1
|
Shui Y, Dai D, Yang Y, Yang J, Xuan F, Chen H, Liu L, Yu Q, Guo Y, Yu R, Lou J, Wei Q. The Role of Stereotactic Body Radiation Therapy in the Outcomes of Intrahepatic Recurrent Small Hepatocellular Carcinoma. J Clin Exp Hepatol 2025; 15:102561. [PMID: 40292335 PMCID: PMC12023874 DOI: 10.1016/j.jceh.2025.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background and aim To retrospectively evaluate the role of stereotactic body radiation therapy (SBRT) played for the outcomes of intrahepatic recurrent small hepatocellular carcinoma (HCC). Methods We collected 51 intrahepatic recurrent ≤5 cm small HCC patients between January 2016 and December 2021. SBRT was given as 4-5 fractions with 32.5-50Gy. The baseline data of the patients and the radiotherapy strategy data were collected and survival analyses were performed among these factors. The outcomes comprised overall survival (OS), freedom from local progression (FFLP), and progression-free survival (PFS), with the 95% confidence interval (95%CI). The follow-up time was calculated from the date of the SBRT to the date of the last follow-up communication, hospitalization, or death. Survival analysis was conducted by the Kaplan-Meier methods and log-rank test. Results The median follow-up time was 48 months (range: 4.8-90). The 1-year, 3-year, and 5-year OS rates of the overall cohort were 95.9% (95%CI: 0.905-1.000), 84.9% (95%CI: 0.751-0.959) and 69.1% (95%CI: 0.553-0.862), respectively. The 1-year, 3-year, and 5-year FFLP rates of the overall cohort were 97.5% (95%CI: 0.928-1.000), 82.0% (95%CI: 0.697-0.965), and 72.8% (95%CI: 0.578-0.918), respectively. The 1-year, 3-year, and 5-year PFS rates of the overall cohort were 85.7% (95%CI: 0.758-0.970), 43.4% (95%CI: 0.296-0.635), and 27.3% (95%CI: 0.149-0.498), respectively. The 5-year FFLP rate of lesions less than 2 cm [72.5% (95%CI: 0.52-1)] and those 2-5 cm [71.9% (95%CI: 0.514-0.976)] were similar. We suggested that the lesions received 45Gy/50Gy with 5 fractions were associated with a higher 5-year FFLP rate [74.6% (95%CI: 0.57-0.976)] than 40Gy/5F [40.0% (95%CI: 0.137-1)]. Conclusion We found SBRT was effective in patients with lesion size of 2-5 cm, with similar results in those with tumor size of 0-2 cm. We suggested that the lesions received over 85.5Gy of biological effective dose with α/β = 10Gy were associated with a higher FFLP.
Collapse
Affiliation(s)
- Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xuan
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Chen
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Yu
- Department of Radiation Oncology, Wushan Campus of Hangzhou First People's Hospital, Hangzhou, China
| | - Yinglu Guo
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Lou
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Ma C, Yu X, Zhang X, Su L, Jiang O, Cui R. Combination of radiotherapy and ICIs in advanced hepatocellular carcinoma: A systematic review of current evidence and future prospects (Review). Oncol Lett 2025; 30:342. [PMID: 40438865 PMCID: PMC12117537 DOI: 10.3892/ol.2025.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/24/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern because of its rising prevalence and high fatality rates. Conventional treatments for advanced HCC (aHCC) have limited success, emphasizing the need for novel treatment options. Radiotherapy (RT) treatments, such as stereotactic body radiation and proton therapy, improve local tumor management via precision targeting. Moreover, immune checkpoint inhibitors (ICIs) that target the programmed cell death protein 1(PD-1)/PD ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) pathways have promise for systemic antitumor effectiveness. The combination of RT and ICIs takes advantage of their complementary mechanisms: RT kills immunogenic cells and controls the tumor microenvironment to increase antigen presentation, whereas ICIs enhance and maintain antitumor immune responses. This combination enhances tumor regression and immune response in aHCC, improving response rate and progression-free survival with manageable safety. The present review aimed to summarize the rationale for combining RT + ICIs in patients with aHCC and clinical outcomes, as well as ways to enhance this combination technique. The combination of these models is a promising technique for improving outcomes for patients with aHCC and warrants further investigation.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Xinlin Yu
- Department of Oncology, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Xialin Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lihong Su
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ou Jiang
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
3
|
Moris D, Martinino A, Schiltz S, Allen PJ, Barbas A, Sudan D, King L, Berg C, Kim C, Bashir M, Palta M, Morse MA, Lidsky ME. Advances in the treatment of hepatocellular carcinoma: An overview of the current and evolving therapeutic landscape for clinicians. CA Cancer J Clin 2025. [PMID: 40392748 DOI: 10.3322/caac.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer-related death worldwide. Contemporary advances in systemic and locoregional therapies have led to changes in peer-reviewed guidelines regarding systemic therapy as well as the possibility of downstaging disease that may enable some patients with advanced disease to ultimately undergo partial hepatectomy or transplantation with curative intent. This review focuses on all modalities of therapy for HCC, guided by modern-day practice-changing randomized data where available. The surgical management of HCC, including resection and transplantation, both of which have evolving criteria for what is considered biologically resectable and transplantable, as well as locoregional therapy (i.e., therapeutic embolization, ablation, radiation, and hepatic arterial infusion), are discussed. Historical and modern-day practice-changing trials evaluating immunotherapy with targeted therapies for advanced disease, as well as adjuvant systemic therapy, are also summarized. In addition, this article examines the critical dimension of toxicities and patient-oriented considerations to ensure a comprehensive and balanced discourse on treatment implications.
Collapse
Affiliation(s)
- Dimitrios Moris
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alessandro Martinino
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Schiltz
- Patient Advocate Steering Committee, National Cancer Institute Hepatobiliary Task Force, Los Gatos, California, USA
- Blue Faery, Simi Valley, California, USA
- Cancer CAREpoint, Los Gatos, California, USA
| | - Peter J Allen
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew Barbas
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Debra Sudan
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Lindsay King
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Carl Berg
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Charles Kim
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mustafa Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Morse
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael E Lidsky
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Su K, Liu X, Zeng YC, Xu J, Li H, Wang H, Du S, Wang H, Yue J, Yin Y, Li Z. Machine Learning Radiomics for Predicting Response to MR-Guided Radiotherapy in Unresectable Hepatocellular Carcinoma: A Multicenter Cohort Study. J Hepatocell Carcinoma 2025; 12:933-947. [PMID: 40370640 PMCID: PMC12075397 DOI: 10.2147/jhc.s521378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Background This study was conducted to assess the efficacy and safety of magnetic resonance (MR)-guided hypofractionated radiotherapy in patients with unresectable hepatocellular carcinoma (HCC). Machine learning-based radiomics was utilized to predict responses in these patients. Methods This retrospective study included 118 hCC patients who received MR-guided hypofractionated radiotherapy. The primary study endpoint was the objective response rate (ORR). Radiomics features were based on the gross tumor volume (GTV). K-means clustering was performed to differentiate cancer subtypes based on radiomics. Nine radiomics-utilizing machine learning models were built and validated internally through 5-fold cross-validation. Results The ORR, median progression-free survival (mPFS), and median overall survival (mOS) were 54.4%, 21.7 months, and 40.7 months, respectively. No patient experienced Grade 3/4 adverse events. 1130 radiomics features were extracted from the GTV, of which 7 were included for further analysis. K-means clustering identified 2 subtypes based on the selected features. Subtype 1 had significantly higher response, longer mPFS, and longer mOS than Subtype 2. In both internal and external validations, the multi-layer perceptron (MLP) model demonstrated superior predictive performance for response, achieving a receiver operating characteristic-area under the curve (ROC-AUC) of 0.804 and 0.842, respectively. Conclusion MR-guided radiotherapy was proven to be effective and safe for HCC. The machine learning radiomics model developed in this study could accurately predict the response of radiotherapy-treated inoperable HCC.
Collapse
Affiliation(s)
- Ke Su
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, People’s Republic of China
| | - Xin Liu
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China
| | - Yue-Can Zeng
- Department of Radiation Oncology, Cancer Treatment Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People’s Republic of China
| | - Junnv Xu
- Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, 570311, People’s Republic of China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Heran Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Shanshan Du
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Huadong Wang
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Jinbo Yue
- Department of Abdominal Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| |
Collapse
|
5
|
Harmath C, Fung A, Aslam A, Kamath A, Lall C, Surabhi V, Borhani AA, Mendiratta-Lala M, Do R. LI-RADS radiation-based treatment response algorithm for HCC: what to know and how to use it. Abdom Radiol (NY) 2025; 50:2012-2021. [PMID: 39424663 DOI: 10.1007/s00261-024-04611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Locoregional treatments (LRT) continue to advance for hepatocellular carcinoma (HCC). Selective internal radiation therapy (SIRT) or transarterial radioembolization (TARE) with radioactive 90 Yttrium (Y90) microspheres is currently widely accepted, and external beam and stereotactic body radiation (EBRT/SBRT) are increasingly used as LRT1-5. Assessment of treatment response after these radiation-based therapies can be challenging, given that the adjacent liver also undergoes treatment related changes, inflammatory changes occur, and there is a variable time for response to develop. In 2017, the liver imaging reporting and data system (LI-RADS) workgroup initially developed a single algorithm for the imaging assessment of treatment response encompassing all types of locoregional therapies, the LI-RADS treatment response (LR-TR) algorithm. Recognizing that response and imaging patterns differ between radiation and non-radiation based therapies, the LR-TR working group recently updated the algorithm to reflect the unique characteristics of tumor response for therapies involving radiation. This article aims to elucidate the changes in the new version of the LI-RADS TR, with a guide for algorithm utilization and illustration of expected and unexpected findings post liver directed therapies for HCC.
Collapse
Affiliation(s)
| | - Alice Fung
- Oregon Health and Science University, Portland, USA
| | | | | | | | | | | | | | - Richard Do
- Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
6
|
Ghafarian M, Cao M, Kirby KM, Schneider CW, Deng J, Mellon EA, Kishan AU, Maziero D, Wu TC. Magnetic Resonance Imaging Sequences and Technologies in Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00384-0. [PMID: 40298856 DOI: 10.1016/j.ijrobp.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Radiation therapy is essential in both curative and palliative treatments for most cancers. However, traditional radiation therapy workflows using computed tomography (CT) simulation-based planning and cone beam CT image guidance face several technical challenges, including limited tumor visibility and daily fluctuations in tumor size and shape. Magnetic resonance imaging (MRI) guided linear accelerators (MR-Linacs) address these issues by enabling precise visualization of changes in tumor position and morphologic changes, as well as changes in surrounding organs-at-risk. The hybrid MR-Linac systems combine MRI with linear accelerator technology, offering enhanced soft tissue visualization and the potential for adaptive radiation therapy (ART). This narrative review provides a comprehensive introduction to MR guided ART technologies, covering protocol optimization with appropriate pulse sequence selection and parameter adjustment for clinical implementations on various disease sites.
Collapse
Affiliation(s)
- Melissa Ghafarian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California.
| | - Minsong Cao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Krystal M Kirby
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| | | | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Eric A Mellon
- Department of Radiation Oncology and Biomedical Engineering, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Coral Gables, Florida
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Danilo Maziero
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Trudy C Wu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Liu JJ, Zhou M, Yuan T, Huang ZY, Zhang ZY. Conversion treatment for advanced intrahepatic cholangiocarcinoma: Opportunities and challenges. World J Gastroenterol 2025; 31:104901. [PMID: 40309227 PMCID: PMC12038554 DOI: 10.3748/wjg.v31.i15.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The prevalence of intrahepatic cholangiocarcinoma (ICC) is increasing globally. Despite advancements in comprehending this intricate malignancy and formulating novel therapeutic approaches over the past few decades, the prognosis for ICC remains poor. Owing to the high degree of malignancy and insidious onset of ICC, numerous cases are detected at intermediate or advanced stages of the disease, hence eliminating the chance for surgical intervention. Moreover, because of the highly invasive characteristics of ICC, recurrence and metastasis postresection are prevalent, leading to a 5-year survival rate of only 20%-35% following surgery. In the past decade, different methods of treatment have been investigated, including transarterial chemoembolization, transarterial radioembolization, radiotherapy, systemic therapy, and combination therapies. For certain patients with advanced ICC, conversion treatment may be utilized to facilitate surgical resection and manage disease progression. This review summarizes the definition of downstaging conversion treatment and presents the clinical experience and evidence concerning conversion treatment for advanced ICC.
Collapse
Affiliation(s)
- Jun-Jie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mi Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhi-Yong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zun-Yi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
8
|
Li S, Zhu X, Xiao H, Liu W, Zhang Y, Cai J, Li T, Lu Y. Dosimetric investigation of multi-parametric 4D-MRI for radiotherapy in liver cancer. Radiat Oncol 2025; 20:51. [PMID: 40217299 PMCID: PMC11987451 DOI: 10.1186/s13014-025-02600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND In radiotherapy, inadequate management of organ motion in liver cancer may lead to inadequate delineation accuracy, resulting in the underdosage of target tissues and overdosage of surrounding normal tissues. To investigate the clinical potential of multi-parametric 4D-MRI in the target delineation and dose accuracy for liver cancer radiotherapy. METHODS Twenty patients receiving radiotherapy for liver cancer were enrolled. Each patient underwent contrast-enhanced planning CT (free-breathing), contrast-enhanced T1-weighted (free-breathing), T2-weighted (gated) 3D-MRI, and low-quality 4D-MRI using the time resolved imaging with interleaved stochastic trajectories volumetric interpolated breath-hold examination (TWIST-VIBE) sequence. A dual-supervised deformation estimation model was used to generate a 4D deformable vector field (4D-DVF) from 4D-MRI data, and the prior images were deformed using this 4D-DVF to generate multi-parametric 4D-MRI. Assisted by 3D-MRI and multi-parametric 4D-MRI, target contours were performed on the planning CT, resulting in the generation of Target_3D and Target_4D. Clinical plans, Plan_3D and Plan_4D, were designed based on these contours respectively. To explore the dosimetric variations resulting from different contours without re-optimization, Plan_3D was directly applied to Target_4D, and Plan_4D was applied to Target_3D to generate Plan_3D' and Plan_4D' respectively. Target volume, contours, dose-volume histograms (DVHs), conformity index (CI), homogeneity index (HI), maximum and mean dose to organ as risks (OARs) were compared and evaluated. RESULTS Mean volume differences between Target_3D and Target_4D were 2.76 cm3 (standard deviation [SD] 3.42 cm3) in the caudate lobe, 181.54 cm3 (SD 68.50 cm3) in the left hepatic lobe, and 26.08 cm3 (SD 20.52 cm3) in the right hepatic lobe. Mean and SD of CI and HI is 1.02 ± 0.04 and 0.108 ± 0.02 in Plan_3D, 1.02 ± 0.01 and 0.107 ± 0.01 in Plan_4D. There were no statistically significant differences in OAR doses between Plan_3D and Plan_3D', between Plan_4D and Plan_4D'. However, a statistically significant difference in target dose was observed between Plan_3D and Plan_3D' (P = 1.47 × 10⁻⁷) and between Plan_4D and Plan_4D' (P = 0.013). Plan_3D' meets 100% of the prescription dose covering mean 77.89% (SD 10.13%) of the Targeted_4D volume, while Plan_4D' covered mean 94.17% (SD 3.12%) of the Targeted_3D volume. CONCLUSIONS 3D image-guided target delineation may be more likely to underestimate target volume and compromise dose coverage, suggesting that using multi-parametric 4D-MRI can provide more precise target contours and enhance target dose coverage.
Collapse
Affiliation(s)
- Sha Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, 100142, China
- Department of Radiotherapy, Affiliated Cancer Hospital of Inner Mongolia Medical University & Peking University Cancer Hospital (Inner Mongolia Campus); Key Laboratoy of Radiation Physics and Biology of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Haonan Xiao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Weiwei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Yibao Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yanye Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Han LQ. Efficacy and factors related to prognosis of combination chemotherapy with different radiotherapy methods in patients with unresectable hepatocellular carcinoma. Sci Rep 2025; 15:11823. [PMID: 40195355 PMCID: PMC11976940 DOI: 10.1038/s41598-025-91992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Apart from beam radiation (BR), treatment with radioactive implants (RI) was another important modality of cancer therapy. The main purpose was to explore which radiotherapy combined with chemotherapy was more beneficial and identify factor related to prognosis for patients with unresectable hepatocellular carcinoma (HCC). Patients were collected from the surveillance, epidemiology, and end results (SEER) database and were divided into RI group and BR group. Overall survival (OS) and HCC-specific survival were compared between two groups. Propensity score matched (PSM) was used to reduce baseline differences between the two groups. Univariate and multivariate Cox analysis were used to determine the factors affecting the prognosis, and a nomogram model was constructed based on independent risk factors. A total of 1481 HCC patients from 2000 to 2019 were enrolled, including 502 in RI group and 979 in BR group. After PSM, 376 pairs of matched cases were selected. In the matched cohort, there was no significant difference in the median OS (RI vs. BR, 15 vs. 17 months, P = 0.616) and HCC-specific survival (RI vs. BR, 18 vs. 21 months, P = 0.154) between the two groups. Subgroup analysis of different stages also showed no significant difference. Multivariate Cox analysis also did not indicate a significant prognostic difference between the two groups. Based on the independent risk factors of OS such as AFP, grade, TNM staging, and M1, a nomogram model was constructed and verified. When combined with chemotherapy in the treatment of unresectable HCC, RI demonstrated comparable prognostic outcomes to BR, suggesting its potential as an alternative treatment option. In addition, the constructed nomogram model might be able to intuitively and accurately predict the prognosis of unresectable HCC patients receiving chemotherapy combined with radiotherapy.
Collapse
Affiliation(s)
- Lian-Qiang Han
- Clinical Medicine of Hebei Medical University (Post-doctoral Mobile Station of The Second Hospital), Shijiazhuang, Hebei, China.
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Dudzinski SO, Newman NB, McIntyre J, Engineer R, Sanford NN, Wo JY, Seong J, Guha C, Chang DT, Hong TS, Dawson LA, Koay EJ, Ludmir EB. Emerging evidence-based role for external-beam radiation therapy in hepatocellular carcinoma. Lancet Gastroenterol Hepatol 2025; 10:387-398. [PMID: 39993402 DOI: 10.1016/s2468-1253(24)00267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 02/26/2025]
Abstract
The primary curative therapies for hepatocellular carcinoma are resection or liver transplantation. For patients requiring downstaging or who are unresectable at presentation, the landscape of local treatment options has vastly changed over the past decades. This change is partly due to the paucity of high-level evidence to guide the selection of liver-directed therapies, where physician preference and treatment patterns have historically resulted in relegating external-beam radiation therapy (EBRT) to a secondary option in the treatment of hepatocellular carcinoma in cases where arterially directed therapies or thermal ablations were not possible. However, technology advancements have substantially improved the ability to treat liver malignancies with high doses of radiation therapy and to minimise doses to uninvolved hepatic parenchyma and other nearby organs. These advancements have enabled safe treatment of hepatocellular carcinoma with EBRT, with low risk of toxicity. Recent randomised trials support the role of EBRT in the treatment of hepatocellular carcinoma from early to advanced stages. These trials identified that EBRT improved several key patient-centred outcomes, including overall survival when using stereotactic body radiotherapy and sorafenib compared with sorafenib alone in unresectable hepatocellular carcinoma, recurrence-free survival with the use of adjuvant EBRT in select patients after hepatocellular carcinoma resection, and quality of life for patients with painful hepatocellular carcinoma masses treated with palliative EBRT. With emerging high-quality evidence, hepatocellular carcinoma therapeutic guidelines should include the growing role of EBRT in improving the quality and quantity of life for patients with liver cancer.
Collapse
Affiliation(s)
- Stephanie O Dudzinski
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil B Newman
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Reena Engineer
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Maharashtra, India
| | - Nina N Sanford
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, USA
| | - Daniel T Chang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, ON, Canada
| | - Eugene J Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan B Ludmir
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Yariv O, Newman NB, Yarchoan M, Rabiee A, Wood BJ, Salem R, Hernandez JM, Bang CK, Yanagihara TK, Escorcia FE. Advances in radiation therapy for HCC: Integration with liver-directed treatments. Hepatol Commun 2025; 9:e0653. [PMID: 40163776 PMCID: PMC11927661 DOI: 10.1097/hc9.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 04/02/2025] Open
Abstract
HCC is the fourth leading cause of cancer-related mortality with increasing incidence worldwide. Historically, treatment for early disease includes liver transplantation, surgical resection, and/or other local therapies, such as thermal ablation. As a result of technical advances and high-quality prospective data, the use of definitive external beam radiotherapy with ablative doses has emerged. Intermediate-stage disease has been generally addressed with arterially directed therapies (eg, chemoembolization or radioembolization) and external beam radiotherapy, while advanced stages have been addressed by systemic therapy or best supportive care. The role of each local/locoregional therapy has rapidly evolved in the context of novel pharmacotherapies, including immunotherapies and antiangiogenic agents. The combinations, indications, and timing of treatments vary widely among specialties and geographies. Here, we aim to synthesize the best quality evidence available regarding the efficacy and safety of different liver-directed modalities, with a focus on recent prospective clinical data of external beam radiotherapy within the context of other available liver-directed therapies across Barcelona Liver Classification (BCLC) stages.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Neil B. Newman
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Atoosa Rabiee
- Division of Gastroenterology and Hepatology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Bradford J. Wood
- Interventional Radiology, Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan M. Hernandez
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christine K. Bang
- Radiation Oncology Clinical Care Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Ted K. Yanagihara
- Department of Radiation Oncology, University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Sanuki N, Kimura T, Takeda A, Ariyoshi K, Oyamada S, Yamaguchi T, Tsurugai Y, Doi Y, Kokubo M, Imagumbai T, Katoh N, Eriguchi T, Ishikura S. Final Results of a Multicenter Prospective Study of Stereotactic Body Radiation Therapy for Previously Untreated Solitary Primary Hepatocellular Carcinoma (The STRSPH Study). Int J Radiat Oncol Biol Phys 2025; 121:942-950. [PMID: 39706374 DOI: 10.1016/j.ijrobp.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To report final results of a prospective study of stereotactic body radiation therapy (SBRT) in patients with previously untreated solitary primary hepatocellular carcinoma (HCC). METHODS AND MATERIALS This prospective, single-arm, multicenter phase 2 trial recruited patients with HCC who were unsuitable for, or refused, surgery and radiofrequency ablation, with 3-year overall survival rates as the primary endpoint and survival outcomes and adverse events as secondary endpoints. The prescribed SBRT dose was 40 Gy in 5 fractions. The final data were analyzed in November 2022. RESULTS Between 2014 and 2018, 36 patients (median age, 73.5 years) were registered; enrollment was closed before full recruitment due to slow accrual. Overall, 34 patients were analyzed for efficacy evaluation after excluding 2 patients. The median tumor size was 2.3 cm. The median follow-up times for all patients and for survivors were 49 and 56 months, respectively. The 3-year overall survival rate was 82% (95% confidence interval, 65%-92%). The 3-year local control rate was 93% (95% confidence interval, 76%-98%). Grade 3 or higher SBRT-related nonlaboratory toxicities were observed in 4 patients (11%). No grade 5 adverse events were observed. CONCLUSIONS Final results of this phase 2 trial suggest the efficacy and safety of SBRT for newly diagnosed early-stage HCC that is unfit for other local therapies. Although this study was underpowered by the small number of registrations, the excellent results indicate that SBRT may be an alternative option for the management of early-stage HCC.
Collapse
Affiliation(s)
- Naoko Sanuki
- Department of Radiology, Keio University School of Medicine, Sinjuku-ku, Tokyo, Japan; Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.
| | - Atsuya Takeda
- Department of Radiology, Keio University School of Medicine, Sinjuku-ku, Tokyo, Japan; Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Keisuke Ariyoshi
- Department of Biostatistics, JORTC Data Center, Arakawa-ku, Tokyo, Japan
| | - Shunsuke Oyamada
- Department of Biostatistics, JORTC Data Center, Arakawa-ku, Tokyo, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yoshiko Doi
- Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima, Hiroshima, Japan
| | - Masaki Kokubo
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Toshiyuki Imagumbai
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Takahisa Eriguchi
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa, Japan
| | - Satoshi Ishikura
- Department of Radiation Oncology, St. Luke's International Hospital, St. Luke's International University, Chuo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Glynn AM, Lawrence YR, Dawson LA, Barry AS. The use of precision radiotherapy for the management of cancer-related pain in the abdomen. Curr Opin Support Palliat Care 2025; 19:51-58. [PMID: 39668687 DOI: 10.1097/spc.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
PURPOSE OF REVIEW Abdominal pain due to cancer is a significant and debilitating symptom for cancer patients, which is commonly undertreated. Radiotherapy (RT) for the management of abdominal cancer pain is underused, with limited awareness of its benefit. This review presents a discussion on current precision RT options for the management of cancer pain in the abdomen. RECENT FINDINGS Precision RT focuses on delivering targeted and effective radiation doses while minimizing damage to surrounding healthy tissues. In patients with primary or secondary liver cancer, RT has been shown to significantly improve liver related cancer pain in the majority of patients. Also, symptom sequelae of tumour thrombus may be relieved with the use of palliative RT. Similarly, single dose, high precision stereotactic RT to the celiac plexus has been shown to significantly improve pain in patients with pancreatic cancer. Pain response for adrenal metastases has been less commonly investigated, but small series suggest that stereotactic body RT may reduce or alleviate pain. SUMMARY RT is an effective option for the treatment of abdominal cancer pain. RT should be considered within the multidisciplinary treatment armamentarium, and may be successfully integrated, alone or in conjunction with other treatment modalities, in abdominal cancer-related pain.
Collapse
Affiliation(s)
- Aisling M Glynn
- Radiation Medicine Program, Princess Margaret Cancer Centre
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Yaacov R Lawrence
- The Benjamin Davidai Dep. Radiation Oncology, Sheba Medical Center, Tel HaShomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Aisling S Barry
- Cancer Research@UCC, School of Medicine and Health, University College Cork, Cork, Ireland
- Department of Radiation Oncology, Cork University Hospital, Ireland
| |
Collapse
|
14
|
Lee HI, Son J, Cho B, Goh Y, Jung J, Park JH, Chie EK, Kim KS, Kim YH, Kang HC, Yoon SM. Development and Validation of a Prediction Model for Cardiac Events in Patients With Hepatocellular Carcinoma Undergoing Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00155-5. [PMID: 39993541 DOI: 10.1016/j.ijrobp.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE To develop and validate a prediction model for major adverse cardiac events (MACEs) in hepatocellular carcinoma patients treated with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS We retrospectively identified 1893 hepatocellular carcinoma patients who received SBRT at 2 institutions, with one serving as the development cohort (n = 1473) and the other as the validation cohort (n = 420). A MACE was defined as any cardiac event classified as grade 3 or higher according to the Common Terminology Criteria for Adverse Events, version 5.0. We evaluated 15 clinical and 88 dosimetric parameters using bootstrapped forward selection and area under the curve (AUC) to identify significant predictors for MACEs. Based on these factors, we constructed the Cardiac Event Index (CEI) model, categorizing patients into distinct risk groups. Model performance was assessed for discrimination, efficiency, and calibration. RESULTS The MACE occurrence rate was 5.8% in the development cohort and 6.7% in the validation cohort. Five parameters were selected for predicting MACEs and were incorporated into the CEI model using the following equation: CEI = age score + hypertension + current smoking + (2 × history of cardiac disease) + (0.05 × heart-V5 [%]), which yielded an AUC of 0.770 for MACEs and 0.750 for coronary artery disease. The CEI model stratified patients into low-, intermediate-, and high-risk groups that had MACE incidence rates of 0.4%, 4.9%, and 22.8%, respectively. The impact of heart-V5 on MACEs was minimal in low- and intermediate-risk groups but pronounced in the high-risk group. In the validation cohort, the CEI model yielded an AUC of 0.809 for MACEs and 0.793 for coronary artery disease. CONCLUSIONS The CEI model demonstrated robust performance in predicting MACEs, revealing the significant influence of clinical factors and the minimal impact of SBRT. This model can inform evidence-based decisions regarding cardiac dose optimization in SBRT planning.
Collapse
Affiliation(s)
- Hye In Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngmoon Goh
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhong Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hong Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Hak Kim
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Hoffmeister-Wittmann P, Hoegen-Saßmannshausen P, Wicklein L, Weykamp F, Seidensaal K, Springfeld C, Dill MT, Longerich T, Schirmacher P, Mehrabi A, Mathy RM, Köhler BC, Debus J, Herfarth K, Liermann J. Stereotactic body radiotherapy with carbon ions as local ablative treatment in patients with primary liver cancer. Radiat Oncol 2025; 20:23. [PMID: 39966902 PMCID: PMC11834390 DOI: 10.1186/s13014-025-02594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS Liver cancer is the third leading cause of cancer related death due to treatment resistance and late onset of symptoms (Rumgay in J Hepatol 77: 1598-1606, 2022). The role of external beam radiotherapy (EBRT) in treatment of unresectable liver cancer needs to be defined. The use of particle therapy such as carbon ion radiation therapy (CIRT) with high linear energy transfer (LET) could increase efficacy of EBRT while limiting the toxic effects of radiation on non-cancerous liver tissue. Promising effects of CIRT have been described in several studies during the past decades, mostly in Japan. To date, no standardized treatment protocol has been established and European data on CIRT for liver cancer is lacking. This retrospective analysis aims to investigate efficacy and safety of hypofractionated CIRT compared to photon-based stereotactic body radiation (SBRT) in primary liver cancer. METHOD Thirty-six (n = 36) and twenty (n = 20) patients with primary malignant liver tumors were treated with hypofractionated CIRT (4 fractions) and photon-based SBRT, respectively, between 2011 and 2022 and were retrospectively evaluated for survival, local control, and toxicity. RESULTS Two-year local control rate after CIRT was 92.3%. Compared to photon- based SBRT, CIRT scores with a significantly longer median distant progression free survival (3.1 versus 0.9 years). In a matched pair comparison of the two treatment regimens, the CIRT cohort demonstrated both longer 2-year overall survival (100% versus 59.6%) and longer 2-year distant PFS (75.7% versus 22.9%). No significant impairment of liver function was observed in either cohort. CONCLUSION In this retrospective analysis, patients who received CIRT presented excellent local tumor control and had better oncologic outcomes than patients who received photon-based SBRT. SBRT with carbon ions is a promising local ablative treatment option that needs further investigation in large prospective trials.
Collapse
Affiliation(s)
- Paula Hoffmeister-Wittmann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Livia Wicklein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christoph Springfeld
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Michael T Dill
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases, Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of General, Visceral & Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - René Michael Mathy
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno C Köhler
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
16
|
Liu Q, Zhang R, Shen W. Advancements in locoregional therapy for advanced hepatocellular carcinoma: Emerging perspectives on combined treatment strategies. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109502. [PMID: 39615292 DOI: 10.1016/j.ejso.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 01/03/2025]
Abstract
Hepatocellular carcinoma (HCC) persists as a leading cause of cancer-related mortality, often diagnosed at advanced stages with limited treatment options. Locoregional therapies (LRTs) are crucial in HCC management, playing significant roles in neoadjuvant and palliative treatments, among others. However, the unique disease background of HCC necessitates multidisciplinary and integrated treatment strategies. The therapeutic landscape for advanced HCC has been significantly broadened by the advent of combined therapies, presenting multiple approaches aimed at improving long-term survival, which remains a critical challenge. This review offers a comprehensive overview of major LRTs for HCC, highlighting recent technological advancements and exploring the challenges and limitations in their application, and presents the latest developments in combination therapies, including combinations between different LRTs and their integration with systemic treatments. Additionally, we outline future directions for the development of integrated treatment modalities for advanced HCC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China; The Second Clinical Medical College of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Renjie Zhang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China; The Second Clinical Medical College of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Weixi Shen
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
17
|
Morishima K, Yamashita H, Noyama T, Katano A. Comparative analysis of clinical treatment outcomes: Breath-hold vs. free-breathing techniques in liver stereotactic body radiotherapy. J Med Imaging Radiat Oncol 2025; 69:136-143. [PMID: 39428117 PMCID: PMC11834757 DOI: 10.1111/1754-9485.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION The aim of this study was to clarify the safety and efficacy of breath-hold irradiation in liver stereotactic body radiotherapy (SBRT). METHODS A retrospective analysis was conducted on 57 consecutive patients who received SBRT for hepatocellular carcinoma or liver metastases between 2013 and 2021. Breath-hold irradiation was implemented for patients treated after April 2020. RESULTS The median follow-up period for all patients was 16.4 months (IQR: 7.36-20.9). The 2-year overall survival rate was 64.4% (95% CI: 47.4-77.2), and the local control rate was 84.3% (95% CI: 69.7-92.3) for all patients. The 1-year overall survival was 80.0% (95% CI: 60.8-90.5) versus 82.0% (95% CI: 53.5-93.9) in the free-respiratory (FR) group versus the breath-hold (BH) group, respectively (P = 0.60). The 1-year local control rates were 78.1% (95% CI: 57.5-89.5) in the FR group and 95.7% (95% CI: 72.9-99.4) in the BH group, respectively (P = 0.16). Radiation-induced liver injury, defined by an escalation of ≥2 in Child-Pugh score, was observed in four patients within each group (FR 13% vs. BH 15%). There were no gastrointestinal adverse events of Grade 3 or higher. CONCLUSION Breath-hold irradiation can be safely administered and has demonstrated clinical potential in improving local control. Further research into dose escalation using breath-hold techniques is warranted.
Collapse
Affiliation(s)
- Kosuke Morishima
- Department of RadiologyThe University of Tokyo HospitalTokyoJapan
| | | | - Tomoyuki Noyama
- Department of RadiologyThe University of Tokyo HospitalTokyoJapan
| | - Atsuto Katano
- Department of RadiologyThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
18
|
O’Donnell CDJ, Majeed U, Rutenberg MS, Croome KP, Poruk KE, Toskich B, Jin Z. Advancements in Locoregional Therapies for Unresectable Intrahepatic Cholangiocarcinoma. Curr Oncol 2025; 32:82. [PMID: 39996882 PMCID: PMC11854535 DOI: 10.3390/curroncol32020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Intrahepatic cholangiocarcinoma is an aggressive malignancy with rising incidence and poor outcomes. This review examines recent advancements in locoregional therapies for unresectable intrahepatic cholangiocarcinoma, focusing on external beam radiotherapy, transarterial radioembolization (TARE), hepatic artery infusion pump (HAIP) chemotherapy, and liver transplantation. Stereotactic body radiation therapy and proton beam therapy have shown promise in achieving local control and improving survival. TARE, with personalized dosimetry, has demonstrated encouraging results in select patient populations. HAIP chemotherapy, primarily studied using floxuridine, has yielded impressive survival outcomes in phase II trials. Liver transplantation, once contraindicated, is now being reconsidered for carefully selected patients with localized disease. While these locoregional approaches show potential, randomized controlled trials comparing them to standard systemic therapy are lacking. Patient selection remains crucial, with factors such as liver function, tumor burden, and molecular profile influencing treatment decisions. Ongoing research aims to optimize treatment sequencing, explore combination strategies with systemic therapies, and refine phenotype identification and patient selection criteria. As the landscape of intrahepatic cholangiocarcinoma management evolves, a multidisciplinary approach is essential to tailor treatment strategies and improve outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Conor D. J. O’Donnell
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Umair Majeed
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Michael S. Rutenberg
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | | | - Katherine E. Poruk
- Department of Surgical Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Beau Toskich
- Department of Interventional Radiology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Zhaohui Jin
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Hargis M, Danos D, Malinosky HR, Galatas A, McManus S, Byerley A, Efishat MA, Lyons JM, Sullivan K, Moaven O. Disparities in Access to Care in the Multimodal Treatment of Primary Nonmetastatic Liver Cancers and Their Impact on Patient Outcomes. J Surg Oncol 2025. [PMID: 39844616 DOI: 10.1002/jso.28065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Liver cancer incidence and mortality have been shown to differ by race, ethnicity, and geography. This study aims to analyze disparities in the multimodal treatment of liver cancers in Louisiana. METHODS Cases of nonmetastatic liver cancer in Louisiana from 2010 to 2020 were obtained from the Louisiana Tumor Registry. Generalized linear mixed models were used to model the receipt of therapy. RESULTS A total of 2948 patients met inclusion criteria where 30.5% received no therapy. Multivariable models identified patients with increased odds of pursuing no treatment which include those 70 and older, no domestic partner, uninsured, high poverty, and rural residence (p < 0.05). CONCLUSIONS Available therapeutic modalities are underutilized in Louisiana with a considerable number of patients receiving no treatment for liver cancer. Older age, no domestic partner, uninsured, rural residence, and high poverty are risk factors for not receiving treatment. Allocating resources to these patients is an important step in reversing inequities.
Collapse
Affiliation(s)
- McKenzie Hargis
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Denise Danos
- Department of Community Science and Health Policy, Louisiana State University (LSU) Health School of Medicine, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
| | - Hannah R Malinosky
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Aimée Galatas
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Syndey McManus
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Ann Byerley
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Mohammad Al Efishat
- Department of Surgery, Louisiana State University (LSU) Health, Baton Rouge, Louisiana, USA
- Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | - John M Lyons
- Department of Surgery, Louisiana State University (LSU) Health, Baton Rouge, Louisiana, USA
- Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | - Kevin Sullivan
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
- Department of Interdisciplinary Oncology, Louisiana State University (LSU) Health School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Wilkins LR, Sheth RA, Tabori NE, Tam AL. Caveat Lector: The Importance of Becoming a Discerning Guidelines Reader. J Vasc Interv Radiol 2025; 36:1-8. [PMID: 39383936 DOI: 10.1016/j.jvir.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024] Open
Affiliation(s)
- Luke R Wilkins
- Section of Vascular and Interventional Radiology, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora E Tabori
- Section of Interventional Radiology, Department of Radiology, MedStar Washington Hospital Center, Washington, DC
| | - Alda L Tam
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Sharma D, Meena BL, Anju KV, Jagya D, Sarin SK, Yadav HP. Efficacy and safety of stereotactic body radiation therapy in elderly patients with cirrhosis and large advanced hepatocellular carcinoma. J Cancer Res Ther 2025; 21:137-144. [PMID: 40214366 DOI: 10.4103/jcrt.jcrt_1118_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/25/2024] [Indexed: 04/19/2025]
Abstract
OBJECTIVE To evaluate the safety and efficacy of stereotactic body radiation therapy (SBRT) for 70 years or older patients with advanced hepatocellular carcinoma (aHCC). MATERIALS AND METHODS This observational retrospective study was done between May 2020 and March 2023. The data of 24 elderly patients with aHCC treated with SBRT were collected from the hospital electronic records. Patients with Child-Turcotte-Pugh status (CTP) A5 to B8 and a functional liver reserve of ≥700cc were included. Local control, overall survival (OS), progression-free survival (PFS), and postprocedure adverse events were recorded. RESULTS The median follow-up period of the study cohort was 13 months (range: 3-36 months). The median age was 75 years (range: 70-84 years) with CTP A (70.8%) and CTP B (29.2%). NASH was the most common etiology (n = 15, 62.5%). The median tumor diameter was 8.5 cm (range, 5-16). Portal vein and IVC tumor thrombosis were seen in 21 (87.5%) and 4 (16.67%) patients. The median SBRT dose to gross tumor of 35 Gy (range 25-40 Gy) is delivered in five fractions. Though the median AFP level was reduced from 136.5 (range 3.7-27533) to 34.5 (range 3-4964) ng/ml, the difference was not significant. The median PIVKA II level was significantly decreased from 2702 (range 23.8-385454) to 189 (range 15-56262) mAU/ml, P = 0.05. The estimated local control rates at 12 and 18 months were 90% and 62%, respectively. The 1-year estimated OS and PFS rates were 58% and 42%, respectively. The mOS and mPFS were 14 months (95% CI, 8.5-19.4) and 9 months (95% CI, 5.5-12.4), respectively. On multivariate analysis, baseline geriatric 8 (G8) score ≤9 and CTP B were the predictors of poor OS. SBRT was found to be generally safe in patients with geriatric 8 score >9 with postprocedure decompensation (increased CTP score by 2 points) in only one (4.16%) patient. CONCLUSION SBRT is a safe and effective locoregional therapy in elderly subjects with cirrhosis and locally advanced HCC. In elderly patients, with limited transplant and other therapeutic options, SBRT is safe and provides improved local disease control, OS, and PFS.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Babu Lal Meena
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - K V Anju
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Deepak Jagya
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hanuman Prasad Yadav
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
22
|
Hernandez L, Parent L, Molinier V, Suc B, Izar F, Moyal E, Peron JM, Otal P, Lusque A, Modesto A. Stereotactic body radiation therapy in primary liver tumor: Local control, outcomes and toxicities. Clin Transl Radiat Oncol 2025; 50:100892. [PMID: 39651455 PMCID: PMC11625365 DOI: 10.1016/j.ctro.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Objective Stereotactic body radiation therapy (SBRT) is a therapeutic option in the guidelines for liver primaries after standard strategies like surgery or thermoablation have failed. To assess its efficacy and safety, we reviewed all patients treated by SBRT for a hepatocellular carcinoma (HCC) over a six-year period. Methods and materials The study included all patients treated by SBRT for HCC between April 2015 and November 2021 in the University Cancer Institute at Toulouse-Oncopole. All patients were inoperable and not eligible for thermoablation, or after a failure. All tumor sizes were included and cirrhosis up to Child-Pugh B was accepted. Local control (LC), overall survival (OS) and progression-free survival (PFS) were estimated by the Kaplan-Meier method. Treatment response was assessed using mRECIST criteria. Toxicity was graded using CTCAE (v4.0). Results One hundred and nine patients with 118 lesions were treated. Half underwent prior standard treatment. Median dose was 50 Grays in five fractions for most patients. Chronic liver disease represented 90.8 % of cases with a median age of 69 years. Median tumor size was 4.0 cm. Median follow-up was 22.2 months [95 %CI: 15.1-30.4]. LC, OS and PFS at two years were 82.4 % [95 %CI: 71.3; 89.5], 73.2 % [95 %CI: 61.5; 81.8] and 35.8 % [95 %CI: 25.1; 46.7], respectively. Acute toxicities occurred in 20.2 % of patients, including 10.1 % grade 3-4 and 1.8 % grade 5. Late toxicities occurred in 5.5 % of patients including 4.6 % grade 3-4. Grade ≥ 3 toxicity was related to digestive perforation or liver failure. Conclusion SBRT provides good LC with an acceptable safety profile. It can be used in several settings such as salvage therapy or in combination with validated treatment. Prospective randomized trials are needed to validate SBRT as a standard alternative.
Collapse
Affiliation(s)
- Ludovic Hernandez
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Laure Parent
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Victoire Molinier
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Bertrand Suc
- Department of Digestive Surgery and Liver Transplantation, Rangueil University Hospital, 31059 Toulouse, France
| | - Françoise Izar
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Elisabeth Moyal
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Jean-Marie Peron
- Department of Hepatogastroenterology, Rangueil University Hospital, 31059 Toulouse, France
| | - Philippe Otal
- Department of Radiology, Rangueil University Hospital, 31059 Toulouse, France
| | - Amélie Lusque
- Biostatistics Unit, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| | - Anouchka Modesto
- Department of Radiotherapy, University Cancer Institute of Toulouse-Oncopole, 31100 Toulouse, France
| |
Collapse
|
23
|
Sharma D, Khosla D, Meena BL, Yadav HP, Kapoor R. Exploring the Evolving Landscape of Stereotactic Body Radiation Therapy in Hepatocellular Carcinoma. J Clin Exp Hepatol 2025; 15:102386. [PMID: 39282593 PMCID: PMC11399579 DOI: 10.1016/j.jceh.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) carries significant morbidity and mortality. Management of the HCC requires a multidisciplinary approach. Surgical resection and liver transplantation are the gold standard options for the appropriate settings. Stereotactic body radiation therapy (SBRT) has emerged as a promising treatment modality in managing HCC; its use is more studied and well-established in advanced HCC (aHCC). Current clinical guidelines universally endorse SBRT as a viable alternative to radiofrequency ablation (RFA), transarterial chemoembolisation (TACE), and transarterial radioembolisation (TARE), a recommendation substantiated by literature demonstrating comparable efficacy among these modalities. In early-stage HCC, SBRT primarily manages unresectable tumours unsuitable for ablative procedures such as microwave ablation and RFA. SBRT has been incorporated as a modality to downstage tumours or as a bridge to transplant. In the case of intermediate or advanced HCC, SBRT offers excellent results either as a single modality or adjunct to other locoregional modalities such as TACE/TARE. Recent data from late-stage HCC patients illustrate the effectiveness of SBRT in achieving local tumour control while minimising damage to surrounding healthy liver tissue. It has promising local control of approximately 80-90% in managing HCC. Additional prospective data comparing the efficacy of SBRT with the first-line recommended therapies such as RFA, TACE, and surgery are essential. The standard of care for patients with advanced/metastatic disease is systemic therapy (immunotherapy/tyrosine kinase inhibitors). SBRT, in combination with immune-checkpoint inhibitors, has an immune-modulatory effect that results in a synergistic effect. Recent findings indicate that the combination of immunotherapy and SBRT in HCC is well-tolerated and exhibits synergistic effects. Further exploration of diverse immunotherapy and radiotherapy strategies is essential to identify the appropriate time for combination treatments and to optimise dose and fraction regimens. Prospective, randomised studies are imperative to establish SBRT as the primary treatment for HCC.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Divya Khosla
- Department of Radiation Oncology, PGIMER, Chandigarh, India
| | - Babu L. Meena
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hanuman P. Yadav
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakesh Kapoor
- Department of Radiation Oncology, PGIMER, Chandigarh, India
| |
Collapse
|
24
|
Komiyama S, Takeda A, Tateishi Y, Tsurugai Y, Eriguchi T, Horita N. Comparison of stereotactic body radiotherapy and transcatheter arterial chemoembolization for hepatocellular carcinoma: Systematic review and meta-analysis. Radiother Oncol 2025; 202:110614. [PMID: 39515381 DOI: 10.1016/j.radonc.2024.110614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Stereotactic body radiation therapy (SBRT) is an emerging treatment for hepatocellular carcinoma (HCC), which provides excellent local control (LC) and prolongs overall survival (OS). However, in current guidelines, transcatheter arterial chemoembolization (TACE) has been proposed as a key treatment option for patients with early- and intermediate-stage HCC, whereas SBRT is not. Therefore, we performed a systematic review and meta-analysis of randomized controlled trials and retrospective studies using the propensity score (PS) to compare the outcomes of SBRT and TACE for HCC in a balanced manner. We systematically searched the PubMed, Cochrane, EMBASE, and Web of Science databases to identify randomized controlled trials and studies comparing SBRT and TACE using PS analysis. The hazard ratios (HRs) for OS and LC were pooled. The heterogeneity between the data collected from these studies was also assessed. SBRT led to a comparable OS (HR: 0.83; 95 % confidence interval (CI): 0.52-1.34; p = 0.44) to TACE, and significantly improved LC (HR: 0.25; 95 % CI: 0.09-0.67; p = 0.006). Considerable heterogeneity was observed in the HR of OS and LC. Although there was no significant difference in the rate of grade 3 or higher toxicities between TACE and SBRT, or between studies, liver toxicity was identified as a common adverse event associated with both SBRT and TACE. Compared to TACE, SBRT showed a comparable OS and improved LC without serious toxicity. Therefore, SBRT should be considered an effective treatment option for various stages of HCC, depending on the tumor factors and pretreatment liver function.
Collapse
Affiliation(s)
- Satoshi Komiyama
- Chemotherapy Department, Yokohama City University Medical Center, Japan.
| | - Atsuya Takeda
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan; Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yudai Tateishi
- Department of Radiation Oncology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Takahisa Eriguchi
- Department of Radiation Oncology, Saitama Red Cross Hospital, Saitama, Japan
| | - Nobuyuki Horita
- Chemotherapy Centre, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
25
|
NP J, Rao S, Singh A, Velu U, Mehta A, Lewis S. Feasibility planning study of lattice radiotherapy for palliation in bulky tumors. PRECISION RADIATION ONCOLOGY 2024; 8:209-217. [PMID: 40337457 PMCID: PMC11934898 DOI: 10.1002/pro6.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 05/09/2025] Open
Abstract
Purpose Lattice radiotherapy can potentially deliver high doses to the tumor core, while conventional doses to the periphery resulting in improved response rates in large tumors (> 5 cm). We assessed the feasibility of planning lattice radiotherapy and dosimetrically compared it with conventional radiotherapy. Methods This retrospective dosimetric study evaluated 10 patients with large tumors (> 5 cm) treated with palliative intent with a dose of 20Gy in five fractions. High-dose lattice points were created at doses of 50Gy in non-hepatic tumors and 35Gy in hepatic tumors. Lattice plans were compared with treatment plans regarding dose coverage and organ-at-risk dosimetry. Results Treated sites included soft tissue metastases to the neck, lungs, abdomen, pelvis, and liver. The mean lesion volume was 1103 cc (352-3173 cc). The maximum tumor size was 16 cm. The target volume coverage was > 95% in all but one case (88% to achieve organ constraints). Dosimetry and organ-at-risk doses were similar in both palliative treatment and simulated lattice plans. Conclusion Lattice radiotherapy is feasible in large tumors using volumetric-modulated arc therapy and achieves good coverage while meeting organ constraints. However, a prospective clinical evaluation is required to confirm its efficacy.
Collapse
Affiliation(s)
- Jayashree NP
- Department of Radiotherapy and OncologyKasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
| | - Shreekripa Rao
- Department of Radiotherapy and OncologyManipal College of Health Professionals, ManipalManipal Academy of Higher EducationManipalIndia
| | - Anshul Singh
- Department of Radiotherapy and OncologyKasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
| | - Umesh Velu
- Department of Radiotherapy and OncologyKasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
| | - Ankita Mehta
- Department of Radiotherapy and OncologyKasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
| | - Shirley Lewis
- Department of Radiotherapy and OncologyKasturba Medical College, ManipalManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
26
|
Byun HK, Yoo GS, Sung SY, Song JH, Kim BH, Kwak YK, Kim YJ, Kim YS, Kim KS. Evidence-based clinical recommendations for hypofractionated radiotherapy: exploring efficacy and safety - Part 4: Liver and locally recurrent rectal cancer. Radiat Oncol J 2024; 42:247-256. [PMID: 39748525 DOI: 10.3857/roj.2024.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 01/04/2025] Open
Abstract
In this paper, we review the use of hypofractionated radiotherapy for gastrointestinal malignancies, focusing on primary and metastatic liver cancer, and recurrent rectal cancer. Technological advancements in radiotherapy have facilitated the direct delivery of high-dose radiation to tumors, while limiting normal tissue exposure, supporting the use of hypofractionation. Hypofractionated radiotherapy is particularly effective for primary and metastatic liver cancer where high-dose irradiation is crucial to achieve effective local control. For recurrent rectal cancer, the use of stereotactic body radiotherapy offers a promising approach for re-irradiation, balancing efficacy and safety in patients who have been administered previous pelvic radiotherapy and in whom salvage surgery is not applicable. Nevertheless, the potential for radiation-induced liver disease and gastrointestinal complications presents challenges when applying hypofractionation to gastrointestinal organs. Given the lack of universal consensus on hypofractionation regimens and the dose constraints for primary and metastatic liver cancer, as well as for recurrent rectal cancer, this review aims to facilitate clinical decision-making by pointing to potential regimens and dose constraints, underpinned by a comprehensive review of existing clinical studies and guidelines.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Soo-Yoon Sung
- Department of Radiation Oncology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Kang Kwak
- Department of Radiation Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sil Kim
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
den Toom W, Negenman EM, Willemssen FE, van Werkhoven E, Porte RJ, de Wilde RF, Sprengers D, Antonisse IE, Heijmen BJ, Méndez Romero A. Long-term outcomes of more than a decade treating patients with stereotactic body radiation therapy for hepatocellular carcinoma. Clin Transl Radiat Oncol 2024; 49:100878. [PMID: 39512948 PMCID: PMC11541668 DOI: 10.1016/j.ctro.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose/Objectives To evaluate if stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC) has a durable effect on tumor control and can be delivered safely. Materials/Methods Patients included in this retrospective study have been treated at our institution from January 2008 to December 2022. Eligibility criteria were diagnosis of HCC, BCLC stage 0-A-B, non-cirrhotic liver or liver with cirrhosis Child-Pugh class A, and a maximum of three lesions with a cumulative diameter of ≤ 6 cm. Patients with relapses after surgery, thermal ablation or TACE or patients awaiting transplant were also candidates for SBRT. SBRT was delivered in 6 fractions of 8 or 9 Gy. The primary endpoint was local (target) control (LC). Secondary endpoints were time to progression (TTP), overall survival (OS), response rate (RR) and toxicity. Results A total of 52 patients received SBRT at our institution and 51 were included in this study. One patient objected and was excluded. Median follow-up was 2.1 years for LC and 2.3 years for OS. Median tumor size was 26 mm. LC rates at 1, 2, and 5 years were 100 %, 95 % and 95 % respectively. Median TTP was 45.6 months. Median OS was 7.1 years. RR was 96 %. No patients in this study have experienced SBRT related CTC AE grade ≥ 3 toxicity. Conclusion SBRT resulted in excellent long-term local control rates and absence of severe toxicity in a group of HCC patients. The reported outcomes compare favorably with other local therapies. SBRT should be considered as one of the available local treatment options for HCC.
Collapse
Affiliation(s)
- Wilhelm den Toom
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eva M. Negenman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francois E.J.A. Willemssen
- Departments of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik van Werkhoven
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J. Porte
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roeland F. de Wilde
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology & Hepatology, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Imogeen E. Antonisse
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ben J.M. Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Fiore M, D'Ercole G, Petrianni GM, Trecca P, Ramella S. Empowering Hepatocellular Carcinoma Ablative Therapy: A Renaissance of Collaboration. Pract Radiat Oncol 2024; 14:603-604. [PMID: 39487010 DOI: 10.1016/j.prro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 11/04/2024]
Affiliation(s)
- Michele Fiore
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy; Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Gabriele D'Ercole
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy.
| | - Gian Marco Petrianni
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Pasquale Trecca
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Sara Ramella
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy; Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
29
|
Yang Y, Sun J, Cai J, Chen M, Dai C, Wen T, Xia J, Ying M, Zhang Z, Zhang X, Fang C, Shen F, An P, Cai Q, Cao J, Zeng Z, Chen G, Chen J, Chen P, Chen Y, Shan Y, Dang S, Guo WX, He J, Hu H, Huang B, Jia W, Jiang K, Jin Y, Jin Y, Jin Y, Li G, Liang Y, Liu E, Liu H, Peng W, Peng Z, Peng Z, Qian Y, Ren W, Shi J, Song Y, Tao M, Tie J, Wan X, Wang B, Wang J, Wang K, Wang K, Wang X, Wei W, Wu FX, Xiang B, Xie L, Xu J, Yan ML, Ye Y, Yue J, Zhang X, Zhang Y, Zhang A, Zhao H, Zhao W, Zheng X, Zhou H, Zhou H, Zhou J, Zhou X, Cheng SQ, Li Q, on behalf of Chinese Association of Liver Cancer and Chinese Medical Doctor Association. Chinese Expert Consensus on the Whole-Course Management of Hepatocellular Carcinoma (2023 Edition). Liver Cancer 2024:1-23. [DOI: 10.1159/000541622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China. Most HCC patients have the complications of chronic liver disease and need overall consideration and whole-course management, including diagnosis, treatment, and follow-up. To develop a reasonable, long-term, and complete management plan, multiple factors need to be considered, including the patient’s general condition, basic liver diseases, tumor stage, tumor biological characteristics, treatment requirements, and economic cost. Summary: To better guide the whole-course management of HCC patients, the Chinese Association of Liver Cancer and the Chinese Medical Doctor Association has gathered multidisciplinary experts and scholars in relevant fields to formulate the “Chinese Expert Consensus on The Whole-Course Management of Hepatocellular Carcinoma (2023).” Key Messages: This expert consensus, based on the current clinical evidence and experience, proposes surgical and nonsurgical HCC management pathways and involves 18 recommendations, including perioperative treatment, systematic treatment combined with local treatment, conversion treatment, special population management, symptomatic support treatment, and follow-up management.
Collapse
|
30
|
Gkika E, Radicioni G, Eichhorst A, Kirste S, Sprave T, Nicolay NH, Fichtner-Feigl S, Thimme R, Wiehle R, Brunner TB, Grosu AL. The role of ALBI score in patients treated with stereotactic body radiotherapy for locally advanced primary liver tumors: a pooled analysis of two prospective studies. Front Oncol 2024; 14:1427332. [PMID: 39421444 PMCID: PMC11484445 DOI: 10.3389/fonc.2024.1427332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To evaluate the outcomes after stereotactic body radiotherapy (SBRT) for locally advanced primary liver cancer. Materials and methods Patients with locally advanced liver cancer unsuitable for other loco-regional treatments were treated with SBRT with 50-60 Gy in 3-12 fractions in two consecutive prospective trials. Results A total of 83 patients were included, of whom 14 were excluded, leaving 69 evaluable patients with 74 treated lesions. A total of 50 patients had hepatocellular carcinoma (HCC), and 11 patients had cholangiocarcinoma (CCC). Approximately 76% had a Child-Pugh (CP) score of A, while 54% had an albumin-bilirubin (ALBI) score of 1. With a median follow-up of 29 months, the median overall survival (OS) was 11 months, and the progression-free survival (PFS) was 18 months. The ALBI score was an important predictor of overall survival (HR 2.094, p = 0.001), which remained significant also in the multivariate analysis. Patients with an ALBI grade of ≥1 had an OS of 4 months versus 23 months in patients with an ALBI grade of 1 (p ≤ 0.001). The local control at 1 and 2 years was 91%. Thirteen patients developed grade ≥ 3 toxicities, of whom nine patients experienced liver toxicities. Patients with a higher ALBI score had a high risk for developing hepatic failure (OR 6.136, p = 0.006). Discussion SBRT is a very effective treatment with low toxicity and should be considered as a local treatment option in patients with HCC and CCC. Patients with a higher ALBI grade are at risk for developing toxicities after SBRT and have a significantly lower survival rate.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiation Oncology, University Clinic Bonn - University of Bonn, Bonn, Germany
| | - Gianluca Radicioni
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Alexandra Eichhorst
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Henrik Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiation Oncology, University Medical Center Leipzig, Leipzig, Germany
| | - Stefan Fichtner-Feigl
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Freiburg, Germany
| | - Rolf Wiehle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Thomas B. Brunner
- Department of Radiation Oncology, University Medical Center Graz, Graz, Austria
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Jiang J, Yang L, Xie Q, Liu X, Jiang J, Zhang J, Zhang S, Zheng H, Li W, Cai X, Liu S, Li R. Synthetic vectors for activating the driving axis of ferroptosis. Nat Commun 2024; 15:7923. [PMID: 39256387 PMCID: PMC11387475 DOI: 10.1038/s41467-024-52312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Ferroptosis is a promising strategy for cancer therapy, with numerous inhibitors of its braking axes under investigation as potential drugs. However, few studies have explored the potential of activating the driving axes to induce ferroptosis. Herein, phosphatidylcholine peroxide decorating liposomes (LIPPCPO) are synthesized to induce ferroptosis by targeting divalent metal transporter 1 (DMT1). LIPPCPO is found to boost lysosomal Fe2+ efflux by inducing cysteinylation of lysosomal DMT1, resulting in glutathione peroxidase 4 (GPX4) suppression, glutathione depletion and ferroptosis in breast cancer cells and xenografts. Importantly, LIPPCPO induced ferroptotic cell death is independent of acquired resistance to radiation, chemotherapy, or targeted agents in 11 cancer cell lines. Furthermore, a strong synergistic ferroptosis effect is observed between LIPPCPO and an FDA-approved drug, artesunate, as well as X rays. The formula of LIPPCPO encapsulating artesunate significantly inhibits tumor growth and metastasis and improves the survival rate of breast cancer-bearing female mice. These findings provide a distinct strategy for inducing ferroptosis and highlight the potential of LIPPCPO as a vector to synergize the therapeutic effects of conventional ferroptosis inducers.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wenjie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Bae SH, Jang WI, Mortensen HR, Weber B, Kim MS, Høyer M. Recent update of proton beam therapy for hepatocellular carcinoma: a systematic review and meta-analysis. JOURNAL OF LIVER CANCER 2024; 24:286-302. [PMID: 38961722 PMCID: PMC11449586 DOI: 10.17998/jlc.2024.06.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUNDS/AIMS Although access to proton beam therapy (PBT) is limited worldwide, its use for the treatment of hepatocellular carcinoma (HCC) is gradually increasing with the expansion of new facilities. Therefore, we conducted a systematic review and metaanalysis to investigate the updated evidence of PBT for HCC. METHODS The MEDLINE, EMBASE, Cochrane Library, and Web of Science databases were systematically searched for studies that enrolled patients with liver-confined HCC that were treated with PBT for a cure up to February 2024. RESULTS A total of 1,858 HCC patients receiving PBT from 22 studies between 2004 and 2023 were selected for this meta-analysis. The median proportion of Child-Pugh class A was 86% (range, 41-100), and the median tumor size was 3.6 cm (range, 1.2-9.0). The median total dose ranged from 55 GyE to 76 GyE (median, 69). The pooled rates of 3- and 5-year local progression-free survival after PBT were 88% (95% confidence interval [CI], 85-91) and 86% (95% CI, 82-90), respectively. The pooled 3- and 5-year overall rates were 60% (95% CI, 54-66) and 46% (95% CI, 38-54), respectively. The pooled rates of grade 3 hepatic toxicity, classic radiationinduced liver disease (RILD), and non-classic RILD were 1%, 2%, and 1%, respectively. CONCLUSIONS The current study supports PBT for HCC and demonstrates favorable long-term survival and low hepatic toxicities compared with other published studies on other radiotherapy modalities. However, further studies are needed to identify the subgroups that will benefit from PBT.
Collapse
Affiliation(s)
- Sun Hyun Bae
- Department of Radiation Oncology, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Won Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | | | - Britta Weber
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Mi Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Falatah HA, Lacerda Q, Wessner CE, Lo S, Wheatley MA, Liu JB, Eisenbrey JR. Influence of Phase Change Droplet Activation and Microbubble Cavitation on the Microenvironment of Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1387-1394. [PMID: 38876912 PMCID: PMC11298311 DOI: 10.1016/j.ultrasmedbio.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE Both microbubble ultrasound contrast agents and acoustic phase change droplets (APCD) have been explored in hepatocellular carcinoma (HCC). This work aimed to evaluate changes to the HCC microenvironment following either microbubble or APCD destruction in a syngeneic pre-clinical model. METHODS Mouse RIL-175 HCC tumors were grown in the right flank of 64 immunocompetent mice. Pre-treatment, photoacoustic volumetric tumor oxygenation, and power Doppler measurements were obtained using a Vevo 3100 system (VisualSonics, Toronto, Canada). The experimental groups received a 0.1 mL bolus injection of either Definity ultrasound contrast agent (Lantheus Medical Imaging) or APCD fabricated by condensing Definity. Following injection, ultrasound destruction was performed using flash-replenishment sequences on a Sequoia with a 10L4 probe (Siemens) for the duration of enhancement. Tumor oxygenation and power Doppler measurements were then repeated immediately post-ultrasound treatment. Twenty-four hours post-treatment, animals were euthanized, and tumors were harvested and stained for CD31, Cleaved Caspase 3 and CD45. RESULTS Imaging biomarkers demonstrated a significant reduction in percent vascularity following either microbubble or APCD destruction in the tumor microenvironment ( p < 0.022) but no significant changes in tumor oxygenation (p = 0.12). Similarly, immunohistochemistry data demonstrated a significant decrease in CD31 expression (p < 0.042) and an increase in apoptosis (p < 0.014) in tumors treated with destroyed microbubbles or APCD relative to controls. Finally, a significant increase in CD45 expression was observed in tumors treated with APCD (p = 0.046), indicating an increase in tumor immune response. CONCLUSION Ultrasound-triggered destruction of both microbubbles and APCD reduces vascularity, increases apoptosis, and may also increase immune response in this HCC model.
Collapse
Affiliation(s)
- Hebah A Falatah
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; College of Applied Medical Sciences King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Standley Lo
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Sun Y, Jiang W, Duan R, Guan L. Research progress and prospect of postoperative adjuvant therapy for resectable intrahepatic cholangiocarcinoma. Front Pharmacol 2024; 15:1432603. [PMID: 39170710 PMCID: PMC11335543 DOI: 10.3389/fphar.2024.1432603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary malignancy of the liver, following hepatocellular carcinoma (HCC). Surgical resection remains the only potentially curative treatment for ICC. However, due to its high malignancy and propensity for postoperative recurrence, the prognosis for ICC is generally poor, and there is currently little standardized approach for adjuvant therapy following curative surgery. This article aims to explore adjuvant treatment strategies for ICC post-curative surgery by reviewing retrospective studies and clinical trials conducted in recent years. The analysis focuses on the effectiveness, challenges, and potential developments in the management of ICC post-surgery, considering the high recurrence rates and the need for improved therapeutic approaches to enhance patient outcomes. Additionally, we discuss the various types of adjuvant treatments that have been explored, including chemotherapy, radiation therapy, and targeted therapies. The goal is to provide a comprehensive overview of the current landscape and highlight promising directions for future research to improve survival and quality of life for ICC patients.
Collapse
Affiliation(s)
| | | | | | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Srinivasan D, Subbarayan R, Srivastava N, Radhakrishnan A, Adtani PN, Chauhan A, Krishnamoorthy L. A comprehensive overview of radiation therapy impacts of various cancer treatments and pivotal role in the immune system. Cell Biochem Funct 2024; 42:e4103. [PMID: 39073207 DOI: 10.1002/cbf.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The cancer treatment landscape is significantly evolving, focusing on advanced radiation therapy methods to maximize effectiveness and minimize the adverse effects. Recognized as a pivotal component in cancer and disease treatment, radiation therapy (RT) has drawn attention in recent research that delves into its intricate interplay with inflammation and the immune response. This exploration unveils the underlying processes that significantly influence treatment outcomes. In this context, the potential advantages of combining bronchoscopy with RT across diverse clinical scenarios, alongside the targeted impact of brachytherapy, are explored. Concurrently, radiation treatments serve multifaceted roles such as DNA repair, cell elimination, and generating immune stress signaling molecules known as damage-associated molecular patterns, elucidating their effectiveness in treating various diseases. External beam RT introduces versatility by utilizing particles such as photons, electrons, protons, or carbon ions, each offering distinct advantages. Advanced RT techniques contribute to the evolving landscape, with emerging technologies like FLASH, spatially fractionated RT, and others poised to revolutionize the field. The comprehension of RT, striving for improved treatment outcomes, reduced side effects, and facilitating personalized and innovative treatments for cancer and noncancer patients. After navigating these advancements, the goal is fixed to usher in a new era in which RT is a cornerstone of precision and effectiveness in medical interventions. In summarizing the myriad findings, the review underscores the significance of understanding the differential impacts of radiation approaches on inflammation and immune modulation, offering valuable insights for developing innovative therapeutic interventions that harness the immune system in conjunction with RT.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Pooja Narain Adtani
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Department of Allied Health Sciences-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
36
|
Khanuja HK, Awasthi R, Dureja H. Sorafenib tosylate-loaded nanosuspension: preparation, optimization, and in vitro cytotoxicity study against human HepG2 carcinoma cells. J Chemother 2024; 36:299-318. [PMID: 37881008 DOI: 10.1080/1120009x.2023.2273095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to optimize nanosuspension of sorafenib tosylate (an anticancer hydrophobic drug molecule) using a central composite design. Nanosuspension was prepared using a nanoprecipitation-ultrasonication approach. FTIR and DSC analyses demonstrated that the drug and excipients were physicochemically compatible. X-ray powder diffraction analysis confirmed amorphous form of the payload in the formulation. The optimized formulation (batch NSS6) had a zeta potential of -18.1 mV, a polydispersity of 0.302, and a particle size of 97.11 nm. SEM analysis confirmed formation of rod-shaped particles. After 24 h, about 64.45% and 86.37% of the sorafenib tosylate was released in pH 6.8 and pH 1.2, respectively. The MTT assay was performed on HepG2 cell lines. IC50 value of the optimized batch was 39.4 µg/mL. The study concluded that sorafenib tosylate nanosuspension could be a promising approach in the treatment of hepatocellular cancer.
Collapse
Affiliation(s)
- Harpreet Kaur Khanuja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
37
|
Im JH, Yu JI, Kim TH, Kim TG, Kim JW, Seong J. Combined High-Dose Radiotherapy with Sequential Gemcitabine-Cisplatin Based Chemotherapy Increase the Resectability and Survival in Locally Advanced Unresectable Intrahepatic Cholangiocarcinoma: A Multi-institutional Cohort Study. Cancer Res Treat 2024; 56:838-846. [PMID: 38186240 PMCID: PMC11261191 DOI: 10.4143/crt.2023.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE The locally advanced unresectable intrahepatic cholangiocarcinoma (ICC) has detrimental oncological outcomes. In this study, we aimed to investigate the efficacy of radiotherapy in patients with locally advanced unresectable ICC. MATERIALS AND METHODS Between 2001 and 2021, 116 patients were identified through medical record who underwent radiotherapy for locally advanced unresectable ICC. The resectability of ICC is determined by the multidisciplinary team at each institution. Overall survival (OS) were analyzed using the Kaplan-Meier method, and prognostic factors were analyzed using the Cox proportional hazards model. RESULTS The median equivalent radiotherapy dose in 2 Gy fractions (EQD2) was 52 Gy (range, 30 to 110 Gy). Forty-seven patients (40.5%) received sequential gemcitabine-cisplatin based chemotherapy (GEM-CIS CTx). Multivariate analysis identified two risk factors, EQD2 of ≥ 60 Gy and application of sequential GEM-CIS CTx for OS. Patients were grouped by these two risk factors: group 1, EQD2 ≥ 60 Gy with sequential GEM-CIS CTx (n=25); group 2, EQD2 < 60 Gy with sequential GEM-CIS CTx or fluoropyrimidine-based concurrent chemoradiotherapy (n=70); and group 3, radiotherapy alone (n=21). Curative resection was more frequently undergone in group 1 than in groups 2 or 3 (28% vs. 8.6% vs. 0%, respectively). Consequently, OS was significantly better in group 1 than in groups 2 and 3 (p < 0.05). CONCLUSION Combined high-dose radiotherapy with sequential GEM-CIS CTx improved oncologic outcomes in patients with locally advanced unresectable ICC. Further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Jung Ho Im
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Depratment of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Hyun Kim
- Center for Proton Therapy, National Cancer Center, Goyang, Korea
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jun Won Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Wu Q, Wang Y, Wei Y, Yang Z, Chen K, Li J, Li L, Su T, Liang S. Development and validation of a nomogram for radiation-induced hepatic toxicity after intensity modulated radiotherapy for hepatocellular carcinoma: a retrospective study. Jpn J Clin Oncol 2024; 54:699-707. [PMID: 38376811 PMCID: PMC11144290 DOI: 10.1093/jjco/hyae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVE This study aimed to construct a nomogram to predict radiation-induced hepatic toxicity in patients with hepatocellular carcinoma treated with intensity-modulated radiotherapy. METHODS This study reviewed the clinical characteristics and dose-volume parameters of 196 patients with hepatocellular carcinoma. Radiation-induced hepatic toxicity was defined as progression of the Child-Pugh score caused by intensity-modulated radiotherapy. Factors relevant to radiation-induced hepatic toxicity were selected using receiver operating characteristic and univariate logistic analysis. A risk assessment model was developed, and its discrimination was validated. RESULTS Eighty-eight (44.90%) and 28 (14.29%) patients had radiation-induced hepatic toxicity ≥ 1 (Child-Pugh ≥ 1) and radiation-induced hepatic toxicity ≥ 2 (Child-Pugh ≥ 2). Pre-treatment Child-Pugh, body mass index and dose-volume parameters were correlated with radiation-induced hepatic toxicity ≥ 1 using univariate logistic analysis. V15 had the best predictive effectiveness among the dose-volume parameters in both the training (area under the curve: 0.763, 95% confidence interval: 0.683-0.842, P < 0.001) and validation cohorts (area under the curve: 0.759, 95% confidence interval: 0.635-0.883, P < 0.001). The area under the curve values of the model that was constructed by pre-treatment Child-Pugh, body mass index and V15 for radiation-induced hepatic toxicity ≥1 were 0.799 (95% confidence interval: 0.719-0.878, P < 0.001) and 0.775 (95% confidence interval: 0.657-0.894, P < 0.001) in the training and validation cohorts, respectively. Patients with a body mass index ≤ 20.425, Barcelona clinic liver cancer = C, Hepatitis B Virus-positive, Eastern Cooperative Oncology Group = 1-2 and hepatic fibrosis require lower V15 dose limits. CONCLUSIONS Risk assessment model constructed from Pre-treatment Child-Pugh, V15 and body mass index can guide individualized patient selection of toxicity minimization strategies.
Collapse
Affiliation(s)
- Qiaoyuan Wu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yudan Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yuxin Wei
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Chen
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianxu Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liqing Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingshi Su
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shixiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
39
|
Yalcin S, Lacin S, Kaseb AO, Peynircioğlu B, Cantasdemir M, Çil BE, Hurmuz P, Doğrul AB, Bozkurt MF, Abali H, Akhan O, Şimşek H, Sahin B, Aykan FN, Yücel İ, Tellioğlu G, Selçukbiricik F, Philip PA. A Post-International Gastrointestinal Cancers' Conference (IGICC) Position Statements. J Hepatocell Carcinoma 2024; 11:953-974. [PMID: 38832120 PMCID: PMC11144653 DOI: 10.2147/jhc.s449540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent liver tumor, is usually linked with chronic liver diseases, particularly cirrhosis. As per the 2020 statistics, this cancer ranks 6th in the list of most common cancers worldwide and is the third primary source of cancer-related deaths. Asia holds the record for the highest occurrence of HCC. HCC is found three times more frequently in men than in women. The primary risk factors for HCC include chronic viral infections, excessive alcohol intake, steatotic liver disease conditions, as well as genetic and family predispositions. Roughly 40-50% of patients are identified in the late stages of the disease. Recently, there have been significant advancements in the treatment methods for advanced HCC. The selection of treatment for HCC hinges on the stage of the disease and the patient's medical status. Factors such as pre-existing liver conditions, etiology, portal hypertension, and portal vein thrombosis need critical evaluation, monitoring, and appropriate treatment. Depending on the patient and the characteristics of the disease, liver resection, ablation, or transplantation may be deemed potentially curative. For inoperable lesions, arterially directed therapy might be an option, or systemic treatment might be deemed more suitable. In specific cases, the recommendation might extend to external beam radiation therapy. For all individuals, a comprehensive, multidisciplinary approach should be adopted when considering HCC treatment options. The main treatment strategies for advanced HCC patients are typically combination treatments such as immunotherapy and anti-VEGFR inhibitor, or a combination of immunotherapy and immunotherapy where appropriate, as a first-line treatment. Furthermore, some TKIs and immune checkpoint inhibitors may be used as single agents in cases where patients are not fit for the combination therapies. As second-line treatments, some treatment agents have been reported and can be considered.
Collapse
Affiliation(s)
- Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sahin Lacin
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Peynircioğlu
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Barbaros Erhan Çil
- Department of Radiology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Bülent Doğrul
- Department of General Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Fani Bozkurt
- Department of Nuclear Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hüseyin Abali
- Department of Medical Oncology, Bahrain Oncology Center, Muharraq, Bahrain
| | - Okan Akhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Halis Şimşek
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Berksoy Sahin
- Department of Medical Oncology, Cukurova University Faculty of Medicine, Adana, Türkiye
| | - Faruk N Aykan
- Department of Medical Oncology, Istinye University Faculty of Medicine Bahçeşehir Liv Hospital, İstanbul, Turkey
| | - İdris Yücel
- Medicana International Hospital Samsun, Department of Medical Oncology, Samsun, Turkey
| | - Gürkan Tellioğlu
- Department of General Surgery, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Fatih Selçukbiricik
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Philip A Philip
- Department of Medicine, Division of Hematology-Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
40
|
Ishida T, Mizumoto M, Saito T, Okumura T, Miura K, Makishima H, Iizumi T, Numajiri H, Baba K, Murakami M, Nakamura M, Nakai K, Sakurai H. Proton Beam Therapy for Treating Patients with Hepatocellular Carcinoma with Major Portal Vein Tumor Invasion: A Single Center Retrospective Study. Cancers (Basel) 2024; 16:2050. [PMID: 38893169 PMCID: PMC11171269 DOI: 10.3390/cancers16112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) has a poor prognosis and is generally not indicated for surgery. Proton beam therapy (PBT) may offer an alternative treatment. In this study, long-term outcomes were examined in 116 patients (median age 66 years, 100 males) with HCC with advanced PVTT (Vp3 or Vp4) who received PBT from April 2008 to March 2018. Of these patients, 63 received PBT as definitive treatment and 53 as palliative treatment. The representative dose was 72.6 Gy (RBE) in 22 fractions. Eight patients died in follow-up, including 72 due to tumor progression. The 5-year overall survival (OS) rate was 18.0% (95% CI 9.8-26.2%) and the 5-year local control (LC) rate was 86.1% (74.9-97.3%). In multivariate analyses, performance status and treatment strategy were significantly associated with OS. The median follow-up period for survivors with definitive treatment was 33.5 (2-129) months, and the 5-year OS rate was 25.1% (12.9-37.3%) in these cases. The median survival time after definitive irradiation was >20 months. The 5-year OS rate was 9.1% (0-19.7%) for palliative irradiation. These results compare favorably with those of other therapies and suggest that PBT is a useful option for cases of HCC with advanced PVTT that cannot undergo surgery, with an expected survival benefit and good local control. Determining the optimal indication for this treatment is a future challenge.
Collapse
Affiliation(s)
- Toshiki Ishida
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Toshiyuki Okumura
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, Ibaraki 309-1703, Japan
| | - Kosei Miura
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
- Department of Radiation Oncology, JCHO Tokyo Shinjuku Medical Center, Tokyo 162-8543, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Haruko Numajiri
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Keiichiro Baba
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Motohiro Murakami
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Masatoshi Nakamura
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Tsukuba, Ibaraki 305-8576, Japan; (T.I.); (T.S.); (T.O.); (K.M.); (H.M.); (T.I.); (H.N.); (K.B.); (M.M.); (M.N.); (K.N.); (H.S.)
| |
Collapse
|
41
|
Li Y, Lai Y, Luo X, Wu J, Wu K, Ma H. Case report: Massive hepatocellular carcinoma with complete response to the non-surgical systematic treatment strategy. Front Oncol 2024; 14:1291131. [PMID: 38800409 PMCID: PMC11116599 DOI: 10.3389/fonc.2024.1291131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background The five-year recurrence rate of hepatocellular carcinoma (HCC) remains as high as 70%. A complete clinical response has not been observed without surgical resection. Here, we report a rare case of clinical complete response and long-term survival in a patient with massive HCC receiving treatment with immunotherapy, anti-angiogenic therapy, and radiotherapy. Case description A 38-year-old woman presented to our hospital for abdominal pain that persisted for 3 months. She was diagnosed as Barcelona Clinic Liver Cancer(BCLC) stage A, with a Cancer of the Liver Italian Program (CLIP) score of 3, American Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging systems stage IB. She refused surgical resection and trans-arterial chemoembolization and accepted a non-invasive systematic treatment strategy involving immunotherapy, anti-angiogenic therapy, and radiotherapy. Her tumor burden decreased, and she experienced partial response before radiotherapy. Following radiotherapy, she experienced a complete clinical response and has been alive for more than 36 months after her initial presentation. She is currently alive. Conclusion A non-invasive systematic treatment strategy is a potential radical treatment option for patients with massive HCC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
| | - Yanzhen Lai
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
| | - Xuqiang Luo
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
| | - Jian Wu
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
| | - Kunpeng Wu
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
| | - Haiqing Ma
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, Guangdong, China
- Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong Province, Heyuan People's Hospital, Heyuan, Guangdong, China
- Medical Research Center, Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Dawood ZS, Brown ZJ, Alaimo L, Lima HA, Shaikh C, Katayama ES, Munir MM, Moazzam Z, Endo Y, Woldesenbet S, Pawlik TM. Comparison of tumor response and outcomes of patients with hepatocellular carcinoma after multimodal treatment including immune checkpoint inhibitors - a systematic review and meta-analysis. HPB (Oxford) 2024; 26:618-629. [PMID: 38369433 DOI: 10.1016/j.hpb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) combined with tyrosine kinase inhibitors (TKIs), trans-arterial chemoembolization (TACE), and radiotherapy to treat hepatocellular carcinoma (HCC) has not been well-defined. We performed a meta-analysis to characterize tumor response and survival associated with multimodal treatment of HCC. METHODS PubMed, Embase, Medline, Scopus, and CINAHL databases were searched (1990-2022). Random-effect meta-analysis was conducted to compare efficacy of treatment modalities. Odds ratios (OR) and standardized mean difference (SMD) were reported. RESULTS Thirty studies (4170 patients) met inclusion criteria. Triple therapy regimen (ICI + TKI + TACE) had the highest overall disease control rate (DCR) (87%, 95% CI 83-91), while ICI + radiotherapy had the highest objective response rate (ORR) (72%, 95% CI 54%-89%). Triple therapy had a higher DCR than ICI + TACE (OR 4.49, 95% CI 2.09-9.63), ICI + TKI (OR 3.08, 95% CI 1.63-5.82), and TKI + TACE (OR 2.90, 95% CI 1.61-5.20). Triple therapy demonstrated improved overall survival versus ICI + TKI (SMD 0.72, 95% CI 0.37-1.07) and TKI + TACE (SMD 1.13, 95% CI 0.70-1.48) (both p < 0.05). Triple therapy had a greater incidence of adverse events (AEs) compared with ICI + TKI (OR 0.59, 95% CI 0.29-0.91; p = 0.02), but no difference in AEs versus ICI + TACE or TKI + TACE (both p > 0.05). CONCLUSION The combination of ICIs, TKIs and TACE demonstrated superior tumor response and survival and should be considered for select patients with advanced HCC.
Collapse
Affiliation(s)
- Zaiba S Dawood
- Medical College, The Aga Khan University Hospital, Stadium Road, Karachi, 74800, Pakistan
| | - Zachary J Brown
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY, USA
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Henrique A Lima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Chanza Shaikh
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Erryk S Katayama
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Muhammad M Munir
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Zorays Moazzam
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yutaka Endo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Selamawit Woldesenbet
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
43
|
Kumar A, Arora A, Sharma P. Revolutionizing HCC Treatment: A Promising Multimodal Approach With TACE, SBRT, and Immunotherapy. J Clin Exp Hepatol 2024; 14:101321. [PMID: 38264575 PMCID: PMC10801298 DOI: 10.1016/j.jceh.2023.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Ashish Kumar
- Institute of Liver, Gastroenterology, & Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology, & Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology, & Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
44
|
Liu F, Brown DR, Munley MT. Optimal hypofractionated radiation therapy schemes for early-stage hepatocellular carcinoma. Radiother Oncol 2024; 194:110223. [PMID: 38467342 DOI: 10.1016/j.radonc.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) has been emerging as an efficacious and safe treatment modality for early-stage hepatocellular carcinoma (HCC), but optimal fractionation regimens are unknown. This study aims to analyze published clinical tumor control probability (TCP) data as a function of biologically effective dose (BED) and to determine radiobiological parameters and optimal fractionation schemes for SBRT and hypofractionated radiation therapy of early-stage HCC. MATERIAL AND METHODS Clinical 1- to 5-year TCP data of 4313 patients from 41 published papers were collected for hypofractionated radiation therapy at 2.5-4.5 Gy/fraction and SBRT of early-stage HCC. BED was calculated at isocenter using three representative radiobiological models developed per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative. Radiobiological parameters were determined from a fit to the TCP data using the least χ2 method with one set of model parameters regardless of tumor stages or Child-Pugh scores A and B. RESULTS The fits to the clinical TCP data for SBRT of early-stage HCC found consistent α/β ratios of about 14 Gy for all three radiobiological models. TCP increases sharply with BED and reaches an asymptotic maximal plateau, which results in optimal fractionation schemes of least doses to achieve asymptotic maximal tumor control for SBRT and hypofractionated radiation therapy of early-stage HCC that are found to be model-independent. CONCLUSION From the fits to the clinical TCP data, we presented the first determination of radiobiological parameters and model-independent optimal fractionation regimens in 1-20 fractions to achieve maximal tumor control whenever safe for SBRT and hypofractionated radiation therapy of early-stage HCC. The determined optimal fractionation schemes agree well with clinical practice for SBRT of early-stage HCC. However, most existing hypofractionated radiation therapy schemes of 3-5 Gy/fraction are not optimal, higher doses are required to maximize tumor control, further validation of these findings is essential with clinical TCP data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Doris R Brown
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
45
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
46
|
Kim BH, Park HC, Kim TH, Koh YH, Hong JY, Cho Y, Sinn DH, Park B, Park JW. Concurrent nivolumab and external beam radiation therapy for hepatocellular carcinoma with macrovascular invasion: A phase II study. JHEP Rep 2024; 6:100991. [PMID: 38463541 PMCID: PMC10920711 DOI: 10.1016/j.jhepr.2023.100991] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024] Open
Abstract
Background and Aims Nivolumab was the first immune checkpoint inhibitor approved for hepatocellular carcinoma (HCC). External beam radiation therapy (EBRT) is locally effective and may enhance the effectiveness of immunotherapy. This study investigated the efficacy and safety of concurrent nivolumab and EBRT in HCC with macrovascular invasion. Methods In this phase II multicenter trial, patients with HCC and macrovascular invasion were concurrently treated with intravenous nivolumab (3 mg/kg every 2 weeks) and EBRT, followed by maintenance nivolumab until progression or unacceptable toxicity. Primary endpoints were progression-free survival (PFS) and safety, and secondary endpoints were overall survival, time-to-progression, objective response rate, and disease control rate. Results Between January 2020 and June 2021, 50 patients (male 84%, median age 62.5) were enrolled; 47 (94.0%) and 13 (26.0%) with portal (Vp1/2, n = 21; Vp3, n = 23; Vp4, n = 3) and hepatic vein invasion, respectively. Patients received EBRT (median dose: 50 [IQR 43-50] Gy) after the first nivolumab dose. The median number of nivolumab doses was 8.5. Median PFS was 5.6 (90% CI 3.6-9.9) months. Median overall survival and time-to-progression were 15.2 (90% CI 10.8-19.6) and 5.6 (90% CI 3.6-9.9) months, respectively. The objective response rate and disease control rate were 36.0% and 74.0%, respectively. The median duration of response was 9.9 months. Of 35 patients with follow-up data, 23 received subsequent systemic treatment, including atezolizumab-bevacizumab, sorafenib, lenvatinib, and regorafenib. Treatment-related any grade adverse events (AEs) and grade 3/4 AEs occurred in 40 (80.0%) and 6 (12.0%) patients, respectively. Common treatment-related AEs included pruritus (38.0%) and rash (16.0%), with no treatment-related deaths. Conclusion Concurrent nivolumab therapy and EBRT showed encouraging PFS with acceptable safety in patients with advanced HCC and macrovascular invasion. Impact and implications Immune checkpoint inhibitors, the standard care for advanced hepatocellular carcinoma (HCC), show relatively poor therapeutic effects in patients with advanced HCC and macrovascular invasion. In this investigator-initiated phase II study, we, for the first time, show that concurrent external beam radiation therapy with nivolumab, an immune checkpoint inhibitor, led to encouraging progression-free survival in patients with HCC and macrovascular invasion. The concurrent treatment was tolerable without significant safety concerns. Further randomized studies investigating the combination of immunotherapy and external beam radiation therapy are required. ClinicalTrialsgov identifier NCT04611165.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Hyun Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
- Center for Proton Therapy, National Cancer Center, Goyang, Republic of Korea
| | - Young-Hwan Koh
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
- Department of Radiology, National Cancer Center, Goyang, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Joong-Won Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
47
|
Wang DS, Phu A, McKee K, Strasser SI, Sheils S, Weltman M, Sellar S, Davis JS, Young M, Braund A, Farrell GC, Blunn A, Harding D, Ralton L, Muller K, Davison SA, Shaw D, Wood M, Hajkowicz K, Skolen R, Davies J, Tate-Baker J, Doyle A, Tuma R, Hazeldine S, Lam W, Edmiston N, Zohrab K, Pratt W, Watson B, Zekry A, Stephens C, Clark PJ, Day M, Park G, Kim H, Wilson M, McGarity B, Menzies N, Russell D, Lam T, Boyd P, Kok J, George J, Douglas MW. Hepatitis C Virus Antiviral Drug Resistance and Salvage Therapy Outcomes Across Australia. Open Forum Infect Dis 2024; 11:ofae155. [PMID: 38651137 PMCID: PMC11034952 DOI: 10.1093/ofid/ofae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Background Hepatitis C virus (HCV) infection can now be cured with well-tolerated direct-acting antiviral (DAA) therapy. However, a potential barrier to HCV elimination is the emergence of resistance-associated substitutions (RASs) that reduce the efficacy of antiviral drugs, but real-world studies assessing the clinical impact of RASs are limited. Here, an analysis of the impact of RASs on retreatment outcomes for different salvage regimens in patients nationally who failed first-line DAA therapy is reported. Methods We collected data from 363 Australian patients who failed first-line DAA therapy, including: age, sex, fibrosis stage, HCV genotype, NS3/NS5A/NS5B RASs, details of failed first-line regimen, subsequent salvage regimens, and treatment outcome. Results Of 240 patients who were initially retreated as per protocol, 210 (87.5%) achieved sustained virologic response (SVR) and 30 (12.5%) relapsed or did not respond. The SVR rate for salvage regimens that included sofosbuvir/velpatasvir/voxilaprevir was 94.3% (n = 140), sofosbuvir/velpatasvir 75.0% (n = 52), elbasvir/grazoprevir 81.6% (n = 38), and glecaprevir/pibrentasvir 84.6% (n = 13). NS5A RASs were present in 71.0% (n = 210) of patients who achieved SVR and in 66.7% (n = 30) of patients who subsequently relapsed. NS3 RASs were detected in 20 patients (20%) in the SVR group and 1 patient in the relapse group. NS5B RASs were observed in only 3 patients. Cirrhosis was a predictor of relapse after retreatment, as was previous treatment with sofosbuvir/velpatasvir. Conclusions In our cohort, the SVR rate for sofosbuvir/velpatasvir/voxilaprevir was higher than with other salvage regimens. The presence of NS5A, NS5B, or NS3 RASs did not appear to negatively influence retreatment outcomes.
Collapse
Affiliation(s)
- Dao Sen Wang
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Amy Phu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Kristen McKee
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Sinead Sheils
- AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Kingswood, NSW, Australia
| | - Sue Sellar
- Department of Gastroenterology and Hepatology, Nepean Hospital, Kingswood, NSW, Australia
| | - Joshua S Davis
- Department of Infectious Diseases, University of Newcastle and John Hunter Hospital, Newcastle, NSW, Australia
| | - Mel Young
- Department of Infectious Diseases, University of Newcastle and John Hunter Hospital, Newcastle, NSW, Australia
| | - Alicia Braund
- Department of Gastroenterology and Hepatology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Geoffrey C Farrell
- Department of Gastroenterology and Hepatology, Australian National University and The Canberra Hospital, Canberra, ACT, Australia
| | - Anne Blunn
- Department of Gastroenterology and Hepatology, Australian National University and The Canberra Hospital, Canberra, ACT, Australia
| | - Damian Harding
- Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia
| | - Lucy Ralton
- Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, Flinders Medical Centreand Flinders University, Adelaide, SA, Australia
| | - Scott A Davison
- Department of Gastroenterology and Hepatology, University of New South Wales and Liverpool Hospital, Liverpool, NSW, Australia
| | - David Shaw
- Department of Infectious Diseases, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Marnie Wood
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Krispin Hajkowicz
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Richard Skolen
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jane Davies
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, NT, Australia
| | - Jaclyn Tate-Baker
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, NT, Australia
| | - Adam Doyle
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Perth, WA, Australia
| | - Rhoda Tuma
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Perth, WA, Australia
| | - Simon Hazeldine
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Wendy Lam
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Natalie Edmiston
- Department of Gastroenterology and Hepatology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Krista Zohrab
- Department of Gastroenterology and Hepatology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - William Pratt
- Department of Medicine, Shoalhaven Hospital, Nowra, NSW, Australia
| | - Belinda Watson
- Department of Medicine, Shoalhaven Hospital, Nowra, NSW, Australia
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, NSW, Australia
| | - Carlie Stephens
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, NSW, Australia
| | - Paul J Clark
- Rockhampton Blood Borne Virus & Sexual Health Service and School of Medicine, University of Brisbane, Brisbane, QLD, Australia
| | - Melany Day
- Rockhampton Blood Borne Virus & Sexual Health Service and School of Medicine, University of Brisbane, Brisbane, QLD, Australia
| | - Gordon Park
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Hami Kim
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mark Wilson
- Department of Gastroenterology and Hepatology, Royal Hobart Hospital, Hobart, TAS, Australia
| | | | | | - Darren Russell
- Cairns Sexual Health Service and James Cook University Cairns, St Cairns City, QLD, Australia
| | - Thao Lam
- Department of Drug Health, Western Sydney Local Health District, Westmead, NSW, Australia
| | - Peter Boyd
- Department of Medicine, Cairns Hospital, Cairns, QLD, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
48
|
Hall JT, Moon AM, Young M, Tan X, Darawsheh R, Danquah F, Tepper JE, Yanagihara TK. Biochemical Safety of SBRT to Multiple Intrahepatic Lesions for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:443-454. [PMID: 38476559 PMCID: PMC10928924 DOI: 10.2147/jhc.s447025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Background We aim to better characterize stereotactic body radiation therapy (SBRT)-related hepatic biochemical toxicity in patients with multiple intrahepatic lesions from hepatocellular carcinoma (HCC). Methods We conducted a retrospective analysis of patients with HCC who underwent SBRT for 2 or more synchronous or metachronous liver lesions. We collected patient characteristics and dosimetric data (mean liver dose [MLD], cumulative effective volume [Veff], cumulative volume of liver receiving 15 Gy [V15Gy], and cumulative planning target volume [PTV]) along with liver-related toxicity (measured by albumin-bilirubin [ALBI] and Child-Pugh [CP] scores). A linear mixed-effects model was used to assess the effect of multi-target SBRT on changes in ALBI. Results There were 25 patients and 56 lesions with median follow-up of 29 months. Eleven patients had synchronous lesions, and 14 had recurrent lesions treated with separate SBRT courses. Among those receiving multiple SBRT courses, there were 7 lesions with overlap of V15Gy (median V15Gy overlap: 35 mL, range: 0.5-388 mL). There was no association between cumulative MLD, Veff, V15Gy, or PTV and change in ALBI. Four of 25 patients experienced non-classic radiation-induced liver disease (RILD), due to an increase of CP score by ≥2 points 3 to 6 months after SBRT. Sixteen of 25 patients experienced an increase in ALBI grade by 1 or more points 3 to 6 months after SBRT. Comparing the groups that received SBRT in a single course versus multiple courses revealed no statistically significant differences in liver toxicity. Conclusion Liver SBRT for multiple lesions in a single or in separate courses is feasible and with acceptable risk of hepatotoxicity. Prospective studies with a larger cohort are needed to better characterize safety in this population.
Collapse
Affiliation(s)
- Jacob T Hall
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Michael Young
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rami Darawsheh
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Flora Danquah
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Joel E Tepper
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Ted K Yanagihara
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Safavi AH, Dawson LA, Mesci A. Do We Have a Winner? Advocating for SBRT in HCC Management. Clin Transl Radiat Oncol 2024; 45:100740. [PMID: 38380116 PMCID: PMC10876598 DOI: 10.1016/j.ctro.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
•Stereotactic body radiotherapy (SBRT) is a safe and effective locoregional therapy for inoperable patients with HCC.•SBRT compares favorably with other local therapies in terms of local control, survival, morbidity, and cost-effectiveness.•SBRT should be considered and discussed in multidisciplinary management of appropriate HCC patients.•Advances in SBRT and novel combinations with systemic therapy may further widen the therapeutic index in HCC.
Collapse
Affiliation(s)
- Amir H. Safavi
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Laura A. Dawson
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aruz Mesci
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Wang H, Zheng X, Sun J, Zhu X, Dong D, Du Y, Feng Z, Gong J, Wu H, Geng J, Li S, Song M, Zhang Y, Liu Z, Cai Y, Li Y, Wang W. 4D-MRI assisted stereotactic body radiation therapy for unresectable colorectal cancer liver metastases. Clin Transl Radiat Oncol 2024; 45:100714. [PMID: 38130885 PMCID: PMC10733695 DOI: 10.1016/j.ctro.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
This study evaluated the feasibilities and outcomes following four-dimensional magnetic resonance imaging (4D-MRI) assisted stereotactic body radiation therapy (SBRT) for unresectable colorectal liver metastases (CRLMs). From March 2018 to January 2022, we identified 76 unresectable CRLMs patients with 123 lesions who received 4D-MRI guided SBRT in our institution. 4D-MRI simulation with or without abdominal compression was conducted for all patients. The prescription dose was 50-65 Gy in 5-12 fractions. The image quality of computed tomography (CT) and MRI were compared using the Clarity Score. Clinical outcomes and toxicity profiles were evaluated. 4D-MRI improved the image quality compared with CT images (mean Clarity Score: 1.67 vs 2.88, P < 0.001). The abdominal compression reduced motions in cranial-caudal direction (P = 0.03) with two phase T2 weighted images assessing tumor motion. The median follow-up time was 12.5 months. For 98 lesions assessed for best response, the complete response, partial response and stable disease rate were 57.1 %, 30.6 % and 12.2 %, respectively. The local control (LC) rate at 1 year was 97.3 %. 46.1 % of patients experienced grade 1-2 toxicities and only 2.6 % patients experienced grade 3 hematologic toxicities. The 4D-MRI technique allowed accurate target delineation and motion tracking in unresectable CRLMs patients. Favorable LC rate and mild toxicities were achieved. This study provided evidence for using 4D-MRI assisted SBRT as an alternative treatment in unresectable CRLMs.
Collapse
Affiliation(s)
| | | | | | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhongsu Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jian Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhiyan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|