1
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma's resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2569-2585. [PMID: 39476245 DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma (GB) is one of the most fatal CNS malignancies, and its high resistance to therapy and poor outcomes have made it one of the primary challenges in oncology. Resistance to standard therapy, i.e., radio-chemotherapy with temozolomide, is one of the principal causes of the poor prognostic outcomes of GB. Finding the molecular basis of GB resistance to therapy is key to creating effective solution approaches. The general problem of GB resistance is supervised by cancer suppressive protein, p53, and has become a very special interest in molecular research in recent decades. The principal aim of this manuscript is to perform a comprehensive survey on the complex network of interactions developed by p53 with non-coding RNAs (ncRNA) in the context of GB resistance. The present article details the functional aspects of p53 as a cellular stress response protein, including its roles in apoptosis, cell cycle regulation, and DNA repair in glioblastoma (GB), along with the disruption of p53 and its involvement in chemoresistance (CR). It also highlights several classes of ncRNAs, namely microRNAs, long ncRNAs, and circular RNAs, that manipulate p53 signaling in GB-CR. The article likewise explains how disruption in the expression of these ncRNAs can promote GB-CR and how it interacts with essential cellular functions, such as proliferation, apoptosis, and DNA repair. The manuscript also describes the potential of targeting p53 and ncRNAs with their diagnostic and prognostic potential as novel promising therapeutics for GB. Nevertheless, ncRNA-based biomarkers still present challenges for their suitability in GB resistance. However, modern research continues to discover novel prediction targets, potentially enhancing patient outcomes and therapeutic options. Therefore, the neutralization of this intricate regulatory network of GB resistance might have a primary clinical effect in fighting GB resistance therapy and thus might lead to a substantial increase in patient survival and quality of life.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, 76321, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Moaddey Alfarhan
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Jizan, Saudi Arabia
| | - Fahad Hassan Baali
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Cadet MJ. Osteomyelitis: Considerations for nursing practice. Nursing 2025; 55:28-35. [PMID: 39980114 DOI: 10.1097/nsg.0000000000000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
ABSTRACT Osteomyelitis is characterized by inflammation of the bone tissue, typically caused by microorganisms such as bacteria. It can be challenging to treat and may lead to unnecessary antibiotic therapies. Prompt identification of osteomyelitis and implementation of effective treatments are necessary to eradicate this infection. This article discusses the pathophysiology, clinical presentation, diagnosis, and nursing management of osteomyelitis, focusing on native bone infection.
Collapse
Affiliation(s)
- Myriam Jean Cadet
- At Hostos Community College in New York, N.Y., Myriam Cadet is an Assistant Professor
| |
Collapse
|
3
|
Yang M, Xie J, Su Y, Xu K, Wen P, Wan X, Yu H, Yang Z, Liu L, Xu P. Genetic causality between insomnia and specific orthopedic conditions: Insights from a two-sample Mendelian randomization study. Exp Gerontol 2025; 200:112682. [PMID: 39800125 DOI: 10.1016/j.exger.2025.112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
OBJECTIVE To investigate the genetic causality for the insomnia and common orthopedic diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), osteoporosis (OP), and gout (GT). METHODS The genome-wide association study (GWAS) summary data on insomnia were obtained from a published study, while the GWAS summary data on RA, AS, OP, and GT were sourced from the FinnGen consortium. We utilized the TwoSampleMR package of the R software (version 4.1.2) to conduct a two-sample Mendelian randomization (MR) analysis. Our primary method of analysis was the random-effects inverse variance weighted (IVW) approach. Subsequently, we conducted a series of sensitivity analyses for the MR analysis. RESULTS The MR analysis revealed a positive genetic causal relationship between insomnia and RA (P = 0.016, odds ratio [OR] 95 % confidence interval [CI] = 1.112 [1.020-1.212]). However, no significant genetic causal relationship was observed between insomnia and AS (P = 0.194, OR 95 % CI = 1.121 [0.944-1.331]), OP (P = 0.788, OR 95 % CI = 1.016 [0.904-1.142]), and GT (P = 0.757, OR 95 % CI = 1.018 [0.912-1.136]). The MR analysis did not exhibit heterogeneity, horizontal pleiotropy, outlier effects, or dependence on a single SNP, and demonstrated normal distribution, which guaranteed the robustness of the results. CONCLUSION The results of this study suggest that insomnia may be a significant risk factor for RA, and controlling insomnia may represent a promising strategy for preventing RA. While insomnia was not observed to be associated with AS, OP, and GT at the genetic level, other levels of association cannot be excluded.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China
| | - Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China
| | - Hui Yu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China
| | - Zhi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
4
|
Sadique Hussain M, Gupta G, Ghaboura N, Moglad E, Hassan Almalki W, Alzarea SI, Kazmi I, Ali H, MacLoughlin R, Loebenberg R, Davies NM, Kumar Singh S, Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025; 565:119983. [PMID: 39368685 DOI: 10.1016/j.cca.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs) have become essential contributors to advancing and treating lung cancers (LCs). The development of liquid biopsies that utilize exosomal ncRNAs (exo-ncRNAs) offers an encouraging method for diagnosing, predicting, and treating LC. This thorough overview examines the dual function of exo-ncRNAs as both indicators for early diagnosis and avenues for LC treatment. Exosomes are tiny vesicles secreted by various cells, including cancerous cells, enabling connection between cells by delivering ncRNAs. These ncRNAs, which encompass circular RNAs, long ncRNAs, and microRNAs, participate in the modulation of gene expression and cellular functions. In LC, certain exo-ncRNAs are linked to tumour advancement, spread, and treatment resistance, positioning them as promising non-invasive indicators in liquid biopsies. Additionally, targeting these ncRNAs offers potential for innovative treatment approaches, whether by suppressing harmful ncRNAs or reinstating the activity of tumour-suppressing ones. This review emphasizes recent developments in the extraction and analysis of exo-ncRNAs, their practical applications in LC treatment, and the challenges and prospects for translating these discoveries into clinical usage. Through this detailed examination of the current state of the art, we aim to highlight the significant potential of exo-ncRNAs for LC diagnostics and treatments.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Limited, H91HE94, Galway, Ireland
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Neal M Davies
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
5
|
Guo Z, Yang J, Li C, Tang X, Liu J. Zoledronic Acid Regulates Osteoclasts via miR-483-5p in the BRONJ. Oral Dis 2025. [PMID: 39760140 DOI: 10.1111/odi.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVES Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe complication of bisphosphonate therapy, with unclear mechanisms. This study investigates the regulatory impact of zoledronic acid (ZOL) on osteoclasts and microRNA (miRNA) expression. MATERIALS AND METHODS Raw264.7 cells and bone marrow-derived macrophages (BMMs) were used to assess ZOL's effects on proliferation and apoptosis. miRNA array analysis was performed during osteoclastogenesis with ZOL treatment. The role of miR-483-5p was examined using miR-mimics and miR-inhibitors. A rat BRONJ model was established for in vivo validation. RESULTS A concentration of 2 μM ZOL, which did not affect cell proliferation or apoptosis, was used in subsequent experiments. ZOL altered the expression of 64 miRNAs (39 upregulated, 25 downregulated). miR-483-5p mimics alleviated ZOL-induced inhibition of osteoclastogenesis, actin ring formation, bone resorption, and differentiation marker expression, whereas inhibitors enhanced these effects. In vivo, Ago-miR-483-5p promoted wound healing in the BRONJ model, while Antago-miR-483-5p impaired it. CONCLUSIONS ZOL modulates osteoclast function in BRONJ through miR-483-5p inhibition. miR-483-5p may serve as a novel therapeutic target for BRONJ treatment, providing new insights into managing this complication.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiajin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiufa Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyuan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Xu H, Su J, Chen X, Li J, Li Z, Zheng N, Yu R, Li X, Song Y, Li J, Xu F, Li C, Fei X, Du W, Yu Q. Identification of hsa_circ_0076957 and miR-4512-targeted COL19A1 as regulators in clopidogrel resistance among stable coronary heart disease patients through comprehensive circRNA and miRNA analysis. Eur J Pharmacol 2025; 986:177156. [PMID: 39615866 DOI: 10.1016/j.ejphar.2024.177156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Clopidogrel resistance (CR) increases the risk of atherothrombotic events. Emerging evidence suggests that circRNAs may influence pharmacodynamic responses to clopidogrel. METHODS A total of 25 CR and 25 non-clopidogrel resistance (NCR) patients were enrolled. To identify circRNAs and miRNAs associated with CR, a microarray analysis was performed on RNA samples from 5 CR to 5 NCR patients. Based on the 10 most dysregulated circRNAs, a circRNA-miRNA network was constructed to explore target interactions. Next, the expression of selected circRNAs and their targeted mRNAs was measured, and their diagnostic value for CR was evaluated. Through joint analysis, the candidate miRNAs were identified and verified by RT‒PCR. Finally, after THLE-2 cells were cultivated and transfected with plasmids, the interactions among circ_007695, miR-4512 and COL19A1 were detected. RESULTS Our present study revealed circRNA and miRNA microarray expression profiles in CR and NCR patients and constructed a circRNA‒miRNA network. Moreover, in the CR group, hsa_circ_0076837, hsa_circ_0057714, and hsa_circ_0076957 were downregulated, and the mRNA expression of AOX1 and COL19A1 was also lower in these CR patients. ROC curve analysis indicated that hsa_circ_0057714 (targeting AOX1) and hsa_circ_0076957 (targeting COL19A1) may serve as reliable biomarkers for distinguishing CR. Furthermore, we revealed that the level of miR-4512 was greater in CR and circ-0076957 could regulate COL19A1 expression by targeting miR4512 in THLE-2 cells. CONCLUSION These findings highlight hsa_circ_0057714 and hsa_circ_0076957 as novel biomarkers for CR and suggest that circ-0076957 may regulate COL19A1 expression by targeting miR-4512, providing insights that could improve management of clopidogrel resistance in CAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jia Su
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Zhengwei Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Nan Zheng
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Ruoyan Yu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaojing Li
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yudie Song
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Fan Xu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Cui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaohong Fei
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Weiping Du
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Wang Z, Jin X, Yong X. Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 39743840 DOI: 10.1080/10255842.2024.2448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. This study established a 11-lncRNAs prognostic signature. Differential gene expression analysis, univariate and multivariate Cox regression analyses and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to identify prognostic ferroptosis-related genes and establish a nomogram model of risk score. Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis were used to evaluate the prognostic accuracy of the model in the TCGA-GBM cohort. To verify the expression of these signatures, we analyzed the expression levels of three lncRNAs (AGAP2-AS1, OSMR-AS1, UNC5B-AS1) in LN229 and U87 cells. The ROC analysis showed that the area under curve (AUC) of this signature is 0.814, suggesting that it has a promising performance on GBM prognostic prediction. Kaplan-Meier analysis showed that the survival rate of GBM patients in high-risk group was significantly lower than low-risk group, and the performance of this signature on GBM prognostic prediction was superior to conventional clinicopathological factors. Further qRT-PCR experiment also confirmed our prediction of lncRNA signatures. These ferroptosis-related lncRNAs might be therapeutic targets for glioblastoma, and targeting these lncRNAs can also improve the efficacy of immunotherapy, especially immune checkpoint inhibitors. Mechanistically, these findings might attribute to N6-methyladenosine (m6A) mRNA modification on lncRNAs.
Collapse
Affiliation(s)
- Zhaochen Wang
- Department of Neurosurgery, Northwest University Xi'an No1 Hospital, Xi'an, China
| | - Xiao Jin
- The Personnel Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoli Yong
- Department of Neurology, Chang'An Hospital, Economic and Technological Development District, Xi'an, China
| |
Collapse
|
8
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Maqbool M, Hussain MS, Shaikh NK, Sultana A, Bisht AS, Agrawal M. Noncoding RNAs in the COVID-19 Saga: An Untold Story. Viral Immunol 2024; 37:269-286. [PMID: 38968365 DOI: 10.1089/vim.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Mangalore, India
| | - Ajay Singh Bisht
- Shri Guru Ram Rai University School of Pharmaceutical Sciences, Dehradun, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, India
| |
Collapse
|
11
|
Cheng T, Hou JL, Han ZY, Geng XL, Zhang YC, Fan KY, Liu L, Zhang HY, Huo YH, Li XF, Zhang SX. Genetically determined type 1 diabetes mellitus and risk of osteoporosis. Exp Gerontol 2024; 191:112434. [PMID: 38636571 DOI: 10.1016/j.exger.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed. METHODS T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results. RESULTS Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust. CONCLUSIONS This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Jia-Lin Hou
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zi-Yi Han
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Lei Geng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yao-Chen Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ke-Yi Fan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Liu Liu
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yue-Hong Huo
- Department of Rheumatology, The Fifth People's Hospital of Datong, Datong, Shanxi Province, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
12
|
Pant K, Sharma A, Menon SV, Ali H, Hassan Almalki W, Kaur M, Deorari M, Kazmi I, Mahajan S, Kalra H, Alzarea SI. Exploring ncRNAs in epilepsy: From oxidative stress regulation to therapy. Brain Res 2024; 1841:149089. [PMID: 38880410 DOI: 10.1016/j.brainres.2024.149089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.
Collapse
Affiliation(s)
- Kumud Pant
- Graphic Era (Deemed to be University), Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Aanchal Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali 140307, Punjab, India
| | - Soumya V Menon
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
13
|
Palo N, Ray B, Lakhanpal M, Jeyaraman M, Choudhary GN, Singh A. Role of STIMULAN in chronic osteomyelitis-A randomised blinded study on 95 patients comparing 3 antibiotic compositions, bead quality, forming & absorption time. J Clin Orthop Trauma 2024; 52:102426. [PMID: 38766388 PMCID: PMC11101677 DOI: 10.1016/j.jcot.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Chronic Osteomyelitis is a well-known clinical entity affecting patients holistically and presents with multiple treatment challenges. Local antibiotic delivery with biodegradable drug carriers has shown promising results. Materials and methods Prospective multicenter study performed at 2 centers from November 2021 to January 2023 on 95 osteomyelitis patients treated with surgical debridement & STIMULAN™ for local antibiotic delivery. Patients were randomized into 3 groups. Authors compared antibiotic combinations, bead quality, bead setting, and resorption time for calcium sulfate beads- STIMULAN™. Additionally, organisms isolated, WBC Turnover time, Hypersensitivity Reactions, Recurrence, and Revision Rates were documented. Results 95 patients underwent surgical debridement and STIMULAN™ bead application for chronic osteomyelitis. The proximal 1/3rd tibia was commonly affected. The most common symptoms were sinus and pus discharge in 96.84 % & 86.31 % of patients respectively (p < 0.001). Staphylococcus aureus & MRSA were isolated in 37.8 % & 29.4 % of the patient's wound culture respectively. Bead setting time in Descending order was Group 3 > Group 2 > Group 1 (p < 0.001). Bead setting first in Group 1 followed by Group 3 & 2. On compression, Group-1 beads withstood maximum compression forces & had smooth even bead surfaces. On radiographs, 1/3rd bead volume in ascending order was Group 3 > Group 2 > Group 1 (p < 0.001). 2/3rd reduction in ascending order was Group 3 > Group 2 > Group 1. Complete bead absorption was earliest seen in Group 3 followed by Group 2 & Group 1 (p < 0.001). Recurrence in 2 patients (Group 2) at 6 weeks. Revision rate: 2.10 %. There were no incidences of hypersensitivity. Suture removal was done at 16 ± 2 days. Conclusion STIMULAN™ combination with tobramycin, vancomycin, and gentamycin is stable, and forms uniform beads with predictable drug elution & bead resorption with negligible side effects. A mixture with higher liquid content sets later, forms softer beads, and resorbs earlier.
Collapse
Affiliation(s)
- Nishit Palo
- Post Graduate Department of Orthopedics, Santosh Medical College & Hospital, Ghaziabad, Uttar Pradesh, India
| | - Binayak Ray
- Department of Orthopaedics, All India Institute of Medical Sciences, Kalyani, Kolkata, India
| | - Mahima Lakhanpal
- Post Graduate Department of Anesthesiology, Santosh Medical College & Hospital, Ghaziabad, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College & Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Govind Narayan Choudhary
- Post Graduate Department of Orthopedics, Santosh Medical College & Hospital, Ghaziabad, Uttar Pradesh, India
| | - Aditya Singh
- Post Graduate Department of Orthopedics, Santosh Medical College & Hospital, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Gareev I, Beylerli O, Ahmad A, Ilyasova T, Shi H, Chekhonin V. Comparative Analysis of Circular RNAs Expression and Function between Aortic and Intracranial Aneurysms. Curr Drug Targets 2024; 25:866-884. [PMID: 39219419 PMCID: PMC11774312 DOI: 10.2174/0113894501319306240819052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA)) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in- -depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tatiana Ilyasova
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|