1
|
Deng J, Qin JH, Li X, Tao D, Feng Y. Establishment and drug resistance characterization of paired organoids using human primary colorectal cancer and matched tumor deposit specimens. Hum Cell 2024; 38:13. [PMID: 39495391 PMCID: PMC11534897 DOI: 10.1007/s13577-024-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
Tumor deposits (TDs) represent a specific form tumor metastasis observed in colorectal cancer (CRC). The lack of successfully established cell lines for TDs, as well as the molecular mechanisms by which TDs occur remain largely unknown. Here, we established paired CRC organoids, including a human primary cancer organoid and its TD organoid, from a 46-year-old male patient with CRC. Further analysis revealed that, compared with primary tumor-derived cells, TD-derived cells exhibited enhanced proliferative, invasive and metastatic capabilities, and increased expression of stemness-related proteins. Furthermore, the present findings also demonstrated that TD-derived cells were more resistant to oxaliplatin or 5-FU. Transcriptomic profiling and qPCR revealed that TD-derived cells exhibited more alterations in fatty acid metabolism signaling and enhanced lipid synthesis ability compared to primary tumor-derived cells. Inhibition of lipid synthesis markedly decreased resistance to oxaliplatin in TD-derived cells. Taken together, the paired organoids established using CRC primary tumor and its TD specimens will provide valuable tools to study tumorigenicity, metastasis and chemoresistance in CRC. Notably, these models will provide novel insights to study tumor heterogeneity and lipid metabolism in CRC.
Collapse
Affiliation(s)
- Jiao Deng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jerry H Qin
- Wuhan Britain-China Senior High School, Wuhan, 430030, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongdong Feng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
2
|
Abstract
Abstract
Matrix metalloproteinase-2 (MMP-2) is a gelatinase and is involved in multiple steps of the metastatic cascade. More than a decade ago an increased expression of MMP-2 in tumour cells or higher serum levels was reported to be a prognostic biomarker for a lower disease-free and overall survival rate. In recent years new evidence has indicated that MMP-2 has an important role in the tumour ecosystem. It is one of the many players in the onco-sphere, involved in interacting between tumour cells, host cells and the microenvironment. It plays a role in the dissemination of tumour cells, the epithelial–mesenchymal and mesenchymal–epithelial transitions, the formation of the pre-metastatic and metastatic niches, dormancy of tumour cells and modulating the immune system. The aim of this review is to highlight these multiple roles in the metastatic cascade and how many signalling pathways can up or down-regulate MMP-2 activity in the different stages of cancer progression and the effect of MMP-2 on the onco-sphere. Research in head and neck cancer is used as an example of these processes. The use of non-specific MMP inhibitors has been unsuccessful showing only limited benefits and associated with high toxicity as such that none have progressed past Phase III trials. Preclinical trials are undergoing using antibodies directed against specific matrix metalloproteinases, these targeted therapies may be potentially less toxic to the patients.
Collapse
Affiliation(s)
- Nigel P. Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine , University Finis Terrae , Santiago , Chile
- Department of Haematology , Hospital de Carabineros de Chile , Santiago , Chile
| |
Collapse
|
3
|
Liu Z, Cao Y, Guo X, Chen Z. The Potential Role of Timosaponin-AIII in Cancer Prevention and Treatment. Molecules 2023; 28:5500. [PMID: 37513375 PMCID: PMC10386027 DOI: 10.3390/molecules28145500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known medicinal plant for more than two thousand years, has demonstrated its effectiveness against cancer. Timosaponin-AIII (TSAIII), as a bioactive steroid saponin isolated from A. asphodeloides, has shown multiple pharmacological activities and has been developed as an anticancer agent. However, the molecular mechanisms of TSAIII in protecting against cancer development are still unclear. In this review article, we provide a comprehensive discussion on the anticancer effects of TSAIII, including proliferation inhibition, cell cycle arrest, apoptosis induction, autophagy mediation, migration and invasion suppression, anti-angiogenesis, anti-inflammation, and antioxidant effects. The pharmacokinetic profiles of TSAII are also discussed. TSAIII exhibits efficacy against cancer development. However, hydrophobicity and low bioavailability may limit the application of TSAIII. Effective delivery systems, particularly those with tissue/cell-targeted properties, can also significantly improve the anticancer effects of TSAIII.
Collapse
Affiliation(s)
- Zhaowen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yifan Cao
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
4
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
5
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
6
|
Niu Y, Yang W, Qian H, Sun Y. Intracellular and extracellular factors of colorectal cancer liver metastasis: a pivotal perplex to be fully elucidated. Cancer Cell Int 2022; 22:341. [DOI: 10.1186/s12935-022-02766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetastasis is the leading cause of death in colorectal cancer (CRC) patients, and the liver is the most common site of metastasis. Tumor cell metastasis can be thought of as an invasion-metastasis cascade and metastatic organotropism is thought to be a process that relies on the intrinsic properties of tumor cells and their interactions with molecules and cells in the microenvironment. Many studies have provided new insights into the molecular mechanism and contributing factors involved in CRC liver metastasis for a better understanding of the organ-specific metastasis process. The purpose of this review is to summarize the theories that explain CRC liver metastasis at multiple molecular dimensions (including genetic and non-genetic factors), as well as the main factors that cause CRC liver metastasis. Many findings suggest that metastasis may occur earlier than expected and with specific organ-anchoring property. The emergence of potential metastatic clones, the timing of dissemination, and the distinct routes of metastasis have been explained by genomic studies. The main force of CRC liver metastasis is also thought to be epigenetic alterations and dynamic phenotypic traits. Furthermore, we review key extrinsic factors that influence CRC cell metastasis and liver tropisms, such as pre-niches, tumor stromal cells, adhesion molecules, and immune/inflammatory responses in the tumor microenvironment. In addition, biomarkers associated with early diagnosis, prognosis, and recurrence of liver metastasis from CRC are summarized to enlighten potential clinical practice, including some markers that can be used as therapeutic targets to provide new perspectives for the treatment strategies of CRC liver metastasis.
Collapse
|
7
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
8
|
An integrated approach for identification of a panel of candidate genes arbitrated for invasion and metastasis in oral squamous cell carcinoma. Sci Rep 2021; 11:6208. [PMID: 33739025 PMCID: PMC7973753 DOI: 10.1038/s41598-021-85729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is known for its aggressiveness associated with poor prognosis. The molecular mechanisms underlying the invasion and metastasis are still poorly understood. An improved understanding of these mechanisms shall precede the development of new diagnostic tools and targeted therapies. We report an integrated approach using bioinformatics to predict candidate genes, coupled with proteomics and immunohistochemistry for validating their presence and involvement in OSCC pathways heralding invasion and metastasis. Four genes POSTN, TNC, CAV1 and FSCN1 were identified. A protein–protein interaction network analysis teamed with pathway analysis led us to propose the role of the identified genes in invasion and metastasis in OSCC. Further analyses of archived FFPE blocks of various grades of oral cancer was carried out using TMT-based mass spectrometry and immunohistochemistry. Results of this study expressed a strong communiqué and interrelationship between these candidate genes. This study emphasizes the significance of a molecular biomarker panel as a diagnostic tool and its correlation with the invasion and metastatic pathway of OSCC. An insight into the probable association of CAF's and these biomarkers in the evolution and malignant transformation of OSCC further magnifies the molecular-biological spectrum of OSCC tumour microenvironment.
Collapse
|