aljahani AH, Alharthy SA, Shahid R. Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients. Genes (Basel) 2022; 13:549. [PMID: 35328104 PMCID: PMC8955648 DOI: 10.3390/genes13030549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
The reprogramming of energy metabolism is one of the hallmarks of cancer and is crucial for tumor progression. Altered aerobic glycolysis is a well-known characteristic of cancer cell metabolism. In the present study, the expression profiles of key metabolic genes (HK2, PFKM, and PKM2) were assessed in the breast cancer cohort of Pakistan using quantitative polymerase chain reaction (qPCR) and IHC. Expression patterns were correlated with molecular subtypes and clinical parameters in the patients. A significant upregulation of key glycolytic genes was observed in tumor samples in comparison to their adjacent controls (p < 0.0001). The expression of the studied glycolytic genes was significantly increased in late clinical stages, positive nodal involvement, and distant metastasis (p < 0.05). HK2 and PKM2 were found to be upregulated in luminal B, whereas PFKM was overexpressed in the luminal A subtype of breast cancer. The genes were positively correlated with the proliferation marker Ki67 (p < 0.001). Moreover, moderate positive linear correlations between HK2 and PKM2 (r = 0.476), HK2 and PFKM (r = 0.473), and PKM2 and PFKM (r = 0.501) were also observed (p < 0.01). These findings validate that the key regulatory genes in glycolysis can serve as potential biomarkers and/or molecular targets for breast cancer management. However, the clinical significance of these molecules needs to be further validated through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Mehreen Ishfaq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| | - Nabiha Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| | - Syeda Kiran Riaz
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan;
| | - Shumaila Manzoor
- National Veterinary Lab, National Agricultural Research Centre, Islamabad 44000, Pakistan;
| | - Jahangir Sarwar Khan
- Department of General Surgery, Rawalpindi Medical University, Rawalpindi 46000, Pakistan;
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| |
Collapse
|
6
|
Yu L, Zheng Y, Gao L. MiRNA-disease association prediction based on meta-paths. Brief Bioinform 2022; 23:6501422. [PMID: 35018405 DOI: 10.1093/bib/bbab571] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
7
|
Ferns GA, Shahini Shams Abadi M, Raeisi A, Arjmand MH. The Potential Role of Changes in the Glucose and Lipid Metabolic Pathways in Gastrointestinal Cancer Progression: Strategy in Cancer Therapy. Gastrointest Tumors 2021; 8:169-176. [PMID: 34722470 DOI: 10.1159/000517771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Changes in cell metabolism are a well-known feature of some cancers, and this may be involved in the etiology of tumor formation and progression, as well as tumor heterogeneity. These changes may affect fatty acid metabolism and glycolysis and are required to provide the increase in energy necessary for the high rate of proliferation of cancer cells. Gastrointestinal cancers remain a difficult-to-treat cancer, particularly as they are usually diagnosed at a late stage of disease and are associated with poor outcomes. Summary Recently, the changes in the metabolic pathways, including the expression of the rate-limiting enzymes involved, have been considered to be a potential target for therapy for gastrointestinal tumors. Key Message A combination of routine chemotherapy drugs with metabolic inhibitors may improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Milad Shahini Shams Abadi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ahmad Raeisi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Zhang Q, Zheng S, Liu Q, Liu T, Tuerxun A, Yang L, Han X, Lu X. Prognostic significance of pyruvate kinase M2 expression in esophageal squamous cell carcinoma and its meta-analysis. Transl Cancer Res 2021; 10:2643-2652. [PMID: 35116577 PMCID: PMC8798200 DOI: 10.21037/tcr-21-442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pyruvate kinase 2 (PKM2) is a key enzyme in the glycolysis pathway and has been reported to be associated with the development of esophageal squamous cell carcinoma (ESCC). However, the prognostic value of PKM2 in ESCC remains undetermined. METHODS This study aimed to investigate the clinicopathological significance of PKM2 expression in ESCC. A comprehensive and systematic literature search was conducted using the PubMed, Embase, Medline, and Cochrane library databases. The quality of studies and potential for bias were appraised, and meta-analysis was performed to assess the prognostic impact of PKM2 on overall survival (OS). RESULTS A total of 5 studies with 781 participants were eligible and enrolled. Patients with high PKM2 expression were associated with poor prognosis in ESCC [hazard ratio (HR) =1.72, 95% confidence interval (CI): 1.41-2.09; P<0.01]. Furthermore, upregulated PKM2 was significantly associated with lymph node metastasis [odds ratio (OR) =2.38, 95% CI: 1.68-3.35; P<0.01], clinical stage (OR =3.29, 95% CI: 2.27-4.77; P<0.01), and tumor (T) classification (OR =2.92, 95% CI: 2.05-4.16, P<0.01). DISCUSSION High PKM2 expression denotes worse OS in ESCC patients, and correlates with the lymph node metastasis, clinical stage, and T classification. However, further studies are warranted to assess how PKM2 can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aerziguli Tuerxun
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Lifei Yang
- Cancer Hospital Affiliated of Xinjiang Medical University, Urumqi, China
| | - Xiujuan Han
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
9
|
Dai G, Guo Z, Chen H, Jiang M, Zhou H, Bao J, Yu H, Huang J. High expression of guanine nucleotide-binding protein-like-3-like is associated with poor prognosis in esophageal cancer. Medicine (Baltimore) 2021; 100:e25993. [PMID: 34032716 PMCID: PMC8154413 DOI: 10.1097/md.0000000000025993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
Guanine nucleotide-binding protein-like-3-like (GNL3L) is required for processing ribosomal pre-rRNA and cell proliferation and is upregulated in many types of cancer. This study is aimed to investigate the clinical significance of GNL3L in esophageal cancer. The mRNA and protein expression levels of GNL3L were determined by using quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. GNL3L was localized in both cytoplasm and nucleus. The expression levels of GNL3L in esophageal cancer tissues were significantly higher than those in adjacent nonmalignant tissues. High GNL3L expression was associated with pathologic type and poor differentiation. Patients with high GNL3L expression had shorter overall survival (OS) than those with low GNL3L expression. Multivariate Cox regression analysis revealed that GNL3L expression was an independently predictive factor for the OS of patient with esophageal cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) databases also showed that GNL3L was upregulated in esophageal cancer, which was closely associated with an unfavorable prognosis of patients with esophageal cancer. Taken together, our findings suggest that GNL3L is upregulated in esophageal cancer, which is linked to the progression of the disease. As a result, GNL3L could be used as a biomarker for esophageal cancer.
Collapse
Affiliation(s)
- Guihong Dai
- Department of Pathology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou
| | - Zhongying Guo
- Department of Pathology, Huai’an First People's Hospital, Huai’an
| | - Huiping Chen
- Department of Pathology, Taizhou Second People's Hospital, Yangzhou University of Medicine, Taizhou
| | - Min Jiang
- Department of Pathology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou
| | - Huilin Zhou
- Department of Pathology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou
| | - Jingjing Bao
- Department of Pathology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, China
| |
Collapse
|
10
|
Zhu K, Li Y, Deng C, Wang Y, Piao J, Lin Z, Chen L. Significant association of PKM2 and NQO1 proteins with poor prognosis in breast cancer. Pathol Res Pract 2020; 216:153173. [PMID: 32841776 DOI: 10.1016/j.prp.2020.153173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022]
Abstract
Pyruvate kinase M2 (PKM2) and NAD(P)H:quinone oxidoreductase-1 (NQO1) have been known to play significant functions in tumorigenesis and development. The association between PKM2 and NQO1 in breast cancer continues, however, to be unclear. In the present study, according to UALCAN and GEPIA database, the mRNA levels of PKM2 and NQO1 in breast primary tumor were significantly higher compared to normal breast tissue. Consonant with these findings, increased expression of both PKM2 and NQO1 were detected in clinical samples and BC cell lines. More importantly, consolidated high expression of NQO1 and PKM2 were obtained to be related with worse clinical stage, relapse, shorter relapse free survival (RFS), and poorer overall survival (OS) in human breast cancer. We subsequently found that knockdown of NQO1 reduced the protein level of PKM2 significantly. Moreover, deletion of PKM2 significantly reduced colony formation, migration and invasion of BC cells. A positive correlation between PKM2 and NQO1 expression was identified by immunohistochemical analyses of 108 specimens of breast cancer patients (rs = 0.60, P = 0.00). Finally, endogenous Co-IP demonstrated that PKM2 and NQO1 interact in breast cancer cells. The results of this study suggest that the correlation between NQO1 and PKM2 might play a critical role during breast tumourigenesis and serve as novel diagnostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Kun Zhu
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Yue Li
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Department of Biochemistry and molecular biology, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Chunling Deng
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Department of Biochemistry and molecular biology, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Yixuan Wang
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Junjie Piao
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Zhenhua Lin
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Department of Biochemistry and molecular biology, Yanbian University Medical College, Yanji 133002, China; Key laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China.
| |
Collapse
|
11
|
PKM2 Expression as Biomarker for Resistance to Oxaliplatin-Based Chemotherapy in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12082058. [PMID: 32722474 PMCID: PMC7465271 DOI: 10.3390/cancers12082058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
The purpose of the current study is to investigate the prognostic significance of M2 isoform of pyruvate kinase (PKM2) mRNA expression loss in patients with operable colon cancer (CC). Two hundred sixty-two specimens from patients with stage-III or high-risk stage-II CC (group-A) treated with adjuvant fluoropyrimidine and oxaliplatin chemotherapy (FOLFOX), 118 specimens from metastatic CC patients (group-B) treated with FOLFOX, and 104 metastatic CC patients (group-C) treated with irinotecan-based chemotherapy were analyzed for PKM2, TS, ERCC1, MYC, and NEDD9 mRNA expression, as well as KRAS exon2 and BRAFV600E mutations. High PKM2 mRNA expression was correlated with left-sided located primaries (p = 0.001, group-A; p = 0.003, group-B; p = 0.001, group-C), high-grade tumors (p = 0.001, group-A; p = 0.017, group-B; p = 0.021, group-C), microsatellite-stable tumors (p < 0.001, group-A), pericolic lymph nodes involvement (p = 0.018, group-A), and cMYC mRNA expression (p = 0.002, group-A; p = 0.008, group-B; p = 0.006, group-C). High PKM2 mRNA expression was correlated with significantly lower disease free survival (DFS) (p = 0.002) and overall survival (OS) (p = 0.001) in the group-A. Similarly, PKM2 mRNA expression was associated with significantly decreased progression free survival (PFS) (p = 0.001) and OS (p = 0.001) in group-B. On the contrary, no significant association for the PKM2 mRNA expression has been observed with either PFS (p = 0.612) or OS (p = 0.517) in group-C. To conclude, the current study provides evidence for the prediction of PKM2 mRNA expression oxaliplatin-based treatment resistance.
Collapse
|
12
|
Qian Z, Hu W, Lv Z, Liu H, Chen D, Wang Y, Wu J, Zheng S. PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2020; 44:162-173. [PMID: 31303531 DOI: 10.1016/j.clinre.2019.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although pyruvate kinase M2 (PKM2) has been shown to be among the crucial enzymes that regulate aerobic glycolysis in multiple tumour cells, its role in the treatment and prognosis of intrahepatic cholangiocarcinoma (ICC) remains unclear. This study primarily aimed to determine whether the expression status of PKM2 is potentially associated with the clinical outcomes of ICC. METHODS PKM2 expression was evaluated in ICC cell lines and tissues via real-time quantitative reverse-transcription polymerase chain reaction, immunofluorescence assays, and Western blot, and its prognostic value was determined according to its impact on the overall survival of patients. RESULTS We found that PKM2 is highly expressed in ICC, and this was correlated with patient survival. Moreover, we found that PKM2 knockdown could considerably inhibit ICC cell proliferation, invasion, and migration in vitro. CONCLUSIONS PKM2 was overexpressed in ICC, and it may regulate proliferation, invasion, and migration and lead to poor prognosis. Thus, PKM2 might be a potential independent prognostic factor for ICC.
Collapse
Affiliation(s)
- Ze Qian
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Wendi Hu
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Zhen Lv
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Hua Liu
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Diyu Chen
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China
| | - Yacong Wang
- Department of Gerontology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary, Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China; Collaborative innovation center for Diagnosis treatment of infectious diseases, Hangzhou, China.
| |
Collapse
|
13
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
14
|
Metabolic Regulation of Glycolysis and AMP Activated Protein Kinase Pathways during Black Raspberry-Mediated Oral Cancer Chemoprevention. Metabolites 2019; 9:metabo9070140. [PMID: 31336728 PMCID: PMC6680978 DOI: 10.3390/metabo9070140] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/15/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.
Collapse
|
15
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
16
|
Yu M, Chen S, Hong W, Gu Y, Huang B, Lin Y, Zhou Y, Jin H, Deng Y, Tu L, Hou B, Jian Z. Prognostic role of glycolysis for cancer outcome: evidence from 86 studies. J Cancer Res Clin Oncol 2019; 145:967-999. [PMID: 30825027 DOI: 10.1007/s00432-019-02847-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The abnormal expression of the key enzymes in glycolytic pathways, including glucose transporter-1, glucose transporter-3, hexokinase-II, lactate dehydrogenase 5, pyruvate kinase M2, glucose-6-phosphate dehydrogenase, transketolase-like protein 1 and pyruvate dehydrogenase kinase-1 was reported to be associated with poor prognosis of various cancers. However, the association remains controversial. The objective of this study was to investigate the prognostic significance of glycolysis-related proteins. MATERIALS AND METHODS We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, using Pubmed and Ovid as search engines and Google Scholar from inception to April 2017. Eighty-six studies with 12,002 patients were included in the study. RESULTS Our pooled results identified that glycolysis-related proteins in cancers were associated with shorter overall survival of colorectal cancer (HR 2.33, 95% CI 1.38-3.93, P = 0.002), gastric cancer (HR 1.55, 95% CI 1.31-1.82, P < 0.001), cancer of gallbladder or bile duct (HR 2.16, 95% CI 1.70-2.75, P < 0.001), oral cancer (HR 2.07, 95% CI 1.32-3.25, P < 0.001), esophageal cancer (HR 1.66, 95% CI 1.25-2.21, P = 0.01), hepatocellular carcinoma (HR 2.04, 95% CI 1.64-2.54, P < 0.001), pancreatic cancer (HR 1.72, 95% CI 1.39-2.13, P < 0.001), breast cancer(HR 1.67, 95% CI 1.34-2.08, P < 0.001), and nasopharyngeal carcinoma (HR 3.59, 95% CI 1.75-7.36, P < 0.001). No association was found for lung cancer, ovarian cancer or melanoma. The key glycolytic transcriptional regulators (HIF-1α, p53) were analyzed in parallel to the glycolysis-related proteins, and the pooled results identified that high-level expression of HIF-1α was significantly associated with shorter overall survival (HR 0.57, 95% CI 0.42-0.79, P < 0.001) Furthermore, glycolysis-related proteins linked with poor differentiated tumors (OR 1.81, 95% CI 1.46-2.25, P < 0.001), positive lymph node metastasis (OR 2.73, 95% CI 2.16-3.46, P < 0.001), positive vascular invasion (OR 2.05, 95% CI 1.37-3.07, P < 0.001), large tumor size (OR 2.06, 95% CI 1.80-2.37, P < 0.001), advanced tumor stage (OR 1.58, 95% CI 1.19-2.09, P < 0.001), and deeper invasion (OR 2.37, 95% CI 1.93-2.91, P < 0.001). CONCLUSION Glycolytic transcriptional regulators and glycolysis-related proteins in cancers were significantly associated with poor prognosis, suggesting glycolytic status may be potentially valuable prognostic biomarkers for various cancers.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Shengying Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Weifeng Hong
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Yujun Gu
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yanying Deng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lei Tu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Guo C, Li G, Hou J, Deng X, Ao S, Li Z, Lyu G. Tumor pyruvate kinase M2: A promising molecular target of gastrointestinal cancer. Chin J Cancer Res 2018; 30:669-676. [PMID: 30700935 PMCID: PMC6328500 DOI: 10.21147/j.issn.1000-9604.2018.06.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the most common causes of cancer-related deaths worldwide. Tumor markers are valuable in detecting post-surgical recurrence or in monitoring response to chemotherapy. Pyruvate kinase isoform M2 (PKM2), a glycolytic enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate, confers a growth advantage to the tumor cells and enables them to adapt to the tumor microenvironment. In this review, we have summarized current research on the expression and regulation of PKM2 in tumor cells, and its potential role in GI carcinogenesis and progression. Furthermore, we have also discussed the potential of PKM2 as a diagnostic and screening marker, and a therapeutic target in GI cancer.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
18
|
Retinoblastoma Binding Protein 5 Correlates with the Progression in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1073432. [PMID: 30533424 PMCID: PMC6247687 DOI: 10.1155/2018/1073432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy tumors with insidious onset, rapid development and metastasis, and poor prognosis. Therefore, it is necessary to understand molecular mechanisms of HCC and identify clinically useful biomarkers for it. This study aimed to investigate the role of retinoblastoma binding protein 5 (RBBP5) in HCC. The expression level of RBBP5 was examined by immunohistochemistry and western blot. The effect of RBBP5 on cell cycle, proliferation, apoptosis, and drug sensitivity was analyzed. RBBP5 was significantly upregulated in HCC tissues and cells. High RBBP5 expression was significantly associated with elevated level of AFP, advanced TNM stage, high Ki-67 expression, larger tumor size, and poor prognosis. Knockdown of RBBP5 significantly inhibited proliferation of HCC cells through cell cycle arrest. In addition, inhibition of RBBP5 increased the sensitivity of HCC cells to doxorubicin. In conclusion, our findings suggest that RBBP5 plays an important role in the progression of HCC and may serve as a novel biomarker and potential therapeutic target for HCC.
Collapse
|
19
|
Lin Y, Meng F, Lu Z, Chen K, Tao Y, Ouyang Y, Cao X. Knockdown of PKM2 suppresses tumor progression in human cervical cancer by modulating epithelial-mesenchymal transition via Wnt/β-catenin signaling. Cancer Manag Res 2018; 10:4191-4202. [PMID: 30323675 PMCID: PMC6177516 DOI: 10.2147/cmar.s178219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Pyruvate kinase isozyme type M2 (PKM2) is a key glycolytic enzyme and is upregulated in multiple human malignancies. However, the role of PKM2 in human cervical cancer (CC) remains elusive. Thus, this study explored the role of PKM2 in CC by detecting its expression patterns in human CC tissues and cell lines and investigated its effects on cell proliferation and invasion. Materials and methods Quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry and western blotting assays were used to detect the expression of PKM2 in CC tissues and CC cells. In vitro, we overexpressed and knocked down PKM2 expression in CC cell lines and investigated the biological function and underlying mechanism of PKM2 in cervical carcinogenesis. Results The results showed that PKM2 mRNA and protein were highly expressed in CC tissues and cell lines. Furthermore, increasing PKM2 expression was closely correlated with the clinical stage (P=0.001) and lymph node metastasis (P=0.023). The functional roles of PKM2 were determined using Cell Counting Kit-8, colony formation, and transwell assays. The results showed that PKM2 knockdown inhibited cell proliferation and the migratory and invasive capacities of CC cells, suppressed epithelial–mesenchymal transition (EMT), and inhibited Wnt/β-catenin signaling in vitro. However, overexpression of PKM2 led to increased proliferation and invasion activity as well as the EMT in CC cells. Conclusion Taken together, our study results revealed that PKM2 may act as a molecular target for CC treatment.
Collapse
Affiliation(s)
- Yanzhu Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Zhiyuan Lu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,
| | - Yi Ouyang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,
| | - Xinping Cao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,
| |
Collapse
|
20
|
Yang YC, Chien MH, Liu HY, Chang YC, Chen CK, Lee WJ, Kuo TC, Hsiao M, Hua KT, Cheng TY. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett 2018; 421:28-40. [PMID: 29408265 DOI: 10.1016/j.canlet.2018.01.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-Yi Liu
- Graduate Institute of Biochemical Sciences, College of Life Science Sciences, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Tsang-Chih Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsu-Yao Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
21
|
He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer 2017; 1868:359-371. [PMID: 28757126 DOI: 10.1016/j.bbcan.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolism is essential to all living organisms that provide cells with energy, regulators, building blocks, enzyme cofactors and signaling molecules, and is in tune with nutritional conditions and the function of cells to make the appropriate developmental decisions or maintain homeostasis. As a fundamental biological process, metabolism state affects the production of multiple metabolites and the activation of various enzymes that participate in regulating gene expression, cell apoptosis, cancer progression and immunoreactions. Previous studies generally focus on the function played by the metabolic enzymes in the cytoplasm and mitochondrion. In this review, we conclude the role of them in the nucleus and their implications for cancer progression, immunity and metastasis.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Wang C, Wang J, Chen Z, Gao Y, He J. Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: a systematic review. CHINESE JOURNAL OF CANCER 2017; 36:65. [PMID: 28818096 PMCID: PMC5561640 DOI: 10.1186/s40880-017-0232-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy, with a high incidence and poor prognosis. In the past several decades, hundreds of proteins have been reported to be associated with the prognosis of ESCC, but none has been widely accepted to guide clinical care. This study aimed to identify proteins with great potential for predicting prognosis of ESCC. METHODS We conducted a systematic review on immunohistochemical (IHC) prognostic markers of ESCC according to the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. Literature related to IHC prognostic markers of ESCC were searched from PubMed, Embase, Web of Science, and Cochrane Library until January 30th, 2017. The risk of bias of these original studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. RESULTS We identified 11 emerging IHC markers with reproducible results, including eight markers [epidermal growth factor receptor (EGFR), Cyclin D1, vascular endothelial growth factor (VEGF), Survivin, Podoplanin, Fascin, phosphorylated mammalian target of rapamycin (p-mTOR), and pyruvate kinase M2 (PKM2)] indicating unfavorable prognosis and 3 markers (P27, P16, and E-cadherin) indicating favorable prognosis of ESCC. CONCLUSION Strong evidence supports that these 11 emerging IHC markers or their combinations may be useful in predicting prognosis and aiding personalized therapy decision-making for ESCC patients.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 P. R. China
| | - Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 P. R. China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 P. R. China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 P. R. China
- Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 P. R. China
| |
Collapse
|
23
|
Huang R, Zong X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit Rev Oncol Hematol 2017; 115:13-22. [DOI: 10.1016/j.critrevonc.2017.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/27/2023] Open
|
24
|
Wang D, Yin L, Wei J, Yang Z, Jiang G. ATP citrate lyase is increased in human breast cancer, depletion of which promotes apoptosis. Tumour Biol 2017; 39:1010428317698338. [PMID: 28443474 DOI: 10.1177/1010428317698338] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a malignant tumor that is harmful to women’s health around the world. Investigating the biological mechanism is, therefore, of pivotal importance to improve patients’ prognoses. Compared to non-neoplastic tissues, enhanced glucose and lipid metabolism is one of the most common properties of malignant breast cancer. Adenosine triphosphate (ATP) citrate lyase is a key enzyme linking aerobic glycolysis and fatty acid synthesis and is of high biological and prognostic significance in breast cancer. In our clinical study, fresh clinical tissues were used to analyze ATP citrate lyase expression by western blotting, and paraffin archived samples from 62 breast cancer patients were used to analyze ATP citrate lyase expression by immunohistochemistry. In the cellular study, following small interfering RNA–mediated inhibition of ATP citrate lyase in MCF-7 cells, cell viability and apoptosis were measured using the Cell Counting Kit-8 and flow cytometry, respectively. Breast cancer tissues showed strong expression of ATP citrate lyase, whereas adjacent normal tissues showed weak expression. Silencing of endogenous ATP citrate lyase expression by small interfering RNA in MCF-7 cells suppressed cell viability and increased cell apoptosis. Collectively, our study revealed that expression of ATP citrate lyase was significantly increased in breast cancer tissue compared with normal tissue. In addition, we found that depletion of ATP citrate lyase suppressed tumor growth, which suggests that ATP citrate lyase–related inhibitors might be potential therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Diyu Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yin
- Department of General Surgery, Suzhou Wuzhong People’s Hospital, Suzhou, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhixue Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoqin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Zhu H, Luo H, Zhu X, Hu X, Zheng L, Zhu X. Pyruvate kinase M2 (PKM2) expression correlates with prognosis in solid cancers: a meta-analysis. Oncotarget 2017; 8:1628-1640. [PMID: 27911861 PMCID: PMC5352083 DOI: 10.18632/oncotarget.13703] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is the key enzyme in the Warburg effect and plays a central role in cancer cell metabolic reprogramming. Recently, quite a few studies have investigated the correlation between PKM2 expression and prognosis in multiple cancer patients, but results were inconsistent. We therefore performed a meta-analysis to explore the prognostic value of PKM2 expression in patients with solid cancer. Here twenty-seven individual studies from 25 publications with a total of 4796 cases were included to explore the association between PKM2 and overall survival (OS) or disease-free survival (DFS)/ progression-free survival (PFS)/ recurrent-free survival (RFS) in subjects with solid cancer. Pooled analysis showed that high levels of PKM2 was significantly associated with a poorer overall survival (HR = 1.73; 95%CI = 1.48-2.03) and DFS/ PFS/ RFS (HR = 1.90; 95%CI = 1.39-2.59) irrespective of cancer types. Different analysis models (univariate or multivariate models), sample-sizes (≤100 or >100), and methods for data collection (direct extraction or indirect extraction) had no impact on the negative prognostic effect of PKM2 over-expression. Nevertheless, stratified by cancer type, high-expression of PKM2 was associated with an unfavorable OS in breast cancer, esophageal squamous carcinoma, hepatocellular carcinoma and gallbladder cancer; whereas was not correlated with a worse OS in pancreatic cancer and gastric cancer. In conclusion, over-expression of PKM2 is associated with poor prognosis in most solid cancers and it might be a potentially useful biomarker for predicting cancer prognosis in future clinical applications.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuejie Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
26
|
Fan F, Wu H, Liu Z, Hou X, Chen W, Wang A, Lu Y. Nuclear PKM2 expression, an independent risk factor for ER after curative resection of hepatocellular carcinoma. Biomed Pharmacother 2016; 84:1858-1864. [PMID: 27894667 DOI: 10.1016/j.biopha.2016.10.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022] Open
Abstract
Surgical resection, providing a long-term survival of hepatocellular carcinoma (HCC) patients, is regarded as one of the standard curative treatments of HCC if the tumor is resectable. However, 50% patients develop early recurrence (ER) during the first two years after operation, which are more diffuse and rarely treatable with unsatisfactory long-term survival. Unfortunately, the underlying mechanisms of ER after curative resection and the molecular markers with predictive and prognostic significance have never been identified yet. Recent studies reveal that pyruvate kinase M2 (PKM2) levels were correlated with overall survival and disease-free survival in patients with HCC. The present study was aimed to investigate the correlation between the expression of PKM2 and ER. Our findings demonstrated that not the total PKM2 expression but the nuclear PKM2 expression as an independent risk factor for ER after curative resection, and could be a promising intervention target following curative resection for HCC patients.
Collapse
Affiliation(s)
- Fangtian Fan
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Hongyan Wu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Yancheng Health Vocational and Technical College, Yancheng 224005, China
| | - Zhaoguo Liu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xianbang Hou
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxin Chen
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM), Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM), Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chine-se Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM), Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
27
|
Wu J, Hu L, Chen M, Cao W, Chen H, He T. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: evidence from 16 cohort studies. Onco Targets Ther 2016; 9:4277-88. [PMID: 27478385 PMCID: PMC4951066 DOI: 10.2147/ott.s106508] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose The expression of pyruvate kinase M2 (PKM2) has been linked to tumor formation and invasion. Specifically, the relationship between high PKM2 expression and prognosis has been evaluated in solid tumors of digestive system. However, the prognostic value of PKM2 remains controversial. Methods A literature search of PubMed, Embase, and Cochrane databases was conducted until October 2015. The end point focused on overall survival (OS). The pooled hazard ratio (HR) or odds ratio and the 95% confidence intervals were calculated to correlate PKM2 overexpression with OS and clinicopathological characteristics by employing fixed- or random-effects models, depending on the heterogeneity of the included studies. Results We identified 18 cohorts in 16 studies involving 2,812 patients for this meta-analysis. Overall, the combined HR for OS in all tumor types was 1.74 (1.44–2.11; P<0.001). When stratified by tumor type, the influence of PKM2 expression on poor prognosis was also found in gastric cancer (HR =1.54 [1.08–2.21], P=0.018), esophageal squamous cell carcinoma (HR =1.71 [1.38–2.12], P<0.001), hepatocellular cancer (HR =1.92 [1.52–2.42], P<0.001), biliary cancer (HR =2.11 [1.50–2.95], P<0.001), and oral cancer (HR =3.49 [1.97–6.18], P<0.001), but not in pancreatic ductal adenocarcinoma (HR =1.03 [0.28–3.76], P=0.968). Furthermore, PKM2 overexpression had a negative effect on the late clinical stage of all tumor types except for pancreatic ductal adenocarcinoma. The high density of PKM2 overexpression was significantly associated with some clinical characteristics in different cancer types, such as tumor stage, modal metastasis, and tumor size. Conclusion Our findings revealed significant association of PKM2 overexpression with OS and certain clinicopathological features in solid tumors of digestive system, thereby suggesting that PKM2 might be an indicator of poor prognosis in digestive system cancers.
Collapse
Affiliation(s)
- Jiayuan Wu
- Nutritional Department, the Affiliated Hospital of Guangdong Medical University
| | - Liren Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University
| | - Manyu Chen
- Department of Oncology, the Affiliated Hospital of Guangdong Medical University
| | - Wenjun Cao
- School of Public Health, Guangdong Medical University
| | - Haicong Chen
- Department of Orthopedics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Taiping He
- School of Public Health, Guangdong Medical University
| |
Collapse
|
28
|
Tai WT, Hung MH, Chu PY, Chen YL, Chen LJ, Tsai MH, Chen MH, Shiau CW, Boo YP, Chen KF. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma. Oncotarget 2016; 7:22193-205. [PMID: 26959741 PMCID: PMC5008355 DOI: 10.18632/oncotarget.7923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/23/2016] [Indexed: 01/12/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Meidcal Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Husan Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yin-Pin Boo
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Zhang HS, Zhang FJ, Li H, Liu Y, Du GY, Huang YH. Tanshinone ⅡA inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation. Arch Biochem Biophys 2016; 598:50-6. [PMID: 27040384 DOI: 10.1016/j.abb.2016.03.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) plays a pivotal role in the growth, survival and metabolic reprogramming of cancer cells. Here, we presented for the first time that tanshinone ⅡA inhibited human esophagus cancer cell growth through miR-122-mediated PKM2 down-regulation pathway. Tanshinone ⅡA inhibited cell proliferation and induced cell cycle arrest in S phase in human Ec109 cells. As expected, tanshinone ⅡA down-regulated PKM2 mRNA and protein expression in Ec109 cells. Given these findings, we further investigated microRNAs regulation of PKM2 and confirmed miR-122 for targeting PKM2. Moreover, we found that tanshinone ⅡA-induced up-regulation of miR-122 expression inhibited PKM2 expression in Ec109 cells. Meanwhile, tanshinone ⅡA inhibited proliferation through miR122-medated PKM2 down-regulation. It was demonstrated that the anticancer activity of tanshinone ⅡA was targeted at metabolic regulation of miR-122/PKM2 in human esophagus cancer cells. Taken together, our results revealed tanshinone ⅡA targeting at PKM2-mediated metabolic reprogramming play an important role in inhibition of esophageal cancer cell growth.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China.
| | - Feng-Juan Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Hu Li
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Yang Liu
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Guang-Yuan Du
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Ying-Hui Huang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| |
Collapse
|
30
|
Mohammad GH, Olde Damink SWM, Malago M, Dhar DK, Pereira SP. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One 2016; 11:e0151635. [PMID: 26989901 PMCID: PMC4798246 DOI: 10.1371/journal.pone.0151635] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival.
Collapse
Affiliation(s)
- Goran Hamid Mohammad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Chemistry Department, School of Science, University of Sulaimani, Sulaimanyah, Kurdistan Region, Iraq
| | - S. W. M. Olde Damink
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Massimo Malago
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Dipok Kumar Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| |
Collapse
|
31
|
Lockney NA, Zhang M, Lu Y, Sopha SC, Washington MK, Merchant N, Zhao Z, Shyr Y, Chakravarthy AB, Xia F. Pyruvate Kinase Muscle Isoenzyme 2 (PKM2) Expression Is Associated with Overall Survival in Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer 2015; 46:390-8. [PMID: 26385349 PMCID: PMC7081381 DOI: 10.1007/s12029-015-9764-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Pyruvate kinase muscle isoenzyme 2 (PKM2) is a key enzyme in aerobic glycolysis and is thought to contribute to cancer cell metabolic reprogramming. The aim of this study was to evaluate PKM2 immunohistochemical expression as a potential prognostic biomarker in pancreatic ductal adenocarcinoma (PDAC). METHODS A tissue microarray was constructed using surgical specimens for 115 patients who underwent resections for PDAC, stained with PKM2 antibody, and scored for expression level. Statistical analyses were performed to investigate the association between PKM2 and patient survival, tumor stage, tumor grade, surgical margin status, lymph node ratio, perineural invasion status, or the use of adjuvant chemotherapy. RESULTS Fifty-three percent of tumors had positive PKM2 expression, and 47 % of tumors had negative PKM2 expression. PKM2 expression was associated with overall survival (HR 0.56, p = 0.007) and CA 19-9 levels (p = 0.035), but was not associated with tumor stage, tumor grade, surgical margin status, lymph node ratio, perineural invasion, or adjuvant chemotherapy use. CONCLUSIONS PKM2 expression is associated with overall survival in PDAC. Further studies are warranted to validate the value of PKM2 as a prognostic biomarker and to examine the potential utility of PKM2 in predicting treatment response, as well as a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Natalie A Lockney
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manchao Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Sabrina C Sopha
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - M Kay Washington
- Department of Pathology, Vanderbilt University, Nashville, TN, USA
| | - Nipun Merchant
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Fen Xia
- Department of Radiation Oncology, The Ohio State University College of Medicine, 300 W 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Yu G, Yu W, Jin G, Xu D, Chen Y, Xia T, Yu A, Fang W, Zhang X, Li Z, Xie K. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol Cancer 2015; 14:193. [PMID: 26576639 PMCID: PMC4650283 DOI: 10.1186/s12943-015-0462-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The therapeutic and prognostic value of the glycolytic enzymes hexokinase, phosphofructokinase, and pyruvate kinase (PK) has been implicated in a variety of cancers, while their roles in treatment of and prognosis for hilar cholangiocarcinoma (HC) remain unclear. In this study, we determined the expression of PKM2 in and its impact on biology and clinical outcome of human HC. METHODS The regulation and function of PKM2 in HC pathogenesis was evaluated using human tissues, molecular and cell biology, and animal models, and its prognostic significance was determined according to its impact on patient survival. RESULTS We found that expression of hexokinase 1 and the M2 splice isoform of PK (PKM2) was upregulated in HC tissues and that this expression correlated with tumor recurrence and outcome. PKM2 expression was increased in HC cases with chronic cholangitis as demonstrated by isobaric tags for relative and absolute quantification. High PKM2 expression was highly correlated with high syndecan 2 (SDC2) expression and neural invasion. PKM2 downregulation led to a decrease in SDC2 expression. Treatment with metformin markedly suppressed PKM2 and SDC2 expression at both the transcriptional and posttranscriptional levels and inhibited HC cell proliferation and tumor growth. CONCLUSIONS PKM2 regulates neural invasion of HC cells at least in part via regulation of SDC2. Inhibition of PKM2 and SDC2 expression contributes to the therapeutic effect of metformin on HC. Therefore, PKM2 is an independent prognostic factor and potential therapeutic target for human HC.
Collapse
Affiliation(s)
- Guanzhen Yu
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Wenlong Yu
- Department of Surgery, Eastern Hepatobiliary Hospital, Shanghai, People's Republic of China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Hospital, Shanghai, People's Republic of China
| | - Dongyun Xu
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Ying Chen
- Department of Pathology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Shanghai, 200433, People's Republic of China
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Allan Yu
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Wenzheng Fang
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Xiaoli Zhang
- Department of Pathology, Chinese People's Liberation Army, No 411 Hospital, Shanghai, People's Republic of China
| | - Zhaosheng Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, 200433, People's Republic of China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Yang X, Chen H, Zhu M, Zhu R, Qin B, Fang H, Dai M, Sang A, Liu X. Up-Regulation of PKM2 Relates to Retinal Ganglion Cell Apoptosis After Light-Induced Retinal Damage in Adult Rats. Cell Mol Neurobiol 2015; 35:1175-86. [PMID: 25990228 PMCID: PMC11486339 DOI: 10.1007/s10571-015-0211-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/13/2015] [Indexed: 01/09/2023]
Abstract
Pyruvate kinase isozyme type M2 (PKM2), a key glycolytic enzyme, which is involved in ATP generation and pyruvate production, participates in tumor metabolism, growth, and other multiple cellular processes. However, one attractive biological function of PKM2 is that it translocates to the nucleus and induces cell apoptosis. Recently, increased PKM2 has been found in age-related macular degeneration (AMD), but little is known regarding its function in the AMD pathophysiology. To investigate whether PKM2 participated in retinal degeneration, we performed a light-induced retinal damage model in adult rats. Western blot and immunohistochemistry analysis showed a significant up-regulation of PKM2 in retinal ganglion cells (RGCs) layer (GCL) after light exposure. Immunofluorescent labeling indicated that PKM2 located mainly in RGCs. Co-localization of PKM2 and active caspase-3 as well as TUNEL in RGCs suggested that PKM2 might participate in RGC apoptosis. In addition, the expression patterns of cyclin D1 and phosphorylated extracellular signal-regulated kinase (p-ERK) were parallel with that of PKM2. Furthermore, PKM2, cyclin D1, and active caspase-3 protein expression decreased by intravitreal injection of U0126, a highly selective inhibitor of MAPK/ERK kinase. Collectively, we hypothesized that PKM2 might participate in RGC apoptosis after light-induced retinal damage medicated by p-ERK through cycle re-entry mechanism.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hui Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Manhui Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hongda Fang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ming Dai
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase. Comput Biol Chem 2015; 58:1-8. [DOI: 10.1016/j.compbiolchem.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 01/07/2023]
|
35
|
Zhu H, Yang X, Ding Y, Liu J, Lu J, Zhan L, Qin Q, Zhang H, Chen X, Yang Y, Yang Y, Liu Z, Yang M, Zhou X, Cheng H, Sun X. Recombinant human endostatin enhances the radioresponse in esophageal squamous cell carcinoma by normalizing tumor vasculature and reducing hypoxia. Sci Rep 2015; 5:14503. [PMID: 26412785 PMCID: PMC4585975 DOI: 10.1038/srep14503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the effect of recombinant human endostatin (rh-Endo) in combination with radiation therapy (RT) on esophageal squamous cell carcinoma (ESCC) and explore the potential mechanisms. ECA109-bearing nude mice were administered RT and/or rh-Endo treatment. Tumor volume, survival, hypoxia and vascular parameters were recorded during the treatment schedule and follow-up as measures of treatment response. ESCC cell lines (ECA109 and TE13) and human umbilical vein endothelial cells (HUVECs) were developed to investigate the outcomes and toxicities of rh-Endo and RT in vitro. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were also evaluated. In vivo studies of ECA109-bearing xenografts showed that rh-Endo improved the radioresponse, with normalization of tumor vasculature and a reduction in hypoxia. In vitro studies showed that rh-Endo did not radiosensitize ESCC cell lines but did affect endothelial cells with a time- and dose-dependent manner. Studies of the molecular mechanism indicated that the improved radioresponse might be due to crosstalk between cancer cells and endothelial cells involving HIF and VEGF expression. Our data suggest that rh-Endo may be a potential anti-angiogenic agent in ESCC especially when combined with RT. The improved radioresponse arises from normalization of tumor vasculature and a reduction in hypoxia.
Collapse
Affiliation(s)
- Hongcheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqiong Ding
- Department of Radiation Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou 213001, China
| | - Jia Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liangliang Zhan
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaochen Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheming Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Meiling Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou 213001, China
| | - Hongyan Cheng
- Department of General Internal Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, Gu J, Fu L. High Expression of Pyruvate Kinase M2 is Associated with Chemosensitivity to Epirubicin and 5-Fluorouracil in Breast Cancer. J Cancer 2015; 6:1130-9. [PMID: 26516361 PMCID: PMC4615349 DOI: 10.7150/jca.12719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pyruvate kinase M2 (PKM2) is the key enzyme in the Warburg effect, and it was recently reported to be involved in the metabolic pathways of chemotherapeutic drugs. However, the role of PKM2 in breast cancer and its influence in the sensitivity to front-line anticancer drugs remains unclear. METHODS In this study, we examined the correlation between the expression of PKM2 and the sensitivity of primary breast cancer cells to anticancer drugs. PKM2 expression was studied by immunohistochemistry using biopsy samples of 296 patients diagnosed with invasive breast carcinoma, and the collagen gel droplet embedded culture-drug sensitivity tests (CD-DST) was conducted to all the patients to detect in vitro chemosensitivity after surgery. RESULTS We found high PKM2 expression was significantly associated with in vitro chemosensitivity to epirubicin (EPI) (P=0.019) and 5-fluorouracil (5-Fu) (P=0.009) in breast cancer patients. Then we used a small group of neoadjuvant chemotherapy cases to confirm that the higher PKM2 expression, the better pathological response to therapy was obtained in patients treated with EPI-based or EPI plus 5-Fu chemotherapy regimens. Although univariate and multivariate analysis indicated that high PKM2 was a poor independent predictor of progression free survival (PFS) and overall survival (OS) in breast cancer, patients with PKM2 high expression who received EPI-based or EPI plus 5-Fu chemotherapy were found to have a longer PFS (P=0.003, P=0.013) and OS (P=0.003, P=0.004) than patients treated with non-EPI/5-Fu-based regimens, respectively. CONCLUSIONS Our findings confirmed the poor prognosis of high PKM2 expression in breast cancer patients and revealed the predictive value of high PKM2 in the therapeutic response to EPI and 5-Fu. Moreover, our results provide the guidance of individual treatment for breast cancer patients who are foreboded a poor prognosis by the presence of high PKM2 status.
Collapse
Affiliation(s)
- Yang Lin
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Feng Lv
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Fangfang Liu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaojing Guo
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Yu Fan
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Feng Gu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jun Gu
- 2. Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, United States
| | - Li Fu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| |
Collapse
|
37
|
Zhang X, Xu Y, He C, Guo X, Zhang J, He C, Zhang L, Kong M, Chen B, Zhu C. Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. J Surg Oncol 2015; 111:834-9. [PMID: 25919911 DOI: 10.1002/jso.23888] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES CCAT2, a novel long non-coding RNAs (lncRNAs), is found to promote the metastasis and invasion of colon, lung, and breast cancers. This study aimed to investigate the level of CCAT2 in esophageal squamous cell carcinoma (ESCC) and to elucidate its clinical significance. METHODS The expression level of CCAT2 and the status of MYC amplification were examined in 229 ESCC samples using quantitative real- time PCR. RESULTS CCAT2 was upregulated in ESCC tissues, especially in cases with lymph node metastasis (LNM), advanced TNM stages, and MYC amplification. Furthermore, the level of CCAT2 was positively correlated with TNM stages, LNM, and the number of positive lymph nodes. High CCAT2 expression and MYC amplification were significantly associated with TNM stages and LNM. Survival analyses revealed that high CCAT2 expression and MYC amplification were significantly associated with poorer overall survival in ESCC patients. Furthermore, patients with high CCAT2 expression and MYC amplification had a 2.199-fold increased risk of death compared with those with low CCAT2 expression and MYC non-amplification. CONCLUSIONS Our study provides the first evidence associating CCAT2 expression and poor survival in ESCC. CCAT2 may be a prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu W, Lu SX, Li M, Zhang C, Liu LL, Fu J, Jin JT, Luo RZ, Zhang CZ, Yun JP. Pyruvate kinase M2 prevents apoptosis via modulating Bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget 2015; 6:6570-83. [PMID: 25788265 PMCID: PMC4466635 DOI: 10.18632/oncotarget.3262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) contributes to the Warburg effect, a hallmark of cancer. We showed that PKM2 levels were correlated with overall survival (hazard ration = 1.675, 95% confidence interval: 1.389-2.019, P < 0.001) and disease-free survival (hazard ration = 1.573, 95% confidence interval: 1.214-2.038, P < 0.001) in a cohort of 490 patients with HCC. The correlations were further validated in an independent cohort of 148 HCC patients. Multivariate analyses revealed that PKM2 was an independent indicator of poor outcome in HCC. The knockdown of PKM2 in HCC cells inhibited cell proliferation and induced apoptosis in vitro and in vivo. Bim siRNA markedly abolished the PKM2-depletion-induced apoptosis. PKM2 depletion decreased the degradation of Bim. In clinical samples, PKM2 expression was reversely correlated with Bim expression. Combination of PKM2 and Bim levels had the best prognostic significance. We suggest that PKM2 serves as a promising biomarker for poor prognosis of patients with HCC and its knockdown induces HCC apoptosis by stabilizing Bim.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Bcl-2-Like Protein 11
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Disease-Free Survival
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Nude
- Multivariate Analysis
- Protein Stability
- Proteolysis
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- RNAi Therapeutics
- Signal Transduction
- Thyroid Hormones/genetics
- Thyroid Hormones/metabolism
- Time Factors
- Transfection
- Xenograft Model Antitumor Assays
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Wen Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Min Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chao Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jie-Tian Jin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
39
|
Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS One 2015; 10:e0118663. [PMID: 25738776 PMCID: PMC4349452 DOI: 10.1371/journal.pone.0118663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM2 resulted in high PKM2 expression in tumors, providing a great advantage to tumor cells. However, this traditional view was challenged by two recent studies; one study claimed that this isoform switch does not occur during the Warburg effect; the other study asserted that the isoform switch is tissue-specific. Here, we re-analyzed the RNA sequencing data of 25 types of human tumors from The Cancer Genome Atlas Data Portal, and confirmed that PKM2 was the major isoform in the tumors and was highly elevated in addition to the entire PKM gene. We further demonstrated that the expression level of PKM1 significantly declined even though there was substantially increased expression of the entire PKM gene. The proportion of PKM1 in total transcript variants also significantly declined in tumors but the proportion of PKM2 did not change accordingly. Therefore, we conclude that the isoform switch of PKM1 does indeed occur, but it switches to other isoforms rather than PKM2. Considering the change in the expression levels of PKM1, PKM2 and the entire PKM gene, we propose that the upregulation of PKM2 is primarily due to elevated transcriptional levels of the entire PKM gene, instead of the isoform switch.
Collapse
|
40
|
Lincet H, Icard P. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 2014; 34:3751-9. [PMID: 25263450 DOI: 10.1038/onc.2014.320] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/23/2014] [Accepted: 08/23/2014] [Indexed: 12/16/2022]
Abstract
Cancer cells enhance their glycolysis, producing lactate, even in the presence of oxygen. Glycolysis is a series of ten metabolic reactions catalysed by enzymes whose expression is most often increased in tumour cells. HKII and phosphoglucose isomerase (PGI) have mainly an antiapoptotic effect; PGI and glyceraldehyde-3-phosphate dehydrogenase activate survival pathways (Akt and so on); phosphofructokinase 1 and triose phosphate isomerase participate in cell cycle activation; aldolase promotes epithelial mesenchymal transition; PKM2 enhances various nuclear effects such as transcription, stabilisation and so on. This review outlines the multiple non-glycolytic roles of glycolytic enzymes, which are essential for promoting cancer cells' survival, proliferation, chemoresistance and dissemination.
Collapse
Affiliation(s)
- H Lincet
- 1] Locally Aggressive Cancer Biology and Therapy Unit (BioTICLA), Caen, France [2] Normandie University, Caen, France [3] François-Baclesse Centre for Cancer, Caen, France
| | - P Icard
- 1] Locally Aggressive Cancer Biology and Therapy Unit (BioTICLA), Caen, France [2] Ecole Polytechnique, Laboratoire d'Informatique, Palaiseau, France
| |
Collapse
|
41
|
Li W, Xu Z, Hong J, Xu Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: association with survival. Med Oncol 2014; 31:118. [PMID: 25064730 DOI: 10.1007/s12032-014-0118-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
Enhanced glycolysis is a common trait of many types of human cancers. This study was to detect the expression pattern of three regulatory enzymes during glycolysis in esophageal squamous cell carcinoma (ESCC) and to investigate their correlation with patients' outcome based on banked pathology material. A total of 141 surgically resected specimens of primary ESCC patients without prior treatments were retrospectively recruited from the First Affiliated Hospital of Wenzhou Medical College Hospital from 2007 to 2009. Expression of HK1, PFKB, and PKM2 in ESCC specimens was analyzed by immunohistochemical staining and Western blotting analysis. HK1-shRNA was used to knock down HK1 expression in ESCC cells, and the functional significance was assessed by CCK8 assay. It was found that the expression of two glycolytic enzymes, HK1 and PKM2, was associated with disease progression, invasion, and poor survival of patients with ESCC. Silence of HK1-inhibited cell proliferation in vitro and suppressed phospho-S6 kinase expression. Our findings suggest that activation of key enzymes in glycolysis might serve as potential therapeutic targets and/or prognostic factors for patients with ESCC.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, Zhejiang, China,
| | | | | | | |
Collapse
|
42
|
Abstract
Pyruvate kinase converts phosphoenolpyruvate to pyruvate, catalyzing the rate-limiting step of glycolysis. The M1 isoenzyme of pyruvate kinase (PKM1) is found in adult tissues; whereas, PKM2 is a splicesome variant found in embryonic and cancer cells. PKM2 expression in malignant cells is a result of the tumor microenvironment and is responsible for maintaining a glycolytic phenotype. PKM2 has other nonmetabolic functions in malignant cells, including transcriptional coactivation and protein kinase activity. PKM2 activators have antitumor properties by inducing tetramerization of two PKM2 dimers causing PKM2 to function like PKM1. Restoring PKM2 to PKM1-like levels of activity causes reversal of the Warburg effect in cancer cells. PKM2 activators have therapeutic potential in the treatment of cancer and other metabolic diseases.
Collapse
Affiliation(s)
- Steven L Warner
- Tolero Pharmaceuticals, Inc., 2975 W Executive Parkway, Suite 320, Lehi, UT 84043, USA
| | | | | |
Collapse
|
43
|
Yang P, Li Z, Fu R, Wu H, Li Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal 2014; 26:1853-62. [PMID: 24686087 DOI: 10.1016/j.cellsig.2014.03.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/15/2014] [Accepted: 03/15/2014] [Indexed: 01/10/2023]
Abstract
Understanding the mechanisms of colorectal cancer (CRC) metastatic progression is essential to reducing its morbidity and mortality. Pyruvate kinase (PK) catalyses the final step of glycolysis and has been identified as a critical regulator of glucose consumption. However, the mechanisms and roles of PKM1 and PKM2 in the regulation of CRC cell migration and cell adhesion remain elusive. Here, we report that PKM2 rather than PKM1 drives CRC cell migration and cell adhesion, whereas PKM attenuation reverses these phenomena. Furthermore, the overexpression of PKM2 significantly increases the expression of N-cadherin, MMP-2, MMP-9, STAT3, Snail-2, pFAK and active β1-integrin, while E-cadherin expression is suppressed. More importantly, the results indicated that PKM2 overexpression facilitates STAT3 nuclear translocation, and it is required for PKM2 function in the regulation of migration and adhesion associated signalling. In addition, the dimeric form of PKM2, which lacks the pyruvate kinase activities but possesses protein kinase activity, is critical for CRC cell migration and cell adhesion. Overall, this study suggests that PKM2 overexpression promotes CRC cell migration and cell adhesion by regulating STAT3-associated signalling and that PKM2 may serve as a therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
44
|
Monoallelic loss of tumor suppressor GRIM-19 promotes tumorigenesis in mice. Proc Natl Acad Sci U S A 2013; 110:E4213-22. [PMID: 24145455 DOI: 10.1073/pnas.1303760110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gene-associated with retinoid-interferon induced mortality-19 (GRIM-19), a STAT3-inhibitory protein, was isolated as a growth-suppressive gene product using a genome-wide expression knockdown screen. We and others have shown a loss of expression and occurrence of mutations in the GRIM-19 gene in a variety of primary human cancers, indicating its potential role as tumor suppressor. To help investigate its role in tumor development in vivo, we generated a genetically modified mouse in which Grim-19 can be conditionally inactivated. Deletion of Grim-19 in the skin significantly increased the susceptibility of mice to chemical carcinogenesis, resulting in development of squamous cell carcinomas. These tumors had high Stat3 activity and an increased expression of Stat3-responsive genes. Loss of Grim-19 also caused mitochondrial electron transport dysfunction resulting from failure to assemble electron transport chain complexes and altered the expression of several cellular genes involved in glycolysis. Surprisingly, the deletion of a single copy of the Grim-19 gene was sufficient to promote carcinogenesis and formation of invasive squamous cell carcinomas. These observations highlight the critical role of GRIM-19 as a tumor suppressor.
Collapse
|